, Volume 23, Issue 2, pp 325–334 | Cite as

Pith: a marker of primary growth in Picea abies (L.) Karst.

  • Fleur Longuetaud
  • Yves Caraglio
Original Paper


The primary growth of trees may be studied either by following their development over time, which is costly and requires long-term monitoring, or by a posteriori growth analyses. Trees in temperate forests show rhythmic growth, which is characterised by morphological or anatomical markers. The study described here focuses on the pith of trees as an internal marker for the retrospective analysis of primary growth. Changes in pith size and density were quantified along a stem of Norway spruce [Picea abies (L.) Karst.] with high spatial resolution. The results showed that pith would appear to be a reliable marker of the annual growth rhythm even in the presence of polycyclism. Annual shoot limits were characterised by reductions in pith size associated, at the same time, with increases in pith density. In addition, pith size may provide information about tree ontogeny. The start of the competition with neighbouring trees was very likely responsible for an overall decrease in pith size. Regarding high frequency variations, pith size appeared to be less sensitive to local environmental fluctuations like climate than other studied variables such as annual shoot length and annual ring width. Finally, X-ray computed tomography proved to be a very promising method for the non-destructive detection of annual shoot limits in stems based on longitudinal changes in pith density, as demonstrated in a log of Norway spruce.


Annual shoot Rhythmic growth Pith density Pith size Norway spruce 



The authors wish to thank Pierre Gelhaye, LERFoB Nancy, for his advice and assistance with sampling in the field and at the laboratory, and for the 2D X-ray measurements. Thanks to Charline Freyburger, LERFoB Nancy, for the measurements made by means of X-ray computed tomography. Thanks also to Patrick Heuret for helpful discussions about tree architecture. AMAP (Botany and Computational Plant Architecture) is a joint research unit which associates CIRAD (UMR51), CNRS (UMR5120), INRA (UMR931), IRD (R123), and Montpellier 2 University (UM27);


