, Volume 23, Issue 3, pp 539–553 | Cite as

Ozone affects shikimate pathway genes and secondary metabolites in saplings of European beech (Fagus sylvatica L.) grown under greenhouse conditions

  • Gunter Andreas Betz
  • Elke Gerstner
  • Susanne Stich
  • Barbro Winkler
  • Gerhard Welzl
  • Elisabeth Kremmer
  • Christian Langebartels
  • Werner Heller
  • Heinrich Sandermann
  • Dieter ErnstEmail author
Original Paper


The shikimate pathway plays a central role in the formation of aromatic intermediates in the production of stilbenes, flavonoids and lignins. Ozone effects on the levels of transcripts in this pathway were studied in saplings of European beech. Complementary DNA (cDNA) clones of all genes of this pathway were isolated, and quantitative real-time RT-PCR (qRT-PCR) using RNA isolated from leaves of ozone-treated saplings showed a strong induction of 3-deoxy-d -arabino-heptulosonate-7-phosphate synthase 1 (DAHPS1), DAHPS3, 3-dehydroquinate dehydratase/shikimate dehydrogenase (DHQD/SD), 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), and chorismate mutase (CM) transcripts. In contrast, DAHPS2, 3-dehydroquinate synthase (DHQS), shikimate kinase (SK), and chorismate synthase (CS) transcripts were only weakly induced. Earliest induction could be observed after 2 days of ozone treatment for DAHPS1, SK, EPSPS and CM. The coordinated regulation was evident for 3–5 weeks after the onset of ozone fumigation, and increased transcript levels were still detectable after another 7 weeks. Western blot analyses of DAHPS3 and DHQD/SD showed an increased protein level in agreement with the increased transcription levels. Ozone-dependent leaf lesions appeared 7 weeks after onset of ozone exposure. Strongly elevated were levels of conjugates of salicylic (SA) and gentisic acids (GA), either derived directly from chorismate, the key product of the shikimate pathway, or via phenylalanine, cinnamic, and benzoic acids. Concentrations of cell wall-bound phenolic compounds increased in both control and ozone-treated saplings with the latter showing slightly higher levels. Interestingly, however, this increase of cell wall-bound phenolics was accompanied by a decrease of soluble phenolics, which may indicate their deposition into the cell wall.


Fagus sylvatica Gene expression Ozone Phenolic metabolites Shikimate pathway 



We wish to thank the technical staff of EUS for their excellent assistance. This work was supported by the Deutsche Forschungsgemeinschaft (SFB 607) and in part by the European Community (Evoltree, 6th Framework Program; COST E52).

Supplementary material

468_2008_300_MOESM1_ESM.doc (66 kb)
Supplementary material (DOC 66 kb)


  1. Bahnweg G, Heller W, Stich S, Knappe C, Betz G, Heerdt C, Kehr RD, Ernst D, Langebartels C, Nunn AJ, Rothenburger J, Schubert R, Wallis P, Müller-Starck G, Werner H, Matyssek R, Sandermann H (2005) Beech leaf colonization by the endophyte Apiognomonia errabunda dramatically depends on light exposure and climatic conditions. Plant Biol 7:659–669. doi: 10.1055/s-2005-872943 PubMedCrossRefGoogle Scholar
  2. Batz O, Logemann E, Reinold S, Hahlbrock K (1998) Extensive reprogramming of primary and secondary metabolism by fungal elicitor or infection in parsley cells. Biol Chem 379:1127–1135PubMedCrossRefGoogle Scholar
  3. Bélles JM, Garro R, Fayos J, Navarro P, Primo J, Conejero V (1999) Gentisic acid as a pathogen-inducible signal, additional to salicylic acid for activation of plant defenses in tomato. Mol Plant Microbe Interact 12:227–235. doi: 10.1094/MPMI.1999.12.3.227 CrossRefGoogle Scholar
