, Volume 23, Issue 2, pp 287–293 | Cite as

Anatomical and biochemical changes in the composition of developing seed coats of annatto (Bixa orellana L.)

  • Lourdes I. V. AmaralEmail author
  • Ângelo L. Cortelazzo
  • Marcos S. Buckeridge
  • Luiz A. R. Pereira
  • Maria F. D. A. Pereira
Original Paper


Seeds of Bixa orellana (L.) have a sclerified palisade cell layer, which constitutes a natural barrier to water uptake. In fact, newly fully developed B. orellana seeds are highly impermeable to water and thereby dormant. The purpose of this work is to investigate, from a developmental point of view, the histochemical and physical changes in the cell walls of the seed coat that are associated with the water impermeability. Seed coat samples were analyzed by histochemical and polarization microscopy techniques, as well as by fractionation/HPAEC-PAD. For histochemical analysis the tissue samples were fixed, dehydrated, embedded in paraffin and the slides were dewaxed and tested with appropriate stains for different cell wall components. Throughout the development of B. orellana seeds, there was a gradual thickening of the seed coat at the palisade region. This thickening was due to the deposition of cellulose and hemicelluloses in the palisade layer cell walls, which resulted in a highly water impermeable seed coat. The carbohydrate composition of the cell walls changed dramatically at the late developmental stages due to the intense deposition of hemicelluloses. Hemicelluloses were mainly deposited in the outer region of the palisade layer cell walls and altered the birefringent pattern of the walls. Xylans were by far the most abundant hemicellulosic component of the cell walls. Deposition of cellulose and hemicelluloses, especially xylans, could be responsible for the impermeability to water observed in fully developed B. orellana seeds.


Dormancy Impermeability Xylans Birefringence Cell walls 



Lourdes IV Amaral was supported by a scholarship from Brazilian Coordination for the Improvement of Higher Education Personnel (CAPES) and by the Brazilian Council of Research (CNPq). The authors also thank Davi Rossatto (University of Brasilia) for the help in the statistical analysis.


