, 23:729 | Cite as

Species-specific climate sensitivity of tree growth in Central-West Germany

  • Dagmar A. Friedrichs
  • Valerie Trouet
  • Ulf Büntgen
  • David C. Frank
  • Jan Esper
  • Burkhard Neuwirth
  • Jörg Löffler
Original Paper


Growth responses to twentieth century climate variability of the three main European tree species Fagus sylvatica, Quercus petraea, and Pinus sylvestris within two temperate low mountain forest sites were analyzed, with particular emphasis on their dependence upon ecological factors and temporal stability in the obtained relationships. While site conditions in Central (~51°N, 9°E, KEL) and West (50.5°N, 6.5°E, EIF) Germany are similar, annual precipitation totals of ≅700 mm and ≅1,000 mm describe a maritime-continental gradient. Ring-width samples from 228 trees were collected and PCA used to identify common growth patterns. Chronologies were developed and redundancy analysis and simple correlation coefficients calculated to detect twentieth century temperature, precipitation, and drought fingerprints in the tree-ring data. Summer drought is the dominant driver of forest productivity, but regional and species-specific differences indicate more complex influences upon tree growth. F. sylvatica reveals the highest climate sensitivity, whereas Q. petraea is most drought tolerant. Drier growth conditions in KEL result in climate sensitivity of all species, and Q. petraea shifted from non-significant to significant drought sensitivity during recent decades at EIF. Drought sensitivity dynamics of all species vary over time. An increase of drought sensitivity in tree growth was found in the wetter forest area EIF, whereas a decrease occurred in the middle of the last century for all species in the drier KEL region. Species-specific and regional differences in long-term climate sensitivities, as evidenced by temporal variability in drought sensitivity, are potential indicators for a changing climate that effects Central-West German forest growth, but meanwhile hampers a general assessment of these effects.


Climate change Dendroclimatology Tree rings Water supply Drought 



We thank two anonymous reviewers for their comments. DAF was supported by the German Federal Environmental Foundation (DBU). UB and JE were supported by the EU-project MILLENNIUM (#017008) and DCF by the EU-project CARBO-Extreme (#226701).


