Advertisement

Trees

, 23:169 | Cite as

The climate sensitivity of Norway spruce [Picea abies (L.) Karst.] in the southeastern European Alps

  • Tom Levanič
  • Jožica Gričar
  • Mary Gagen
  • Risto Jalkanen
  • Neil J. Loader
  • Danny McCarroll
  • Primož Oven
  • Iain Robertson
Original Paper

Abstract

To investigate the potential of Norway spruce (Picea abies L. Karst) as a palaeoclimate archive in the southeastern European Alps, tree ring chronologies were developed from trees growing at two sites in Slovenia which differed in their ecological and climatological characteristics. Ring width, maximum latewood density, annual height increment and latewood cellulose carbon isotope composition were determined at both sites and the resulting time-series compared with and verified against instrumental climate data for their common period (AD 1960–AD 2002). Results indicate that ring width sensitivity to summer temperature is very site-dependent, with opposing responses at alpine and lowland sites. Maximum density responds to September temperatures, indicating lignification after cell division has ceased. Stable carbon isotopes have most potential, responding strongly to summer temperature in both alpine and lowland stands. Height increment appears relatively insensitive to climate, and is likely to be dominated by local stand dynamics.

Keywords

Wood formation Height increment Latewood density Stable carbon isotope Southeastern Alps 

Notes

Acknowledgments

The work was funded by grants from European Union project (Pine: EVK2-CT-2002-00136 and Millennium: 017008). We are grateful to Martin Zupančič and Peter Cunder from the Department of Wood Science and Technology, Biotechnical Faculty, University of Ljubljana; Pekka Närhi and Tarmo Aalto from Metla Rovaniemi research unit for their help in the field and laboratory; Jonathan Woodman-Ralph and Paula Santillo, Swansea University, for their dedication and assistance in sample preparation. We are indebted to the Slovenian Forest Service, regional units Bled and Kranj, for enabling us to complete the experimental work in the field. N.J. Loader acknowledges support from the UK NERC NE/C511805/1 and NE/B501504/1. T. Levanič acknowledges travel grant from British Council Partnership in Science Program.