  4. Bélles JM, Garro R, Pallás V, Fayos J, Rodrigo I, Conejero V (2006) Accumulation of gentisic acid as associated with systemic infections but not with the hypersensitive response in plant-pathogen interactions. Planta 223:500–511. doi: 10.1007/s00425-005-0109-8 PubMedCrossRefGoogle Scholar
  5. Betz GA (2005) Regulation des Shikimatstoffwechsels der Europäischen Buche (Fagus sylvatica L.) unter dem Einfluß von Ozon. Ph.D. thesis, Technische Universität München, Freising-WeihenstephanGoogle Scholar
  6. Betz G, Knappe C, Lapierre C, Olbrich M, Welzl G, Langebartels C, Heller W, Sandermann H, Ernst D (2008) Ozone affects shikimate pathway transcripts and monomeric lignin composition in European beech (Fagus sylvatica L.). Eur J For Res (online first)Google Scholar
  7. Biolley JP, Lauga B, Cagnon C, Duran R, Salvado JC, Goulas P (1998) Phenolic patterns of bean (Phaseolus vulgaris L.) as an indicator of chronic ozone stress. Water Air Soil Pollut 106:355–368. doi: 10.1023/A:1005050805136 CrossRefGoogle Scholar
  8. Bischoff M, Rösler J, Raesecke H-R, Görlach J, Amrhein N, Schmid J (1996) Cloning of a cDNA encoding a 3-dehydroquinate synthase from a higher plant, and analysis of the organ-specific and elicitor-induced expression of the corresponding gene. Plant Mol Biol 31:69–76. doi: 10.1007/BF00020607 PubMedCrossRefGoogle Scholar
  9. Bischoff M, Schaller A, Bieri F, Kessler F, Amrhein N, Schmid J (2001) Molecular characterization of tomato 3-dehydroquinate dehydratase-shikimate:NADP oxidoreductase. Plant Physiol 125:891–1900. doi: 10.1104/pp.125.4.1891 CrossRefGoogle Scholar
  10. Bors W, Heller W, Michel C (1998) The chemistry of flavonoids. In: Rice-Evans C, Packer L (eds) Flavonoids in health and disease. Marcel Decker, New York, pp 111–136Google Scholar
  11. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi: 10.1016/0003-2697(76)90527-3 PubMedCrossRefGoogle Scholar
  12. Cabané M, Pireaux J-C, Léger E, Weber E, Dizengremel P, Pollet B, Lapierre C (2004) Condensed lignins are synthesized in poplar leaves exposed to ozone. Plant Physiol 134:586–594. doi: 10.1104/pp.103.031765 PubMedCrossRefGoogle Scholar
  13. Corpet F (1988) Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res 16:10881–10890. doi: 10.1093/nar/16.22.10881 PubMedCrossRefGoogle Scholar
  14. Diara C, Castagna A, Baldan B, Sodi AM, Sahr T, Langebartels C, Sebastiani L, Ranieri A (2005) Differences in the kinetics and scale of signalling molecule production modulate the ozone sensitivity of hybrid poplar clones: the roles of H2O2, ethylene and salicylic acid. New Phytol 168:351–364. doi: 10.1111/j.1469-8137.2005.01514.x PubMedCrossRefGoogle Scholar
  15. Durner J, Shah J, Klessig DF (1997) Salicylic acid and disease resistance in plants. Trends Plant Sci 2:266–274. doi: 10.1016/S1360-1385(97)86349-2 CrossRefGoogle Scholar
  16. Eckey-Kaltenbach H, Ernst D, Heller W, Sandermann H (1994) Biochemical plant responses to ozone: IV. Cross-induction of defensive pathways in parsley (Petroselinum crispum L.) plants. Plant Physiol 104:67–74PubMedGoogle Scholar
  17. Emanuelsson O, Nielsen H, Brunak S, von Heijne G (2000) Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 300:1005–1016. doi: 10.1006/jmbi.2000.3903 PubMedCrossRefGoogle Scholar
  18. Forlani G (2002) Differential expression of 5-enol-pyruvyl-shikimate-3-phosphate synthase isoforms in elicitor-treated cultured maize cells. Funct Plant Biol 29:1483–1490. doi: 10.1071/FP02136 CrossRefGoogle Scholar
  19. Görlach J, Raesecke H-R, Rentsch D, Regenass M, Roy P, Zala M, Keel C, Boller T, Amrhein N, Schmid J (1995) Temporally distinct accumulation of transcripts encoding enzymes of the prechorismate pathway in elicitor-treated, cultured tomato cells. Proc Natl Acad Sci USA 92:3166–3170. doi: 10.1073/pnas.92.8.3166 PubMedCrossRefGoogle Scholar
  20. Grams TEE, Kozovits AR, Reiter IM, Winkler JB, Sommerkorn M, Blaschke H, Häberle K-H, Matyssek R (2002) Quantifying competetitveness in plants. Plant Biol 4:153–158CrossRefGoogle Scholar
  21. Guidi L, Degl’Innocenti E, Genovesi S, Soldatini GF (2005) Photosynthetic process and activities of enzymes involved in the phenylpropanoid pathway in resistant and sensitive genotypes of Lycopersicon esculentum L. exposed to ozone. Plant Sci 168:153–160. doi: 10.1016/j.plantsci.2004.07.027 CrossRefGoogle Scholar
  22. Harborne JB (1993) Introduction to ecological biochemistry, 4th edn. Academic Press, LondonGoogle Scholar
  23. Heilemann J, Strack D (1990) Incorporation of kaempferol 3-O-glucoside into the cell walls of Norway spruce needles. Planta 181:599–603. doi: 10.1007/BF00193016 CrossRefGoogle Scholar
  24. Heller W (1994) Topics in the biosynthesis of plant phenols. Acta Hortic 381:46–73Google Scholar
  25. Henstrand JM, McCue KF, Brink K, Handa AK, Herrmann KM, Conn EE (1992) Light and fungal elicitor induce 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase mRNA in suspension cultured cells of parsley (Petroselinum crispum L.). Plant Physiol 98:761–763PubMedCrossRefGoogle Scholar
  26. Herrmann KM (1995) The shikimate pathway as an entry to aromatic secondary metabolism. Plant Physiol 107:7–12. doi: 10.1104/pp.107.1.7 PubMedCrossRefGoogle Scholar
  27. Herrmann KM, Weaver LM (1999) The shikimate pathway. Annu Rev Plant Physiol Plant Mol Biol 50:473–503. doi: 10.1146/annurev.arplant.50.1.473 PubMedCrossRefGoogle Scholar
  28. Janzik I, Preiskowski S, Kneifel H (2005) Ozone has dramatic effects on the regulation of the prechorismate pathway in tobacco (Nicotiana tabacum L. cv. Bel. W3). Planta 223:20–27. doi: 10.1007/s00425-005-0060-8 PubMedCrossRefGoogle Scholar
  29. Jehnes S, Betz G, Bahnweg G, Haberer K, Sandermann H, Rennenberg H (2007) Tree internal signalling and defence reactions under ozone exposure in sun and shade leaves of European beech (Fagus sylvatica L.) trees. Plant Biol 9:253–264. doi: 10.1055/s-2006-924650 PubMedCrossRefGoogle Scholar
  30. Kaffarnik F, Seidlitz HK, Obermaier J, Sandermann H, Heller W (2006) Environmental and deveopmental effects on the biosynthesis of UV-B screening pigments in Scots pine (Pinus sylvestris L.) needles. Plant Cell Environ 29:1484–1491. doi: 10.1111/j.1365-3040.2006.01518.x PubMedCrossRefGoogle Scholar
  31. Kangasjärvi J, Jaspers P, Kollist H (2005) Signalling and cell death in ozone-exposed plants. Plant Cell Environ 28:1021–1036. doi: 10.1111/j.1365-3040.2005.01325.x CrossRefGoogle Scholar
  32. Kasai K, Kanno T, Akita M, Ikejiri-Kanno Y, Wakasa K, Tozawa Y (2005) Identification of three shikimate kinase genes in rice: characterization of their differential expression during panicle development and of the enzymatic activities of the encoded proteins. Planta 222:438–447. doi: 10.1007/s00425-005-1559-8 PubMedCrossRefGoogle Scholar
  33. Keith B, Dong X, Ausubel FM, Fink GR (1991) Differential induction of 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase genes in Arabidopsis thaliana by wounding and pathogenic attack. Proc Natl Acad Sci USA 88:8821–8825. doi: 10.1073/pnas.88.19.8821 PubMedCrossRefGoogle Scholar
  34. Kiefer E, Heller W, Ernst D (2000) A simple and efficient protocol for isolation of functional RNA from plant tissues rich in secondary metabolites. Plant Mol Biol Rep 18:33–39. doi: 10.1007/BF02825291 CrossRefGoogle Scholar
  35. Knight E, Fahey D (1981) Human fibroblast interferon. An improved purification. J Biol Chem 256:3609–3611PubMedGoogle Scholar
  36. Koch JR, Scherzer AJ, Eshita SM, Davis KR (1998) Ozone sensitivity in hybrid poplar is correlated with a lack of defense-gene activation. Plant Physiol 118:1243–1252. doi: 10.1104/pp.118.4.1243 CrossRefGoogle Scholar
  37. Kontunen-Soppela S, Ossipov V, Ossipova S, Oksanen E (2007) Shift in birch leaf metabolome and carbon allocation during long-term open-field exposure. Glob Change Biol 13:1053–1067. doi: 10.1111/j.1365-2486.2007.01332.x CrossRefGoogle Scholar
  38. Langebartels C, Ernst D, Heller W, Lütz C, Payer H-D, Sandermann H (1997) Ozone responses of trees: results from controlled chamber exposures at the GSF phytotron. In: Sandermann H, Wellburn A, Heath R (eds) Forest decline and ozone: a comparison of controlled chamber and field experiments. Ecological Studies vol 127. Springer, Berlin, pp 163–200Google Scholar
  39. Langebartels C, Schraudner M, Heller W, Ernst D, Sandermann H (2002) Oxidative stress and defense reactions in plants exposed to air pollutants and UV-B radiation. In: Inzé D, Van Montagu M (eds) Oxidative stress in plants. Taylor & Francis, London, pp 105–135Google Scholar
  40. Liegl I (1999) UV-B-induzierte genexpression bei der Buche Fagus sylvatica L. Ph.D. thesis, Ludwig-Maximilians-Universität, MünchenGoogle Scholar
  41. Logemann E, Tavernaro A, Schulz W, Somssich IE, Hahlbrock K (2000) UV light selectively coinduces supply pathways from primary metabolism and flavonoid secondary product formation in parsley. Proc Natl Acad Sci USA 97:1903–1907. doi: 10.1073/pnas.97.4.1903 PubMedCrossRefGoogle Scholar
  42. Matsukawa T, Ishihara A, Iwamura H (2002) Differential induction of chorismate mutase isoforms by elicitors in oat leaves. Plant Physiol Biochem 40:795–802. doi: 10.1016/S0981-9428(02)01431-6 CrossRefGoogle Scholar
  43. McCue KF, Conn EE (1989) Induction of 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase activity by fungal elicitor in cultures of Petroselinum crispum. Proc Natl Acad Sci USA 86:7374–7377. doi: 10.1073/pnas.86.19.7374 PubMedCrossRefGoogle Scholar
  44. Métraux J-P (2002) Recent breakthroughs in the study of salicylic acid biosynthesis. Trends Plant Sci 7:332–334. doi: 10.1016/S1360-1385(02)02313-0 PubMedCrossRefGoogle Scholar
  45. Métraux J-P, Durner J (2004) The role of salicylic acid and nitric acid in programmed cell death and induced resistance. In: Sandermann H (ed) Molecular ecotoxicology of plants. Ecological Studies vol 170. Springer, Berlin, pp 111–150Google Scholar
  46. Meuwly P, Métraux J-P (1993) Ortho-anisic acid as internal standard for the simultaneous quantitation of salicylic acid and its putative biosynthetic precursors in cucumber leaves. Anal Biochem 214:500–505. doi: 10.1006/abio.1993.1529 PubMedCrossRefGoogle Scholar
  47. Mobley EM, Kunkel BN, Keith B (1999) Identification, characterization and comparative analysis of a novel chorismate mutase gene in Arabidopsis thaliana. Gene 240:115–123. doi: 10.1016/S0378-1119(99)00423-0 PubMedCrossRefGoogle Scholar
  48. Muday GK, Herrmann KM (1992) Wounding induces one of two isoenzymes of 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase in Solanum tuberosum L. Plant Physiol 98:496–500PubMedCrossRefGoogle Scholar
  49. Mustafa NR, Verpoorte R (2005) Chorismate derived C6C1 compounds in plants. Planta 222:1–5. doi: 10.1007/s00425-005-1554-0 PubMedCrossRefGoogle Scholar
  50. Nielsen H, Engelbrecht J, Brunak S, von Heijne G (1997) Identification of prokaryotic and euckaryotic signal peptides and prediction of their cleavage sites. Protein Eng 10:1–6. doi: 10.1093/protein/10.1.1 PubMedCrossRefGoogle Scholar
  51. Nunn AJ, Reiter IM, Häberle K-H, Langebartels C, Bahnweg G, Pretzsch H, Sandermann H, Matyssek R (2005a) Response patterns in adult forest trees to chronic ozone stress: identification of variations and consistencies. Environ Pollut 136:365–369. doi: 10.1016/j.envpol.2005.01.024 PubMedCrossRefGoogle Scholar
  52. Nunn AJ, Kozovits AR, Reiter IM, Heerdt C, Leuchner M, Lütz C, Liu X, Löw M, Winkler JB, Grams TEE, Häberle K-H, Werner H, Fabian P, Rennenberg H, Matyssek R (2005b) Comparison of ozone uptake and sensitivity between a phytotron study with young beech and a field experiment with adult beech (Fagus sylvatica). Environ Pollut 137:494–506. doi: 10.1016/j.envpol.2005.01.036 PubMedCrossRefGoogle Scholar
  53. Olbrich M, Betz G, Gerstner E, Langebartels C, Sandermann H, Ernst D (2005) Transcriptome analysis of ozone-responsive genes in leaves of European beech (Fagus sylvatica L.). Plant Biol 7:670–676. doi: 10.1055/s-2005-873001 PubMedCrossRefGoogle Scholar
  54. Ossipov V, Bonner C, Ossipova S, Jensen R (2000) Broad-specificity of quinate (shikimate) dehydrogenase from Pinus taeda needles. Plant Physiol Biochem 38:923–928. doi: 10.1016/S0981-9428(00)01203-1 CrossRefGoogle Scholar
  55. Ossipov V, Salminen J-P, Ossipova S, Hankioja E, Pihlaja K (2003) Gallic acid and hydrolysable tannins are formed in birch leaves from an intermediate compound of the shikimate pathway. Biochem Syst Ecol 31:3–16. doi: 10.1016/S0305-1978(02)00081-9 CrossRefGoogle Scholar
  56. Peer WA, Murphy AS (2006) Flavonoids as signal molecules. In: Grotewold E (ed) The science of flavonoids. Springer, New York, pp 239–268CrossRefGoogle Scholar
  57. Rao MV, Davis KR (1999) Ozone-induced cell death occurs via two distinct mechanisms in Arabidopsis: the role of salicylic acid. Plant J 17:603–614. doi: 10.1046/j.1365-313X.1999.00400.x PubMedCrossRefGoogle Scholar
  58. Rao MV, Lee H, Davis KR (2002) Ozone-induced ethylene production is dependent on salicylic acid, and both salicylic acid and ethylene act in concert to regulate ozone-induced cell death. Plant J 32:447–456PubMedCrossRefGoogle Scholar
  59. Rosemann D, Heller W, Sandermann H (1991) Biochemical plant responses to ozone. II. Induction of stilbene biosynthesis in Scots pine (Pinus sylvestris L.) seedlings. Plant Physiol 97:1280–1286PubMedCrossRefGoogle Scholar
  60. Saleem A, Loponen J, Pihlaja K, Oksanen E (2001) Effects of long-term open-field ozone exposure on leaf phenolics of European silver birch (Betula pendula Roth.). J Chem Ecol 27:1049–1062. doi: 10.1023/A:1010351406931 PubMedCrossRefGoogle Scholar
  61. Sandermann H, Ernst D, Heller W, Langebartels C (1998) Ozone: an abiotic elicitor of plant defence reactions. Trends Plant Sci 3:47–50. doi: 10.1016/S1360-1385(97)01162-X CrossRefGoogle Scholar
  62. Schütt P, Schuck J, Stimm B (1992) Lexikon der Forstbotanik. Ecomed, LandsbergGoogle Scholar
  63. Shah J (2003) The salicylic acid loop in plant defense. Curr Opin Plant Biol 6:365–371. doi: 10.1016/S1369-5266(03)00058-X PubMedCrossRefGoogle Scholar
  64. Sharma YK, León J, Raskin I, Davis KR (1996) Ozone-induced responses in Arabidopsis thaliana: the role of salicylic acid in the accumulation of defense-related transcripts and induced resistance. Proc Natl Acad Sci USA 93:5099–5104. doi: 10.1073/pnas.93.10.5099 PubMedCrossRefGoogle Scholar
  65. Spelbrink REJ, Kolkman A, Slijper M, Killian JA, de Kruijff B (2005) Detection and identification of stable oligomeric protein complexes in Escherichia coli inner membranes: a proteomics approach. J Biol Chem 280:28742–28748. doi: 10.1074/jbc.M501617200 PubMedCrossRefGoogle Scholar
  66. Tuomainen J, Pellinen R, Roy S, Kiiskinen M, Eloranta T, Karjalainen R, Kangasjärvi J (1996) Ozone affects birch (Betula pendula Roth) phenylpropanoid, polyamine and active oxygen detoxifying pathways at biochemical and gene expression level. J Plant Physiol 148:179–188Google Scholar
  67. Turunen M, Heller W, Stich S, Sandermann H, Sutinen M-L, Norokorpi Y (1999) The effects of UV exclusion on the soluble phenolics of young Scots pine seedlings in the subarctic. Environ Pollut 106:219–228. doi: 10.1016/S0269-7491(99)00070-6 PubMedCrossRefGoogle Scholar
  68. Vahala J, Ruonala R, Keinänen M, Tuominen H, Kangasjärvi J (2003) Ethylene insensitivity modulates ozone-induced cell death in birch. Plant Physiol 132:185–195. doi: 10.1104/pp.102.018887 PubMedCrossRefGoogle Scholar
  69. Wagner AM, van Brederode J (1996) Inhibition of mitochondrial respiration by the flavone aglycone isovitexin causes aberrant petal and leaf morphology in Silene latifolia. Plant Cell Rep 15:718–722. doi: 10.1007/BF00231932 CrossRefGoogle Scholar
  70. Wildermuth MC, Dewdney J, Wu G, Ausubel FM (2001) Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature 414:562–565. doi: 10.1038/35107108 PubMedCrossRefGoogle Scholar
  71. Wollenweber E, Dörr M, Rivera D, Roitman JN (2003) Externally accumulated flavonoids in three Mediterranean Ononis species. Z Naturforsch 58c:771–775Google Scholar
  72. Wollenweber E, Dörsam M, Dörr M, Roitman JN, Valant-Vetschera KM (2005) Chemodiversity of surface flavonoids in Solanaceae. Z Naturforsch 60c:661–670Google Scholar
  73. Zdbonov EM, Apweiler R (2001) Interproscan—an integration platform for the signature-recognition methods in interpro. Bioinformatics 17:847–848. doi: 10.1093/bioinformatics/17.9.847 CrossRefGoogle Scholar
  74. Zielke H (1994) Phenolische Inhaltsstoffe in Blättern der Buche und ihre Bedeutung im Rahmen der neuartigen Waldschäden. Ph.D. thesis. Ludwig-Maximilians-Universität München, München Google Scholar
  75. Zielke H, Sonnenbichler J (1990) Natural occurrence of 3,3′,4,4′-tetramethoxy-1,1′-biphenyl in leaves of stressed European beech. Naturwissenschaften 77:384–385. doi: 10.1007/BF01135738 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Gunter Andreas Betz
    • 1
    • 5
  • Elke Gerstner
    • 1
  • Susanne Stich
    • 1
  • Barbro Winkler
    • 2
  • Gerhard Welzl
    • 3
  • Elisabeth Kremmer
    • 4
  • Christian Langebartels
    • 1
  • Werner Heller
    • 1
  • Heinrich Sandermann
    • 1
    • 6
  • Dieter Ernst
    • 1
    Email author
  1. 1.Institute of Biochemical Plant PathologyHelmholtz Zentrum München, German Research Center for Environmental HealthNeuherbergGermany
  2. 2.Department of Environmental EngineeringHelmholtz Zentrum München, German Research Center for Environmental HealthNeuherbergGermany
  3. 3.Institute of Developmental GeneticsHelmholtz Zentrum München, German Research Center for Environmental HealthNeuherbergGermany
  4. 4.Institute of Molecular ImmunologyHelmholtz Zentrum München, German Research Center for Environmental HealthMunichGermany
  5. 5.Olympus Life Science Research Europa GmbHMunichGermany
  6. 6.FreiburgGermany

Personalised recommendations