  1. Ammer Ch et al (2005) Zur Zukunft der Buche (Fagus sylvatica L.) in Mitteleuropa. Allg Forst- u J-Ztg 176:60–67Google Scholar
  2. Betts RA, Boucher O, Collins M, Cox PM, Falloon PD, Gedney N, Hemming DL, Huntingford C, Jones CD, Sexton DMH, Webb MJ (2007) Projected increase in continental runoff due to plant responses to increasing carbon dioxide. Nature 448:1037–1041. doi: 10.1038/nature06045 PubMedCrossRefGoogle Scholar
  3. Bonn S (1998) Dendroökologische Untersuchung der Konkurrenzdynamik in Buchen/Eichen-Mischbeständen und zu erwartende Modifikationen durch Klimaänderungen. PhD Thesis, Forstwissenschaftliche Beiträge Tharandt, DresdenGoogle Scholar
  4. Bréda N, Huc R, Granier A, Dreyer E (2006) Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaption processes and long-term consequences. Ann For Sci 63:625–644CrossRefGoogle Scholar
  5. Büntgen U, Frank DC, Wilson R, Carrer M, Urbinati C, Esper J (2008) Testing for tree-ring divergence in the European Alps. Glob Change Biol 14:2443–2453CrossRefGoogle Scholar
  6. Christensen JH, Hewitson B, Busuioc A, Chen A, Gao X, Held I, Jones R, Kolli RK, Kwon W-T, Laprise R, Magana Rueda V, Mearns L, Menéndez CG, Räisänen J, Rinke A, Sarr A, Whetton P (2007) Regional climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate Change 2007. The physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 847–941Google Scholar
  7. Ciais P, Reichstein M, Viovy N, Granier A, Ogée J, Allard V, Aubinet M, Buchmann N, Bernhofer C, Carrara A, Chevallier F, De Noblet N, Friend D, Friedlingstein P, Grünwald T, Heinesch B, Keronen P, Knohl A, Krinner G, Loustau D, Manca G, Matteucci G, Miglietta F, Ourcival JM, Papale D, Pilegaard K, Rambal S, Seufert G, Soussana JF, Sanz MJ, Schulze ED, Vesala T, Valentini R (2005) Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437:529–533PubMedCrossRefGoogle Scholar
  8. Cook ER (1985) A time series analysis approach to tree-ring standardization. PhD Thesis, University of Arizona, TusconGoogle Scholar
  9. Cook ER, Peters K (1981) The smoothing spline: a new approach to standardizing forest interior tree-ring width series for dendroclimatic studies. Tree-Ring Bull 41:45–53Google Scholar
  10. Cook ER, Glitzenstein JS, Krusic PJ, Harcombe PA (2001) Identifying functional groups of trees in west Gulf Coast forests (USA): a tree-ring approach. Ecol Appl 11:883–903CrossRefGoogle Scholar
  11. Dai A, Trenberth KE, Qian T (2004) A global dataset of Palmer drought severity index for 1870–2002: Relationship with soil moisture and effects of surface warming. J Hydrometeorol 5:1117–1130CrossRefGoogle Scholar
  12. Di Filippo A, Biondi F, Cufar K, de Luis M, Grabner M, Maugeri M, Presutti Saba E, Schirone B, Piovesan G (2007) Bioclimatology of beech (Fagus sylvatica L.) in the Eastern Alps: spatial and altitudinal climatic signals identified through a tree-ring network. J Biogeogr 34:1873–1892CrossRefGoogle Scholar
  13. Dittmar C, Zech W, Elling W (2003) Growth variations of common beech (Fagus sylvatica L.) under different climatic and environmental conditions in Europe-a dendroecological study. For Ecol Manage 173:63–78CrossRefGoogle Scholar
  14. Ellenberg H (1996) Vegetation Mitteleuropas mit den Alpen. In ökologischer, dynamischer und historischer Sicht. Ulmer, StuttgartGoogle Scholar
  15. Epron D, Dreyer E (1993) Long-term effects of drought on photosynthesis of adult oak trees. Q. petraea (Matt) Liebl. and Q. robur L. in a natural stand. New Phytol 125:381–389CrossRefGoogle Scholar
  16. Esper J, Frank DC, Büntgen U, Verstege A, Luterbacher J, Xoplaki E (2007) Long-term drought severity variations in Morocco. Geophys Res Lett 34. doi: 10.1029/2007GL030844
  17. Frank D, Büntgen U, Böhm R, Maugeri M, Esper J (2007a) Warmer early instrumental measurements versus colder reconstructed temperatures: shooting at a moving target. Quat Sci Rev 26:3298–3310CrossRefGoogle Scholar
  18. Frank D, Esper J, Cook ER (2007b) Adjustment for proxy number and coherence in a large-scale temperature reconstruction. Geophys Res Lett 34. doi: 10.1029/2007GL030571
  19. Friedrichs DA, Neuwirth B, Winiger W, Löffler J (2008a). Methodologically induced differences in oak site classifications in a homogeneous tree-ring network. Dendrochronologia. doi: 10.1016/j.dendro.2008.02.001
  20. Friedrichs DA, Büntgen U, Frank DC, Esper J, Neuwirth B, Löffler J (2008b) Complex climate controls of 20th century oak growth in Central-West Germany. Tree Physiol. doi: 10.1093/treephys/tpn003
  21. Fritts HC (1976) Tree rings and climate. Academic Press, LondonGoogle Scholar
  22. García-González I, Eckstein D (2003) Climatic signal of earlywood vessels of oak on a maritime site. Tree Physiol 23:497–504Google Scholar
  23. Geßler A, Keitel C, Kreuzwieser J, Matyssek R, Seiler W, Rennenberg H (2007) Potential risks for European beech (Fagus sylvatica L.) in a changing climate. Trees 21:1–11CrossRefGoogle Scholar
  24. Granier A et al (2007). Evidence for soil water control on carbon and water dynamics in European forests during the extremely dry year: 2003. Agricul Forest Meteorol 143:123–145Google Scholar
  25. Härdtle W, Ewald J, Hölzel N (2004) Wälder des Tieflandes und der Mittelgebirge. Ulmer, StuttgartGoogle Scholar
  26. Holmes RL (1983) Computer-assisted quality control in tree-ring dating and measurements. Tree-Ring Bull 43:69–78Google Scholar
  27. Hurrell JW, Kushnir Y, Ottersen G, Visbeck M (2003) An overview of the North Atlantic Oscillation. Geophys Monogr 134:1–35Google Scholar
  28. Jolly WM, Dobbertin M, Zimmermann NE, Reichstein M (2005) Divergent vegetation growth responses to the 2003 heat wave in the Swiss Alps. Geophys Res Lett 32. doi: 10.1029/2005GL023252
  29. Kozlowski TT, Pallardy SG (1997) Growth control in woody plants. Academic Press, San DiegoGoogle Scholar
  30. Lebourgeois F, Bréda N, Ulrich E, Granier A (2005) Climate-tree-growth relationships of European beech (Fagus sylvatica L.) in the French permanent plot network (RENECOFOR). Trees 19:385–401CrossRefGoogle Scholar
  31. Legendre P, Legendre L (1998) Numerical ecology. Elsevier, New YorkGoogle Scholar
  32. Leuzinger S, Körner C (2007) Water savings in mature deciduous forest trees under elevated CO2. Glob Change Biol 13:2498–2508CrossRefGoogle Scholar
  33. Leuzinger S, Zotz G, Asshoff R, Körner C (2005) Response of deciduous forest trees to severe drought in Central Europe. Tree Physiol 25:641–650PubMedGoogle Scholar
  34. Lingg W (1986) Dendroökologische Studien an Nadelbäumen im alpinen Trockental Wallis (Schweiz). Berichte der Eidgenössischen Anstalt für das forstliche Versuchswesen 287:3–81Google Scholar
  35. Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol 25:693–712CrossRefGoogle Scholar
  36. Neuwirth B, Schweingruber FH, Winiger M (2007) Spatial patterns of central European pointer years from 1901 to 1971. Dendrochronologia 24:79–89CrossRefGoogle Scholar
  37. Oberhuber W, Stumböck M, Kofler W (1998) Climate-tree-growth relationships of Scots pine stands (Pinus sylvestris L.) exposed to soil dryness. Trees 13:19–27Google Scholar
  38. Rennenberger H, Seiler W, Mayssek R, Gessler A, Kreuzwieser J (2004) European beech (Fagus sylvatica L.)—a forest tree without future in the south of Central Europe? Allg Forst- u J-Ztg 175:210–224Google Scholar
  39. Rozas V (2001) Detecting the impact of climate and disturbances on tree-rings of Fagus sylvatica L. and Quercus robur L. in lowland forest in Cantabria, Spain. Ann For Sci 58:237–251CrossRefGoogle Scholar
  40. Saxe H, Cannell MGR, Johnsen Ø, Ryan MG, Vourlitis G (2001) Tree and forest functioning in response to global warming. New Phytol 149:369–400CrossRefGoogle Scholar
  41. Schär C, Vidale PL, Lüthi D, Frei C, Häberli C, Liniger MA, Appenzeller C (2004) The role of increasing temperature variability in European summer heatwaves. Nature 427:332–336PubMedCrossRefGoogle Scholar
  42. Schweingruber FH (1993) Jahrringe und Umwelt–Dendroökologie. Haupt, BernGoogle Scholar
  43. Schweingruber FH (1996) Tree rings and environment—dendrochronology. Haupt, BernGoogle Scholar
  44. Stokes MA, Smiley TL (1968) An introduction to tree-ring dating. University of Chicago, Chicago, Reprinted 1996. University of Arizona Press, TucsonGoogle Scholar
  45. ter Braak CJF, Smilauer P (2002) CANOCO reference manual and CanoDraw for Windows User’s Guide: Software for Canonical Community Ordination (version 4.5). Microcomputer Power, IthacaGoogle Scholar
  46. Thomas FM, Blank R, Hartmann G (2002) Abiotic and biotic factors and their interactions as causes of oak decline in Central Europe. For Pathol 32:277–307Google Scholar
  47. Thuiller W (2004) Patterns and uncertainties of species’ range shifts under climate change. Glob Change Biol 10:2020–2027CrossRefGoogle Scholar
  48. van der Schrier G, Briffa KR, Jones PD, Osborn TJ (2006) Summer moisture variability across Europe. J Clim 19:2818–2834CrossRefGoogle Scholar
  49. Weber P, Bugmann H, Rigling A (2007) Radial growth responses to drought of Pinus sylvestris and Quercus pubescens in an inner-Alpine dry valley. J Veg Sci 18:777–792CrossRefGoogle Scholar
  50. Wigley TML, Briffa KR, Jones PD (1984) On the average of value of correlated time series, with applications in dendroclimatology and hydrometeorology. J Clim Appl Meteorol 23:201–213CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Dagmar A. Friedrichs
    • 1
  • Valerie Trouet
    • 2
  • Ulf Büntgen
    • 2
  • David C. Frank
    • 2
  • Jan Esper
    • 2
  • Burkhard Neuwirth
    • 1
  • Jörg Löffler
    • 1
  1. 1.Department of GeographyUniversity of BonnBonnGermany
  2. 2.Swiss Federal Research Institute WSLBirmensdorfSwitzerland

Personalised recommendations