References

  1. Baillie MGL, Pilcher JR (1973) A simple cross-dating programme for tree-ring research. Tree Ring Bull 33:7–14Google Scholar
  2. Briffa KR, Jones PD (1990) Basic chronology statistics and assessment. In: Cook ER, Kairiukstis LA (eds) Methods of dendrochronology: applications in the environmental sciences. Kluwer academic publishers, Dordrecht, pp 137–152Google Scholar
  3. Cook ER (1985) Time series analysis approach to tree ring standardization. University of Arizona, TucsonGoogle Scholar
  4. Cook ER, Holmes RL (1999) Program ARSTAN—chronology development with statistical analysis (users manual for program ARSTAN). Laboratory of Tree-Ring Research, University of Arizona, TucsonGoogle Scholar
  5. Cook ER, Briffa K, Shiyatov S, Mazepa V (1990) Tree-ring standardization and growth trend estimation. In: Cook ER, Kairiukstis LA (eds) Methods of dendrochronology: applications in the environmental sciences. Kluwer academic publishers, Dordrecht, pp 104–162Google Scholar
  6. Cook ER, Briffa KR, Jones PD (1994) Spatial regression methods in dendroclimatology: a review and comparison of two techniques. Int J Climatol 14:379–402. doi: 10.1002/joc.3370140404 CrossRefGoogle Scholar
  7. Čufar K, Levanič T, Zupančič M (1995) Slovenija, regija za dendrokronoloske raziskave (Slovenia, a region for dendrochronological investigations). Les 47:133–136Google Scholar
  8. Doak CC (1935) Evolution of foliar types, dwarf shoots, and cone scales of Pinus. Ill Biol Monogr 3:106Google Scholar
  9. Eckstein D, Bauch J (1969) Beitrag zur Rationalisierung eines dendrochronologischen Verfahrens und zur Analyse seiner Aussagesicherheit. Forstwissenschaftliches Centralblatt 88:230–250. doi: 10.1007/BF02741777 CrossRefGoogle Scholar
  10. Frank D, Esper J (2005) Characterization and climate response patterns of a high-elevation, multi-species tree-ring network in the European Alps. Dendrochronologia 22:107–121. doi: 10.1016/j.dendro.2005.02.004 CrossRefGoogle Scholar
  11. Fritts HC (1976) Tree rings and climate. Academic Press, LondonGoogle Scholar
  12. Gagen M, McCarroll D, Edouard JL (2004) Latewood width, maximum density and stable carbon isotope ratios of pine as palaeoclimate indicators in a dry sub-alpine environment in the southern French Alps. Arct Antarct Alp Res 36:166–171. doi: 10.1657/1523-0430(2004)036[0166:LWMDAS]2.0.CO;2 CrossRefGoogle Scholar
  13. Gagen M, McCarroll D, Edouard JL (2006) Combining ring width, density, and stable carbon isotope proxies to enhance the climate signal in tree-rings: an example from the southern French Alps. Clim Change 78:363–379. doi: 10.1007/s10584-006-9097-3 CrossRefGoogle Scholar
  14. Gagen M, McCarroll D, Loader NJ, Robertson I, Jalkanen R, Anchukaitis KJ (2007) Exorcising the ‘segment length curse’: summer temperature reconstruction since AD 1640 using non-detrended stable carbon isotope ratios from pine trees in northern Finland. Holocene 17:435–446. doi: 10.1177/0959683607077012 CrossRefGoogle Scholar
  15. Gindl W, Grabner M, Wimmer R (2000) The influence of temperature on latewood lignin content in treeline Norway spruce compared with maximum density and ring width. Trees Struct Funct 14:409–414Google Scholar
  16. Gričar J, Čufar K, Oven P, Schmitt U (2005) Differentiation of terminal latewood tracheids in silver fir during autumn. Ann Bot (Lond) 95:959–965. doi: 10.1093/aob/mci112 CrossRefGoogle Scholar
  17. Grissino-Mayer HD (2001) Evaluating crossdating accuracy: a manual and tutorial for the computer program COFECHA. Tree Ring Res 57:205–221Google Scholar
  18. Holmes RL (1983) Computer-assisted quality control in tree-ring dating and measurement. Tree Ring Bull 43:69–78Google Scholar
  19. Jakša J (2007) Naravne ujme v gozdovih Slovenije/Natural disasters in Slovenian forests. GozdV 65:205–227Google Scholar
  20. Jalkanen R, Aalto T, Kurkela T (1995) Development of needle retention in Scots pine (Pinus sylvestris) in 1957–1991 in northern and southern Finland. Trees Struct Funct 10:125–133Google Scholar
  21. Jalkanen R, Aalto T, Kurkela T (1998) Revealing past needle density in Pinus spp. Scand J For Res 13:292–296CrossRefGoogle Scholar
  22. Kurkela T, Jalkanen R (1990) Revealing past needle retention in Pinus spp. Scand J For Res 5:481–485CrossRefGoogle Scholar
  23. Levanič T (2004) Ugotavljanje starosti dreves. In: Brus R (ed) Staro in debelo drevje v gozdu. Biotehniška fakulteta, Oddelek za gozdarstvo in obnovljive gozdne vire, LjubljanaGoogle Scholar
  24. Lindner F (2000) Dendrochronological analysis of Norway spruce (Picea abies Karst.) growing at various sites in Slovenia (Dendrokronološka analiza rasti smreke (Picea abies Karst.) na različnih rastiščih v Sloveniji). University of Ljubljana, LjubljanaGoogle Scholar
  25. Loader NJ, Robertson I, Barker AC, Switsur VR, Waterhouse JS (1997) An improved technique for the batch processing of small wholewood samples to a-cellulose. Chem Geol 136:313–317. doi: 10.1016/S0009-2541(96)00133-7 CrossRefGoogle Scholar
  26. Loader NJ, McCarroll D, Gagen M, Robertson I, Jalkanen R (2007) Extracting climatic information from stable isotopes in tree rings. In: Dawson TE, Siegwolf RTW (eds) Stable isotopes as indicators of ecological change. Elsevier, New York, pp 27–48CrossRefGoogle Scholar