  1. Baret S, Nicolini E, Le Bourgeois T, Strasberg D (2003) Developmental patterns of the invasive bramble (Rubus alceifolius Poiret, Rosaceae) in Réunion island: an architectural and morphometric analysis. Ann Bot (Lond) 91: 39–48. doi: 10.1093/aob/mcg006 Google Scholar
  2. Barthélémy D, Caraglio Y (2007) Plant architecture: a dynamic, multilevel and comprehensive approach to plant form, structure and ontogeny. Ann Bot (Lond) 99:375–407. doi: 10.1093/aob/mcl260 CrossRefGoogle Scholar
  3. Bendtsen BA (1978) Properties of wood from improved and intensively managed trees. For Prod J 28:61–72Google Scholar
  4. Brown CL, Sommer HE, Pienaar LV (1995) The predominant role of the pith in the growth and development of internodes in Liquidambar styraciflua (Hamamelidaceae) I. Histological basis of compressive and tensile stresses in developing primary tissues. Am J Bot 82:769–776. doi: 10.2307/2445617 CrossRefGoogle Scholar
  5. Chaar H (1998) Analyse et modélisation des composantes de la croissance en hauteur de jeunes plants de chêne sessile. Doctoral thesis. INRA-ENGREF, Nancy, p 103Google Scholar
  6. Colin F (1992) Analyse et modélisation de la branchaison de l’épicéa commun en vue de prédire la qualité de la ressource. Doctoral thesis, Sciences Forestières. INRA-ENGREF, Nancy, p 278Google Scholar
  7. Colin F, Barthélémy D, Ribeyrolles L (1995) Influence de la densité de plantation sur quelques caractéristiques dendrométriques, morphologiques et architecturales de la provenance Istebna II (Pologne) de Picea abies (L.) Karsten (Pinaceae). In: Bouchon (ed) Architecture des arbres fruitiers et forestiers, Paris: INRA. Paris, INRA, Montpellier, pp 209–235Google Scholar
  8. Colin F, Houllier F (1991) Branchiness of Norway spruce in north-eastern France: modelling vertical trends in maximum nodal branch size. Ann Sci For 48:679–693. doi: 10.1051/forest:19910606 CrossRefGoogle Scholar
  9. Eckstein D (1992) The assessment of shoot growth as a dendroecological variable. In: Bartholin TS, Berglund BE, Eckstein D, Schweingruber FH (eds) Proceedings of international symposium “Tree rings and environment”, Lund University, Department of Quaternary Geology, Ystad, Sweden, 3–9 September 1990Google Scholar
  10. Edelin C (1993) Aspects morphologiques de la croissance rythmique chez les arbres tropicaux. Compte rendu du Séminaire du groupe d’Etude de l’Arbre: Le rythme de croissance. base de l’organisation temporelle de l’arbre, Angers, pp 13–23Google Scholar
  11. Grosfeld J, Barthélémy D (2004) Primary growth and morphological markers of interannual growth limits in Cupressaceae from Patagonia. Bot J Linn Soc 146:285–293. doi: 10.1111/j.1095-8339.2004.00331.x CrossRefGoogle Scholar
  12. Guédon Y, Caraglio Y, Heuret P, Lebarbier E, Meredieu U (2007) Analyzing growth components in trees. J Theor Biol 248:418–447. doi: 10.1016/j.jtbi.2007.05.029 PubMedCrossRefGoogle Scholar
  13. Gunckel JE, Wetmore RH (1946) Studies of development in long shoots and short shoots of Ginkgo biloba L. I. The origin and pattern of development of the cortex, pith and procambium. Am J Bot 33:285–295. doi: 10.2307/2437435 CrossRefGoogle Scholar
  14. Heuret P, Barthélémy D, Nicolini E, Atger C (2000) Analysis of height growth factors and trunk development in the sessile oak, Quercus petraea (Matt.) Liebl. (Fagaceae) in dynamic sylviculture. Can J Bot 78:361–373. doi: 10.1139/cjb-78-3-361 CrossRefGoogle Scholar
  15. Kaplan DR (2001) The science of plant morphology: definition, history, and role in modern biology. Am J Bot 88:1711–1741. doi: 10.2307/3558347 CrossRefGoogle Scholar
  16. Longuetaud F, Leban JM, Mothe F, Kerrien E, Berger MO (2004) Automatic detection of pith on CT images of spruce logs. Comput Electron Agric 44:107–119. doi: 10.1016/j.compag.2004.03.005 CrossRefGoogle Scholar
  17. Longuetaud F, Mothe F, Leban J-M (2007) Automatic detection of the heartwood/sapwood boundary within Norway spruce (Picea abies (L.) Karst.) logs by means of CT images. Comput Electron Agric 58:100–111. doi: 10.1016/j.compag.2007.03.010 CrossRefGoogle Scholar
  18. Longuetaud F, Mothe F, Leban J-M, Mäkelä A (2006) Picea abies sapwood width: variations within and between trees. Scandinavian Journal of Forest Research 21:41–53 (0282-7581)Google Scholar
  19. Longuetaud F, Saint-Andre L, Leban JM (2005) Automatic detection of annual growth units on Picea abies logs using optical and X-Ray techniques. J Nondestructive Eval 24:29–43. doi: 10.1007/s10921-005-6658-8 CrossRefGoogle Scholar
  20. Mäkinen H (1998) The suitability of height and radial increment variation in Pinus sylvestris (L.) for expressing environmental signals. For Ecol Manage 112:191–197. doi: 10.1016/S0378-1127(98)00337-5 CrossRefGoogle Scholar
  21. Nepveu G (1994) La variabilité du bois. Le bois matériau d’ingénierie. ARBOLOR, Nancy, pp 128–182Google Scholar
  22. Nicolini E, Chanson B, Bonne F (2001) Stem growth and epicormic branch formation in understorey beech trees (Fagus sylvatica L.). Ann Bot (Lond) 87:737–750. doi: 10.1006/anbo.2001.1398
  23. Rasband WS (2007) ImageJ, US National Institutes of Health, Bethesda, Maryland, USA,, 1997–2007
  24. The GIMP Documentation Team GNU Image Manipulation Program (V 2.2), User manual Google Scholar
  25. Wetmore RH, Garrison R (1966) The morphological ontogeny of the leafy shoot. In: Cutter EG (ed) Trends in plant morphogenesis. Longmans, London, pp 187–199Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.INRA, UMR1092 LERFoBChampenouxFrance
  2. 2.AgroParisTech, UMR1092 LERFoBNancyFrance
  3. 3.CIRAD, UMR AMAPMontpellier France

Personalised recommendations