  1. Amaral LIV, Pereira MFA, Cortelazzo AL (1995) Quebra da dormência em sementes de Bixa orellana. Braz J Plant Physiol 7:151–157Google Scholar
  2. Amaral LIV, Pereira MFA, Cortelazzo AL (2000) Germinação em sementes em desenvolvimento de Bixa orellana. Braz J Plant Physiol 12:273–285Google Scholar
  3. Bevilacqua LR, Fossati F, Dondero G (1987) “Callose” in the impermeable seed coat of Sesbania punicea. Ann Bot (Lond) 59:335–341Google Scholar
  4. Bhalla PL, Slattery HD (1984) Callose deposits make clover seed as impermeable to water. Ann Bot (Lond) 53:125–128Google Scholar
  5. Brant RE, McKee GW, Cleveland RW (1971) Effect of chemical and physical treatments on hard seeds of penngift crown vetch. Crop Sci 11:1–6Google Scholar
  6. Cao Y, Shen D, Lu Y, Huang Y (2006) A Raman scattering study on the net orientation of biomacromolecules in the outer epidermal walls of mature wheat stems (Triticum aestivum). Ann Bot (Lond) 97:1091–1094. doi: 10.1093/aob/mcl059 CrossRefGoogle Scholar
  7. Carpita NC (1983) Hemicellulosic polymers of cell walls of Zea coleoptiles. Plant Physiol 72:515–521PubMedCrossRefGoogle Scholar
  8. Chae SH, Yoneyama K, Takeuchi Y, Joel DM (2004) Fluridone and norflurazon, carotenoid-biosynthesis inhibitors, promote seed conditioning and germination of the holoparasite Orobanche minor. Physiol Plant 120:328–337. doi: 10.1111/j.0031-9317.2004.0243.x PubMedCrossRefGoogle Scholar
  9. Chopra RN, Kaur H (1965) Embryology of Bixa orellana Linn. Phytomorphology 15:211–215Google Scholar
  10. Cortelazzo AL (1992) Detecção e quantificação do amido em cotilédones de Canavalia ensiformis e Canavalia gladiata durante o desenvolvimento inicial da planta. Braz J Bot 15:157–162Google Scholar
  11. Cortelazzo AL, Vidal BC (1991) Soybean seed proteins: detection in situ and mobilization during germination. Braz J Bot 14:27–34Google Scholar
  12. Egley GH, Rex N, Paul J, Lax AR (1986) Seed coat imposed dormancy: histochemistry of the region controlling onset of water entry into Sida spinosa seeds. Physiol Plant 67:320–327. doi: 10.1111/j.1399-3054.1986.tb02464.x CrossRefGoogle Scholar
  13. Fry SC (1988) The growing plant cell wall. chemical and metabolic analysis. Longman Scientific and Technology, Essex, UKGoogle Scholar
  14. Grondahl P, Teleman A, Gatenholm M (2003) Effect of acetylation on the material properties of glucuronoxylan from aspen wood. Carbohydr Polym 52:359–366. doi: 10.1016/S0144-8617(03)00014-6 CrossRefGoogle Scholar
  15. Harris WM (1987) Comparative ultrastructure of developing seed coats of “hard-seeded” and “soft-seeded” varieties of soybean Glycine max (L.) Merr. Bot Gaz 148:324–331. doi: 10.1086/337660 CrossRefGoogle Scholar
  16. Johansen DA (1940) Plant microtechnique. McGaw, New YorkGoogle Scholar
  17. Kiok B (1978) Estudos de flavonas, flavonóides e ácido fenólico em urucum (Bixa orellana). Acta Amazon 8:109–110Google Scholar
  18. Liitiä T, Maunu SL, Hortling B, Tamminen T, Pekkala O, Varhimo A (2003) Cellulose crystallinity and ordering of hemicelluloses in pine and birch pulps as revealed by solid-state NMR spectroscopic methods. Cellulose 10:307–316. doi: 10.1023/A:1027302526861 CrossRefGoogle Scholar
  19. Lison L (1960) Histochemie et citochemie animales. Principles et methodes. Gauthier-Villars, ParisGoogle Scholar
  20. MacRae JC (1971) Quantitative measurement of starch in very small amounts of leaf tissue. Planta 96:101–108. doi: 10.1007/BF00386360 CrossRefGoogle Scholar
  21. Marbach I, Mayer AM (1974) Permeability of seed coats to water as related to drying conditions and metabolism of phenols. Plant Physiol 54:817–820PubMedCrossRefGoogle Scholar
  22. Mercadante AZ, Steck A, Pfande H (1999) Three minor carotenoids from annatto (Bixa orellana) seeds. Phytochemistry 52:135–139. doi: 10.1016/S0031-9422(98)00761-4 CrossRefGoogle Scholar
  23. Mühlethaler K (1967) Ultrastructure and formation of plant cell walls. Annu Rev Plant Physiol 18:1–24. doi: 10.1146/annurev.pp.18.060167.000245 CrossRefGoogle Scholar
  24. Mullin WJ, Xu W (2001) Study of soybean seed coat components and their relationship to water absorption. J Agric Food Chem 49:5331–5335. doi: 10.1021/jf010303s PubMedCrossRefGoogle Scholar
  25. Palma JM, Sandalio LM, Corpas FJ, Romero-Puertas MC, McCarthy I, del Río LA (2002) Plant proteases, protein degradation, and oxidative stress: role of peroxisomes. Plant Physiol Biochem 40:521–530. doi: 10.1016/S0981-9428(02)01404-3 CrossRefGoogle Scholar
  26. Rangaswamy NS, Nandakumar L (1985) Correlative studies on seed coat structure, chemical composition, and impermeability in the legume Rhynchosia minima. Bot Gaz 146:501–509. doi: 10.1086/337555 CrossRefGoogle Scholar
  27. Reith JF (1971) Properties of bixin and norbixin and the composition of annatto extracts. J Food Sci 36:861–864. doi: 10.1111/j.1365-2621.1971.tb15545.x CrossRefGoogle Scholar
  28. Rolston MP (1978) Water impermeable seed dormancy. Bot Rev 44:365–396CrossRefGoogle Scholar
  29. Saeman JF, Buhl JL, Harris EE (1945) Quantitative saccharification of wood and cellulose. Ind Eng Chem 17:35–37. doi: 10.1021/i560137a008 CrossRefGoogle Scholar
  30. Siezen RJ, Leunissen JAM (1997) Subtilases: the superfamily of subtilisin-like serine proteases. Protein Sci 6:501–523PubMedCrossRefGoogle Scholar
  31. Slattery HD, Atwell BJ, Kuo J (1982) Relationship between color, phenolic content and impermeability in the seed coat of various Trifolium subterraneum L genotypes. Ann Bot (Lond) 50:373–378Google Scholar
  32. Slayter EM (1970) Optical methods in biology. Wiley-Interscience, New YorkGoogle Scholar
  33. Stabell E, Upadhyaya MK, Ellis BE (1996) Development of seed coat imposed dormancy during seed maturation in Cynoglossum officinale. Physiol Plant 97:28–34. doi: 10.1111/j.1399-3054.1996.tb00474.x CrossRefGoogle Scholar
  34. Updegraff D (1969) Semimicro determination of cellulose in biological materials. Anal Biochem 32:420–424. doi: 10.1016/S0003-2697(69)80009-6 PubMedCrossRefGoogle Scholar
  35. Vidal (1987) Métodos em biologia celular. In: Vidal BC, Mello MLS (eds) Biologia celular. Atheneu, Rio de JanerioGoogle Scholar
  36. Windsor BJ, Symonds VV, Mendenhall J, Lloyd AM (2000) Arabidopsis seed coat development: morphological differentiation of the outer integument. Plant J 22:483–493. doi: 10.1046/j.1365-313x.2000.00756.x PubMedCrossRefGoogle Scholar
  37. Yoshizama N, Inami A, Miyake F, Yokota S (2000) Anatomy and lignin distribution of reaction wood in two Magnolia species. Wood Sci Technol 34:183–196. doi: 10.1007/s002260000046 CrossRefGoogle Scholar
  38. Zickler GA, Wagermaier W, Funari SS, Burghammer M, Paris O (2007) In situ X-ray diffraction investigation of thermal decomposition of wood cellulose. J Anal Appl Pyrolysis 80:134–140. doi: 10.1016/j.jaap.2007.01.011 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Lourdes I. V. Amaral
    • 1
    Email author
  • Ângelo L. Cortelazzo
    • 2
  • Marcos S. Buckeridge
    • 3
  • Luiz A. R. Pereira
    • 1
  • Maria F. D. A. Pereira
    • 2
  1. 1.Department of Botany, Biology InstituteUniversity of BrasiliaBrasiliaBrazil
  2. 2.Biology InstituteUniversity of CampinasCampinasBrazil
  3. 3.Department of Botany, Institute of BiosciencesUniversity of Sao PauloSão PauloBrazil

Personalised recommendations