Trees

, Volume 22, Issue 5, pp 663–670

Annual growth rings in the mangrove Laguncularia racemosa (Combretaceae)

  • Gustavo Calderucio Duque Estrada
  • Cátia Henriques Callado
  • Mário Luiz Gomes Soares
  • Cláudio Sérgio Lisi
Original Paper

Abstract

Stem discs from trees of known age were used to determine the periodic nature of the growth rings formed in Laguncularia racemosa and to describe the anatomical features of these rings. The growth rings were scarcely distinct on microscopic examination, but they were well distinguishable macroscopically, with alternating light brown and dark brown layers. Cross-dating analysis revealed the occurrence of annual growth rings in L. racemosa. The existence of annual growth rings in L. racemosa suggests that it may have great potential for dendrochronology and should encourage age-related studies on the dynamics of mangrove forests. These studies can be important for the evaluation of climate change impact on mangrove ecosystems, as well as for the analysis of effects related to climate variability on plant communities.

Keywords

Growth rings Mangroves Laguncularia racemosa Climate 

References

  1. Alves ES, Angyalossy-Alfonso V (2000) Ecological trends in the wood anatomy of some Brazilian species. 1. Growth rings and vessels. IAWA J 21:2000:3–30Google Scholar
  2. Ash J (1983) Note on paper “growth rings and rainfall correlations in a mangrove tree of the genus Diospyros (Ebenaceae) by Duke NC, Birch WR, Williams WT”. Aust J Bot 31:19–22CrossRefGoogle Scholar
  3. Barros CF, Marcon ML, Marquete O, Cunha M, Pugialli HRL, Costa CG, Callado CH (2006) Tendências ecológicas na anatomia da madeira de espécies da comunidade arbórea da Reserva Biológica de Poço das Antas RJ. Rodriguesia 57:443–460Google Scholar
  4. Briffa KR, Osborn TJ, Schueingruber FH (2004) Large-scale temperature inferences from tree rings: a review. Glob Planet Change 40:11–26CrossRefGoogle Scholar
  5. Burger LM, Richter HG (1991) Anatomia de madeira. Nobel, São PauloGoogle Scholar
  6. Cain WC, Suess HE (1976) Carbon 14 in tree rings. J Geophys Res 81:3688–3694CrossRefGoogle Scholar
  7. Callado CH, Neto SJS, Scarano FR, Costa CG (2001) Periodicity of growth rings in some flood-prone trees of the Atlantic Rain Forest in Rio de Janeiro, Brazil. Trees 15:492–497Google Scholar
  8. Callado CH, Neto SJS, Scarano FR, Costa CG (2004) Radial growth dynamics of Tabebuia umbellata (Bignoniaceae), a flood-tolerant tree from the Atlantic forest swamps in Brazil. IAWA J 25:175–183Google Scholar
  9. Carlquist S (2001) Comparative wood anatomy. Systematic, ecological, and evolutionary aspects of dicotyledon wood. Springer-Verlag, New YorkGoogle Scholar
  10. Carreras R (1988) Caracteres anatomicos de la madera de espécies típicas de manglares. Consideraciones ecologicas. Rev For Baracoa 18:7–16Google Scholar
  11. Case RA, McDonald GM (1995) A dendroclimatic reconstruction of annual precipitation on the western Canadian prairies since A. D. 1505 from Pinus flexilis James. Quatern Res 44:267–275CrossRefGoogle Scholar
  12. Chapman VJ (1944) The Cambridge University expedition to Jamaica. Part 3. The morphology of Avicennia nitida Jacq. and the function of its pneumatophores. Bot J Linn Soc 52:487–533CrossRefGoogle Scholar
  13. Dai K, Fan CY (1986) Bomb produced 14C content in tree rings grown at different latitudes. Radiocarbon 28:346–349Google Scholar
  14. Davi KN, Jacoby GC, Wilwes GC (2003) Boreal temperature variability inferred from maximum latewood density and tree-ring width data, Wrangell Mountain region, Alaska. Quatern Res 60:252–262CrossRefGoogle Scholar
  15. Detienne P (1989) Appearance and periodicity of growth rings in some tropical woods. IAWA Bull 10:123–132Google Scholar