  27. Loader NJ, Santillo PM, Woodman-Ralph JP, Rolfe JE, Hall MA, Gagen M et al (2008) Multiple stable isotopes from oak trees in southwestern Scotland and the potential for stable isotope dendroclimatology in maritime climatic regions. Chem Geol (in press)Google Scholar
  28. Mäkinen H, Nöjd P, Kahle H-P, Neumann U, Bjorn T, Mielikäinen K et al (2002) Radial growth of Norway spruce (Picea abies (L.) Karst.) across latitudinal and altitudinal gradients in central and northern Europe. For Ecol Manage 171:243–259. doi: 10.1016/S0378-1127(01)00786-1 CrossRefGoogle Scholar
  29. Mäkinen H, Nöjd P, Kahle H-P, Neumann U, Tveite B, Mielikainen K, Rohle H, Spiecker H (2003) Large-scale climatic variability and radial increment variation of (Picea abies (L.) Karst. in central and northern Europe. Trees Struct Funct 17:173–184Google Scholar
  30. McCarroll D, Loader NJ (2004) Stable isotopes in tree rings. Q Sci Rev 23:771–801. doi: 10.1016/j.quascirev.2003.06.017 CrossRefGoogle Scholar
  31. McCarroll D, Loader NJ (2005) Isotopes in tree rings. In: Leng MJ (ed) Isotopes in palaeoenvironmental research (developments in paleoenvironmental research). Springer, Dordrecht, pp 67–116Google Scholar
  32. McCarroll D, Pawellek F (2001) Stable carbon isotope ratios of Pinus sylvestris from northern Finland and the potential for extracting a climate signal from long Fennoscandian chronologies. Holocene 11:517–526. doi: 10.1191/095968301680223477 CrossRefGoogle Scholar
  33. McCarroll D, Jalkanen R, Hicks S, Tuovinen M, Pawellek F, Gagen M et al (2003) Multi-proxy dendroclimatology: a pilot study in northern Finland. Holocene 13:829–838. doi: 10.1191/0959683603hl668rp CrossRefGoogle Scholar
  34. National Research Council (2006) Surface temperature reconstructions for the last 2,000 years. National Academies Press, WashingtonGoogle Scholar
  35. Pichler P, Oberhuber W (2007) Radial growth response of coniferous forest trees in an inner Alpine environment to heat-wave in 2003. For Ecol Manage 242:688–699. doi: 10.1016/j.foreco.2007.02.007 CrossRefGoogle Scholar
  36. Reichstein M, Ciais P, Papale D, Valentini R, Running S, Viovy N et al (2007) Reduction of ecosystem productivity and respiration during the European summer 2003 climate anomaly: a joint flux tower, remote sensing and modelling analysis. Glob Change Biol 13:634–651. doi: 10.1111/j.1365-2486.2006.01224.x CrossRefGoogle Scholar
  37. Rinne KT, Boettger T, Loader NJ, Robertson I, Switsur VR, Waterhouse JS (2005) On the purification of a-cellulose from resinous wood for stable isotope (H, C and O) analysis. Chem Geol 222:75–82. doi: 10.1016/j.chemgeo.2005.06.010 CrossRefGoogle Scholar
  38. Robertson I, Switsur VR, Carter AHC, Barker AC, Waterhouse JS, Briffa KR et al (1997) Signal strength and climate relationship in 13C/12C ratios of tree ring cellulose from oak in east England. J Geophys Res 102:19507–19516. doi: 10.1029/97JD01226 CrossRefGoogle Scholar
  39. Rossi S, Deslauriers A, Morin H (2003) Application of the Gompertz equation for the study of xylem cell development. Dendrochronologia 21:33–40. doi: 10.1078/1125-7865-00034 CrossRefGoogle Scholar
  40. Salminen H, Jalkanen R (2005) Modelling the effects of temperature on height increment of Scots pine at high latitudes. Silva Fenica 39:497–508Google Scholar
  41. Sander C, Eckstein D (2001) Foliation of spruce in the Giant Mts. and its coherence with growth and climate over the last 100 years. Ann For Sci 58:155–164. doi: 10.1051/forest:2001115 CrossRefGoogle Scholar
  42. Schmidt B (1987) Ein dendrochronologischer Befund zum Bau der Stadtmauer der Colonia Ulpia Traiana. Bonner Jahrb 187:495–503Google Scholar
  43. Schweingruber FH (1989) Tree rings: basics and applications of dendrochronology. Kluwer Academic Publishers, DordrechtGoogle Scholar
  44. Schweingruber FH, Fritts HC, Bräker OU, Drew LG, Schär E (1978) The X-ray technique as applied to dendrochronology. Tree Ring Bull 38:61–91Google Scholar
  45. Schweingruber FH, Eckstein D, Serre-Bachet F, Bräker OU (1990) Identification, presentation and interpretation of event years and pointer years in dendrochronology. Dendrochronologia 8:9–38Google Scholar
  46. Stanovnik M (1998) Dendroecological analysis of Norway spruce (Picea abies Karst.) from chill sites in the area of Notranjski Snežnik. University of Ljubljana, LjubljanaGoogle Scholar
  47. Wahl ER, Ammann CM (2007) Robustness of the Mann, Bradley, Hughes reconstruction of Northern Hemisphere surface temperatures: examination of criticisms based on the nature and processing of climate evidence. Clim Change 85:33–69. doi: 10.1007/s10584-006-9105-7 CrossRefGoogle Scholar
  48. Wigley TML, Briffa KR, Jones PD (1984) On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. J Clim Appl Meteorol 23:201–213. doi:10.1175/1520-0450(1984)023<0201:OTAVOC>2.0.CO;2CrossRefGoogle Scholar
  49. Wolter EK (1968) A new method for marking xylem growth. For Sci 14:102–104Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Tom Levanič
    • 1
  • Jožica Gričar
    • 1
  • Mary Gagen
    • 3
  • Risto Jalkanen
    • 2
  • Neil J. Loader
    • 3
  • Danny McCarroll
    • 3
  • Primož Oven
    • 4
  • Iain Robertson
    • 3
  1. 1.Slovenian Forestry InstituteLjubljanaSlovenia
  2. 2.Metla Rovaniemi Research UnitRovaniemiFinland
  3. 3.Department of GeographySwansea UniversitySwanseaUK
  4. 4.Department of Wood Science and Technology, Biotechnical FacultyUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations