Advertisement

Trees

, 23:623 | Cite as

Temporal dynamic of wood formation in Pinus cembra along the alpine treeline ecotone and the effect of climate variables

  • Andreas Gruber
  • Daniel Baumgartner
  • Jolanda Zimmermann
  • Walter OberhuberEmail author
Original Paper

Abstract

We determined the temporal dynamic of cambial activity and xylem development of stone pine (Pinus cembra L.) throughout the treeline ecotone. Repeated micro-sampling of the developing tree ring was carried out during the growing seasons 2006 and 2007 at the timberline (1,950 m a.s.l.), treeline (2,110 m a.s.l.) and within the krummholz belt (2,180 m a.s.l.) and the influence of climate variables on intra-annual wood formation was determined. At the beginning of both growing seasons, highest numbers of cambial and enlarging cells were observed at the treeline. Soil temperatures at time of initiation of cambial activity were c. 1.5°C higher at treeline (open canopy) compared to timberline (closed canopy), suggesting that a threshold root-zone temperature is involved in triggering onset of above ground stem growth. The rate of xylem cell production determined in two weekly intervals during June through August 2006–2007 was significantly correlated with air temperature (temperature sums expressed as degree-days and mean daily maximum temperature) at the timberline only. Lack of significant relationships between tracheid production and temperature variables at the treeline and within the krummholz belt support past dendroclimatological studies that more extreme environmental conditions (e.g., wind exposure, frost desiccation, late frost) increasingly control tree growth above timberline. Results of this study revealed that spatial and temporal (i.e., year-to-year) variability in timing and dynamic of wood formation of P. cembra is strongly influenced by local site factors within the treeline ecotone and the dynamics of seasonal temperature variation, respectively.

Keywords

Cambium Intra-annual growth Pinus cembra Temperature Tracheid production 

Notes

Acknowledgments

This work was supported by the Austrian Science Fund (Project No. FWF P18819-B03 “Temperature dependence of Pinus cembra (L.) stem growth and respiration along an altitudinal transect”). Precipitation data were provided by Zentralanstalt für Meteorologie und Geodynamik, Innsbruck, which is greatly acknowledged. We also thank anonymous reviewers for valuable suggestions and comments on improving the manuscript.

References

  1. Antonova GF, Stasova VV (1993) Effects of environmental factors on wood formation in Scots pine stems. Trees (Berl) 7:214–219. doi: 10.1007/BF00202076 CrossRefGoogle Scholar
  2. Antonova GF, Stasova VV (1997) Effects of environmental factors on wood formation in larch. Trees (Berl) 11:462–468Google Scholar
  3. Auer I, Böhm R, Jurkovic A, Lipa W, Orlik A, Potzmann R, Schöner W, Ungersböck M, Matulla C, Briffa K, Jones P, Efthymiadis D, Brunetti M, Nanni T, Maugeri M, Mercalli L, Mestre O, Moisselin J-M, Begert M, Müller-Westermeier G, Kveton V, Bochnicek O, Stastny P, Lapin M, Szalai S, Szentimrey T, Cegnar T, Dolinar M, Gajic-Capka M, Zaninovic K, Majstorovic Z, Nieplova E (2007) HISTALP––historical instrumental climatological surface time series of the Greater Alpine Region. Int J Climatol 27:17–46. doi: 10.1002/joc.1377 CrossRefGoogle Scholar
  4. Baig MN, Tranquillini W (1980) The effects of wind and temperature on cuticular transpiration of Picea abies and Pinus cembra and their significance in desiccation damage at the alpine tree line. Oecologia 47:252–256. doi: 10.1007/BF00346828 CrossRefGoogle Scholar
  5. Baskerville GL, Emin P (1969) Rapid estimation of heat accumulation from maximum and minimum temperatures. Ecology 50:514–517. doi: 10.2307/1933912 CrossRefGoogle Scholar
  6. Bräker OU (1981) Der Alterstrend bei Jahrringdichten und Jahrringbreiten von Nadelhölzern und sein Ausgleich. Mitt Forstl Bundesvers Wien 142:75–102Google Scholar
  7. Büntgen U, Esper J, Frank DC, Nicolussi K, Schmidhalter M (2005) A 1052-year tree-ring proxy for Alpine summer temperature. Clim Dyn 25(2–3):141–153. doi: 10.1007/s00382-005-0028-1 CrossRefGoogle Scholar
  8. Camarero JJ, Guerrero-Campo J, Gutiérrez E (1998) Tree-ring growth and structure of Pinus uncinata and Pinus sylvestris in the Central Spanish Pyrenees. Arct Alp Res 30(1):1–10. doi: 10.2307/1551739 CrossRefGoogle Scholar
  9. Cannell MGR, Smith RI (1986) Climatic warming, spring budburst and frost damage on trees. J Appl Ecol 23:177–191. doi: 10.2307/2403090 CrossRefGoogle Scholar
  10. Carrer M, Nola P, Eduards JL, Motta R, Urbinati C (2007) Regional variability of climate-growth relationships in Pinus cembra high elevation forests in the Alps. J Ecol 95:1072–1083. doi: 10.1111/j.1365-2745.2007.01281.x CrossRefGoogle Scholar
  11. Cook ER, Kairiukstis LA (eds) (1990) Methods of dendrochronology applications in the environmental sciences. Kluwer, DordrechtGoogle Scholar
  12. Day TA, DeLucia EH, Smith WK (1989) Influence of cold soil and snowcover on photosynthesis and leaf conductance in two Rocky Mountain conifers. Oecologia 80:546–552. doi: 10.1007/BF00380080 CrossRefGoogle Scholar
  13. DeLucia EH (1986) Effect of low root temperature on net photosynthesis, stomatal conductance and carbohydrate concentration in Engelmann spruce (Picea engelmannii Parry ex Engelm.) seedlings. Tree Physiol 2:143–154PubMedGoogle Scholar
  14. Deslauriers A, Morin H (2005) Intra-annual tracheid production in balsam fir stems and the effect of meteorological variables. Trees (Berl) 19:402–408. doi: 10.1007/s00468-004-0398-8 CrossRefGoogle Scholar
  15. Deslauriers A, Morin H, Begin Y (2003) Cellular phenology of annual ring formation of Abies balsamea in the Quebec boreal forest (Canada). Can J Res 33:190–200. doi: 10.1139/x02-178 CrossRefGoogle Scholar
  16. Domisch T, Finér L, Lehto T (2001) Effects of soil temperature on biomass and carbohydrate allocation in Scots pine (Pinus sylvestris) seedlings at the beginning of the growing season. Tree Physiol 21:465–472PubMedGoogle Scholar
  17. Dullinger S, Dirnböck T, Grabherr G (2004) Modelling climate change-driven treeline shifts: relative effects of temperature increase, dispersal and invisibility. J Ecol 92:241–252. doi: 10.1111/j.0022-0477.2004.00872.x CrossRefGoogle Scholar
  18. Eckstein D, Aniol RW (1981) Dendroclimatological reconstruction of the summer temperatures for an alpine region. Mitt Forstl Bundesvers Wien 142:391–398Google Scholar
  19. FAO (1998) World reference base for soil resources. FAO, RomeGoogle Scholar
  20. Frenzel B, Maisch I (1981) Klimatische Analyse der Jahrringbreitenschwankungen an der alpinen Waldgrenze. Mitt Forstl Bundesvers Wien 142:399–416Google Scholar
  21. Frank D, Esper J (2005) Characterization and climate response patterns of a high-elevation, multi-species tree-ring network in the European Alps. Dendrochronologia 22:107–121. doi: 10.1016/j.dendro.2005.02.004 CrossRefGoogle Scholar