  16. Duke NC, Birch WR, Williams WT (1981) Growth rings and rainfall correlations in a mangrove of the genus Diospyros (Ebenaceae). Aust J Bot 29:135–142CrossRefGoogle Scholar
  17. Duke NC, Pinzon ZS, Prada MC (1999) Recovery of tropical mangrove following a major oil spill: a study of recruitment and growth, and the benefits of planting. In: Yanez-Arancibia A, Dominguez ALL (eds) Ecossistemas de Manglar en America Tropical. UICN/ORMA NOAA/NMFS, México, pp 231–254Google Scholar
  18. Egler FE (1948) The dispersal and establishment of red mangrove in Florida. Caribb For 9:299–310Google Scholar
  19. Egler FE (1952) Southeast saline Everglades vegetation and its management. Vegetatio 3:213–265CrossRefGoogle Scholar
  20. Ellison JC (1993) Mangrove retreat with rising sea-level, Bermuda. Estuar Coast Shelf Sci 37:75–87CrossRefGoogle Scholar
  21. Ellison JC, Stoddart DR (1991) Mangrove ecosystem collapse during predicted sea-level rise: Holocene analogues and implications. J Coast Res 7:151–165Google Scholar
  22. Eshete G, Stahl G (1999) Tree rings as indicators of growth periodicity of acacias in the Rift Valley of Ethiopia. For Ecol Manage 116:107–117CrossRefGoogle Scholar
  23. Friedrich M, Kromer B, Spurk M, Hofmann J, Kaiser KF (1999) Paleo-environment and radiocarbon calibration as derived from Lateglacial/Early Holocene tree-ring chronologies. Quatern Int 61:27–39CrossRefGoogle Scholar
  24. Fromard F, Vega C, Proisy C (2004) Half a century of dynamic coastal change affecting mangrove shorelines of French Guiana. A case study based on remote sensing data analyses and field surveys. Mar Geol 208:265–280CrossRefGoogle Scholar
  25. Garrity SD, Levings SC, Burns KA (1994) The Galeta oil spill. I. Long-term effects on the physical structure of the mangrove fringe. Estuar Coast Shelf Sci 38:327–348CrossRefGoogle Scholar
  26. Getter CD, Cintron G, Dicks B, Lewis RR, Seneca ED (1984) The recovery and restoration of saltmarshes and mangrove following an oil spill. In: Cairns J, Buikema AL (eds) Restoration of habitats impacted by oil spills. Butterworth, Boston, pp 65–113Google Scholar
  27. Gill AM (1971) Endogenous control of growth ring development in Avicennia. For Sci 17:462–465Google Scholar
  28. Gilmore RG Jr, Snedaker SM (1993) Mangrove forests. In: William HM, Stephen GB, Arthur CE (eds) Biodiversity of the southeastern United States/lowdad terrestrial communities. Wiley, New York, pp 166–198Google Scholar
  29. Gourlay ID (1995) Growth ring characteristics of some African Acacia species. J Trop Ecol 11:121–140CrossRefGoogle Scholar
  30. Hamilton LS, Snedaker SC (1984) Handbook for mangrove area management. United Nations Environment Programme. Environment and Policy Institute, ParisGoogle Scholar
  31. Hua Q, Barbetti M, Worbes M, Head J, Levchenko VA (1999) Review of radiocarbon data from atmospheric and tree ring samples for the period 1945–1997 A.D. IAWA J 20:261–283Google Scholar
  32. Hutchings PA, Saenger P (1987) Ecology of mangroves. University of Queensland Press. BrisbaneGoogle Scholar
  33. IAWA (1989) List of microscopic features of hardwood identification. IAWA Bull 10:219–332Google Scholar
  34. Jackson JBC, Cubit JD, Kelle RBD, Batista V, Burns K, Caffey HM, Caldwell RL, Garrity SD, Getter CD, Gonzalez C, Guzman HM, Kaufmann KW, Knap AH, Levings SC, Marshall MJ, Steger R, Thompson RC, Weil E (1989) Ecological effects of a major oil spill on Panamanian coastal marine communities. Science 243:37–44PubMedCrossRefGoogle Scholar
  35. Janssonius HH (1950) The vessels in the wood of Javan mangrove trees. Blumea 6:465–469Google Scholar
  36. Johansen D (1940) Plant microtechnique. McGraw-Hill Book Company, New YorkGoogle Scholar
  37. Kaennel M, Schweingruber FH (1995) Multilingual glossary of dendrochronology: terms and definitions in English, German, French, Spanish, Italian, Portuguese and Russian. Paul Haupt Publishers/Swiss Federal Institute for Forest, Snow and Landscape Research, BernGoogle Scholar
  38. Kienast F (1985) Tree ring analysis, forest damage and air pollution in the Swiss Rhone Valley. Land Use Policy 2:74–77CrossRefGoogle Scholar
  39. Knapp AK, Grissino-Mayer HD, Soulé PT (2002) Climatic regionalization and the spatio-temporal occurrence of extreme single-year drought events (1500–1998) in the interior Pacific Northwest, USA. Quatern Res 58:226–233CrossRefGoogle Scholar
  40. Mariaux A (1967) Les crenes dans les bois tropicaux africans, nature et periocité II: Periodicité des cernes, méthodes d’etude et et premiers résultats. Rev Bois For Trop 114:23–37Google Scholar
  41. Martinelli N (2004) Climate from dendrochronology: latest developments and results. Glob Planet Change 40:129–139CrossRefGoogle Scholar
  42. McKee KL (1995) Interspecific variationin growth, biomass partitioning, and defensive characteristics of neotropical mangrove seedlings: response to light and nutrient availability. Am J Bot 82:299–307CrossRefGoogle Scholar
  43. Menezes M, Berger U, Worbes M (2003) Annual growth rings and long-term growth patterns of mangrove trees from the Bragança peninsula, North Brazil. Wetlands Ecol Manage 11:233–242CrossRefGoogle Scholar
  44. Páez-Osuna F (2001) The environmental impact of shrimp aquaculture: causes, effects, and mitigating alternatives. Environ Manage 28:131–140PubMedCrossRefGoogle Scholar
  45. Panshin AJ (1932) An anatomic study of the woods of the Philippine mangrove swamps. Philipp J Sci 48:143–207Google Scholar
  46. Prahm LP, Berkowicz R (1978) Chemical pretreatment and radial flow of 14C in tree rings. Nature 271:234–235CrossRefGoogle Scholar
  47. Primavera JH (2005) Mangroves, fishponds, and the quest for sustainability. Science 310:57–59PubMedCrossRefGoogle Scholar
  48. Proisy C, Mougin E, Fromard F, Karam MA (2000) Interpretation of polarimetric radar signatures of mangrove forests. Remote Sens Environ 71:56–66CrossRefGoogle Scholar
  49. Rabinowitz D (1978) Dispersal properties of mangroves propagules. Biotropica 10:47–57CrossRefGoogle Scholar
  50. Rathgeber C, Nicault A, Guiot J, Keller T, Guibal F, Roche P (2000) Simulated responses of Pinus halepensis forest productivity to climatic change and CO2 increase using a statistical model. Glob Planet Change 26:405–421CrossRefGoogle Scholar
  51. Sass JE (1958) Elements of botanical microtechnique, vol II. McGraw-Hill Book Company, New YorkGoogle Scholar
  52. Schaeffer-Novelli Y, Cintrón-Molero G, Soares MLG (2002) Mangroves as indicators of sea level change in the muddy coasts of the world. In: Healy T, Wang Y, Healy J (eds) Muddy coasts of the world: processes, deposits and function. Elsevier Science, Oxford, pp 245–262CrossRefGoogle Scholar
  53. Semeniuk V (1994) Predicting the effect of sea-level rise on mangroves of northwestern Australia. J Coast Res 10:1050–1076Google Scholar
  54. Shiokura T (1989) A method to measure radial increment in tropical trees. IAWA Bull 10:147–154Google Scholar
  55. Smith TJ III (1992) Forest structure. In: Robertson AI, Alongi DM (eds) Tropical mangrove ecosystems. American Geophysical Union, Washington, DC, pp 101–136Google Scholar
  56. Soares MLG (1999) Estrutura vegetal e grau de perturbação dos manguezais da Lagoa da Tijuca, Rio de Janeiro, RJ, Brasil. Braz J Biol 59:503–515Google Scholar
  57. Soares MLG, Chaves FO, Corrêa FM, Silva CMG Jr (2003) Diversidade estrutural de bosques de mangue e sua relação com distúrbios de origem antrópica: o caso da baía de Guanabara (Rio de Janeiro). Anu Inst Geocienc 26:101–116Google Scholar
  58. Sousa JP, Oliveira ALPC, Souza MM (1982) Contribuição ao conhecimento do lenho de Laguncularia racemosa (L.) Gaertn. f. Silvic Sao Paulo 16:280–292Google Scholar
  59. Tomlinson PB (1986) The botany of mangroves. Cambridge University Press, CambridgeGoogle Scholar
  60. Tomlinson PB, Craighead FC (1972) Growth-ring studies on native tree of sub-tropical Florida. In: Ghouse AKM, Yunus M (eds) Research trends in plant anatomy. Tata McGraw-Hill, New Delhi, pp 39–51Google Scholar
  61. Valiela I, Bowen JL, York JK (2001) Mangrove forests: one of the world’s threatened major tropical environments. Bioscience 51:807–815CrossRefGoogle Scholar
  62. Van Vliet GJCM (1979) Wood anatomy of the Combretaceae. Blumea 25:141–223Google Scholar
  63. Verheyden A, Kairo JG, Beeckman H, Koedam N (2004a) Growth rings, growth ring formation and age determination in the mangrove Rhizophora mucronata. Ann Bot 94:59–66PubMedCrossRefGoogle Scholar
  64. Verheyden A, Helle G, Schleser GH, Dehairs F, Beeckman H, Koedam N (2004b) Annual cyclicity in high-resolution stable carbon and oxygen isotope ratios in the wood of the mangrove tree Rhizophora mucronata. Plant Cell Environ 27:1525–1536CrossRefGoogle Scholar
  65. Verheyden A, Roggeman M, Bouillon S, Elskens M, Beeckman H, Koedam N (2005) Comparison between δ 13C of α-cellulose and bulk wood in the mangrove tree Rhizophora mucronata: implications for dendrochemistry. Chem Geol 219:275–282CrossRefGoogle Scholar
  66. Vetter RE, Botosso PC (1989) El niño may affect growth behavior of Amazonian trees. GeoJournal 19:419–421CrossRefGoogle Scholar
  67. Woodroffe CD (1982) Litter production and decomposition in the New Zealand mangroves, Avicennia marina var. resinifera. N Z J Mar Freshw Res 39:283–93Google Scholar
  68. Woodroffe CD (1995) Response of tide-dominated mangrove shorelines in northern Australia to anticipated sea-level rise. Earth Surf Processes Landforms 20:65–85CrossRefGoogle Scholar
  69. Worbes M (1985) Structural and other adaptations to long-term flooding by trees in Central Amazonia. Amazoniana 9:459–484Google Scholar
  70. Worbes M (1989) Growth rings, increment and age of trees in inundation forests, savannas and a mountain forest in the neotropics. IAWA Bull 10:109–122Google Scholar
  71. Worbes M (1995) How to measure growth dynamics in tropical trees: a review. IAWA J 16:337–351Google Scholar
  72. Worbes M (1999) Anual growth rings, rainfall-dependent growth and long-term growth patterns of tropical trees from the Caparo Forest Reserve in Venezuela. J Ecol 87:391–403CrossRefGoogle Scholar
  73. Worbes M, Junk WJ (1989) Dating tropical trees by means of 14C from bomb tests. Ecology 70:503–507CrossRefGoogle Scholar
  74. Worbes M, Klinge H, Revilla JD, Martius C (1992) On the dynamics, floristic subdivision and geographical distribution of várzea florests in Central Amazonia. J Veg Sci 3:553–564CrossRefGoogle Scholar
  75. Yáñez-Espinosa L, Terrazas T, López-Mata L, Valdez-Hernández JI (2004) Wood variation in Laguncularia racemosa and its effect on fibre quality. Wood Sci Technol 38:217–226CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Gustavo Calderucio Duque Estrada
    • 1
  • Cátia Henriques Callado
    • 2
  • Mário Luiz Gomes Soares
    • 3
  • Cláudio Sérgio Lisi
    • 4
  1. 1.Departamento de EcologiaUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
  2. 2.Departamento de Biologia VegetalUniversidade do Estado do Rio de JaneiroRio de JaneiroBrazil
  3. 3.Faculdade de OceanografiaUniversidade do Estado do Rio de JaneiroRio de JaneiroBrazil
  4. 4.ESALQ/USPUniversidade de São PauloPiracicabaBrazil

Personalised recommendations