  22. Fritts HC (1976) Tree rings and climate. Academic Press, LondonGoogle Scholar
  23. Gartner BL, Aloni R, Funada R, Lichtfuss-Gautier AN, Roig FA (2002) Clues for dendrochronology from studies of wood structure and function. Dendrochronologia 20(1–2):53–61. doi: 10.1078/1125-7865-00007 CrossRefGoogle Scholar
  24. Gehrig-Fasel J, Guisan A, Zimmermann NE (2007) Tree line shifts in the Swiss Alps: climate change or land abandonment? J Veg Sci 18:571–582. doi: 10.1658/1100-9233(2007)18[571:TLSITS]2.0.CO;2 CrossRefGoogle Scholar
  25. Grace J (1988) The functional significance of short stature in montane vegetation. In: Werger MJA, Van der Aart PJM, During HJ, Verhoeven JTA (eds) Plant form and vegetation structure. SPB Academic Publishers, The Hague, pp 201–209Google Scholar
  26. Grace J, Norton DA (1990) Climate and growth of Pinus sylvestris at its upper altitudinal limit in Scotland: evidence from tree growth-rings. J Ecol 78:601–610. doi: 10.2307/2260887 CrossRefGoogle Scholar
  27. Grace J, Allen SJ, Wilson C (1989) Climate and the meristem temperatures of plant communities near the tree-line. Oecologia 79:198–204. doi: 10.1007/BF00388479 CrossRefGoogle Scholar
  28. Grace J, Berninger F, Nagy L (2002) Impacts of climate change on the tree line. Ann Bot (Lond) 90:537–544. doi: 10.1093/aob/mcf222 CrossRefGoogle Scholar
  29. Gričar J, Zupančič M, Čufar K, Primož O (2007) Regular cambial activity and xylem and phloem formation in locally heated and cooled stem portions of Norway spruce. Wood Sci Technol 41(6):463–475. doi: 10.1007/s00226-006-0109-2 CrossRefGoogle Scholar
  30. Guggenberger H (1980) Untersuchungen zum Wasserhaushalt der alpinen Zwergstrauchheide Patscherkofel. PhD thesis, University of InnsbruckGoogle Scholar
  31. Havranek WM (1972) Über die Bedeutung der Bodentemperatur für die Photosynthese und Transpiration junger Forstpflanzen und für die Stoffproduktion an der Waldgrenze. Angew Bot 46:101–116Google Scholar
  32. Hellmers H, Genthe MK, Ronco F (1970) Temperature affects growth and development of Engelmann spruce. For Sci 16:447–452Google Scholar
  33. Hughes MK (2002) Dendrochronology in climatology––the state of the art. Dendrochronologia 20(1–2):95–116. doi: 10.1078/1125-7865-00011 CrossRefGoogle Scholar
  34. Jobbagy EG, Jackson RB (2000) Global controls of timberline elevation in the northern and southern hemispheres. Glob Ecol Biogeogr 9:253–268. doi: 10.1046/j.1365-2699.2000.00162.x CrossRefGoogle Scholar
  35. Kirdyanov A, Hughes M, Vaganov E, Schweingruber F, Silkin P (2003) The importance of early summer temperature and date of snow melt for tree growth in the Siberian Subarctic. Trees (Berl) 17:61–69. doi: 10.1007/s00468-002-0209-z CrossRefGoogle Scholar
  36. Körner C (1998) A re-assessment of high elevation treeline positions and their explanation. Oecologia 115:445–459. doi: 10.1007/s004420050540 CrossRefGoogle Scholar
  37. Körner C (2003) Alpine plant life: functional plant ecology of high mountain ecosystems, 2nd edn. Springer, BerlinGoogle Scholar
  38. Körner C, Paulsen J (2004) A world-wide study of high altitude treeline temperatures. J Biogeogr 31:713–732Google Scholar
  39. Lopushinsky W, Kaufmann MR (1984) Effects of cold soil on water relations and spring growth of Douglas-fir seedlings. For Sci 30:628–634Google Scholar
  40. Lopushinsky W, Max TA (1990) Effect of soil temperature on root and shoot growth and on budburst timing in conifer seedling transplants. New For 4:107–124. doi: 10.1007/BF00119004 Google Scholar
  41. Loris K (1981) Dickenwachstum von Zirbe, Fichte und Lärche an der alpinen Waldgrenze/Patscherkofel. Mitt Forstl Bundesvers Wien 142:417–441Google Scholar
  42. Mäkinen H, Nöjd P, Saranpää P (2003) Seasonal changes in stem radius and production of new tracheids in Norway spruce. Tree Physiol 23:959–968PubMedGoogle Scholar
  43. Menzel A, Fabian P (1999) Growing season extended in Europe. Nature 397:659. doi: 10.1038/17709 CrossRefGoogle Scholar
  44. Neuwinger I (1970) Böden der subalpinen und alpinen Stufe in den Tiroler Alpen. Mitt Ostalpin-Dinar Ges Veg 11:135–150Google Scholar
  45. Nicolussi K (1994) Jahrringe und Massenbilanz. Dendroklimatologische Rekonstruktion der Massenbilanzreihe des Hintereisferners bis zum Jahr 1400 mittels Pinus cembra-Reihen aus den Ötztaler Alpen, Tirol. Z Gletscherk Glazialgeol 30:11–52Google Scholar
  46. Oberhuber W (2004) Influence of climate on radial growth of Pinus cembra within the alpine timberline ecotone. Tree Physiol 24:291–301PubMedGoogle Scholar
  47. Oberhuber W, Kofler W, Pfeifer K, Seeber A, Gruber A, Wieser G (2008) Long-term changes in tree-ring–climate relationships at Mt. Patscherkofel (Tyrol, Austria) since the mid-1980s. Trees (Berl) 22:31–40. doi: 10.1007/s00468-007-0166-7 CrossRefGoogle Scholar
  48. Pfeifer K, Kofler W, Oberhuber W (2005) Climate related causes of distinct radial growth reductions in Pinus cembra during the last 200 yr. Veg Hist Archaeobot 14:211–220. doi: 10.1007/s00334-005-0001-2 CrossRefGoogle Scholar
  49. Plomion C, Leprovost G, Stokes A (2001) Wood formation in trees. Plant Physiol 127:1513–1523. doi: 10.1104/pp.127.4.1513 PubMedCrossRefGoogle Scholar
  50. Rossi S, Deslauriers A, Morin H (2003) Application of the Gompertz equation for the study of xylem cell development. Dendrochronologia 21:33–39. doi: 10.1078/1125-7865-00034 CrossRefGoogle Scholar
  51. Rossi S, Anfodillo T, Menardi R (2006a) Trephor: a new tool for sampling microcores from tree stems. IAWA J 27:89–97Google Scholar
  52. Rossi S, Deslauriers A, Anfodillo T (2006b) Assessment of cambial activity and xylogenesis by microsampling tree species: an example at the Alpine timberline. IAWA J 27:383–394Google Scholar
  53. Rossi S, Deslauriers A, Anfodillo T, Morin H, Saracino A, Motta R, Borghetti M (2006c) Conifers in cold environments synchronize maximum growth rate of tree-ring formation with day length. New Phytol 170(2):301–310. doi: 10.1111/j.1469-8137.2006.01660.x PubMedCrossRefGoogle Scholar
  54. Rossi S, Deslauriers A, Anfodillo T (2007) Evidence of threshold temperatures for xylogenesis in conifers at high altitudes. Oecologia 152(1):1–12. doi: 10.1007/s00442-006-0625-7 PubMedCrossRefGoogle Scholar
  55. Rossi S, Deslauriers A, Anfodillo T, Carrer M (2008) Age-dependent xylogenesis in timberline conifers. New Phytol 177(1):199–208PubMedGoogle Scholar
  56. Savidge RA (1996) Xylogenesis, genetic and environmental regulation, a review. IAWA J 17:269–310Google Scholar
  57. Schmitt U, Jalkanen R, Eckstein D (2004) Cambium dynamics of Pinus sylvestris and Betula spp. in the northern boreal forest in Finland. Silv Fenn 38(2):167–178Google Scholar
  58. Scott PA, Bentley CV, Fayle DCF, Hansell RIC (1987) Crown forms and shoot elongation of white spruce at the treeline, Churchill, Manitoba, Canada. Arct Alp Res 19:175–186. doi: 10.2307/1551250 CrossRefGoogle Scholar
  59. Seo JW, Eckstein D, Jalkanen R, Rickebusch S, Schmitt U (2008) Estimating the onset of cambial activity in Scots pine in northern Finland by means of the heat-sum approach. Tree Physiol 28:105–112PubMedGoogle Scholar
  60. Smith WK, Germino MJ, Hancock TE, Johnson DM (2003) Another perspective on altitudinal limits of alpine timberlines. Tree Physiol 23:1101–1112PubMedGoogle Scholar
  61. Tranquillini W (1979) Physiological ecology of alpine timberline. Tree existence at high altitudes with special references to the European Alps. Ecological studies, vol 31. Springer, BerlinGoogle Scholar
  62. Vaganov EA, Hughes MK, Shashkin AV (2006) Growth dynamics of conifer tree rings. Images of past and future environments. Ecological Studies, vol 183. Springer, BerlinGoogle Scholar
  63. Vapaavuori EM, Rikala R, Ryyppö A (1992) Effects of root temperature on growth and photosynthesis of conifer seedlings during shoot elongation. Tree Physiol 10:217–230PubMedGoogle Scholar
  64. Wang L, Payette S, Bégin Y (2002) Relationship between anatomical and densitometric characteristics of black spruce and summer temperature at tree line in northern Quebec. Can J Res 32:477–486. doi: 10.1139/x01-208 CrossRefGoogle Scholar
  65. Wieser G (2004) Seasonal variation of soil respiration in a Pinus cembra forest at the timberline in the Central Austrian Alps. Tree Physiol 24:475–480PubMedGoogle Scholar
  66. Wilson C, Grace J, Allen S, Slack F (1987) Temperature and stature: a study of temperatures in montane vegetation. Funct Ecol 1:405–413. doi: 10.2307/2389798 CrossRefGoogle Scholar
  67. Zeide B (1993) Analysis of growth equations. For Sci 39:594–616Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Andreas Gruber
    • 1
  • Daniel Baumgartner
    • 1
  • Jolanda Zimmermann
    • 1
  • Walter Oberhuber
    • 1
    Email author
  1. 1.Institute of BotanyUniversity of InnsbruckInnsbruckAustria

Personalised recommendations