Advertisement

Trees

, 21:507 | Cite as

Influence of meteorological conditions on male flower phenology of Cupressus sempervirens and correlation with pollen production in Florence

  • Tommaso Torrigiani Malaspina
  • Lorenzo Cecchi
  • Marco Morabito
  • Marzia Onorari
  • Maria Paola Domeneghetti
  • Simone Orlandini
Original Paper

Abstract

A description of the phenological development of the male flower of Cupressus sempervirens in Florence was performed on the basis of a one-year field monitoring of ten cypress populations in different climatic conditions; daily mean temperature was registered in each population and Cupressaceae pollen concentration in the atmosphere of Florence was monitored. Several methodologies were applied on the aerobiological data in order to identify the main pollen season (MPS) of Cupressaceae in Florence. The method that identified the MPS as 75% of the total annual pollen (MPS75) showed the best correlation with the phenological phase, which corresponded to the dispersal period of cypress. A clear relationship among male cypress phenology, daily mean temperature and Cupressaceae airborne pollen was shown. A phenological model able to simulate male cypress development was finally realized and validated on the basis of 6 years of aerobiological data. The model can predict the starting and ending date of the MPS75 of Cupressaceae in Florence and can be used fruitfully by the allergic population that can profit by the possibility of beginning an antiallergic therapy several days before the first symptoms and ending it when the pollen concentration in the air is low.

Keywords

Cypress phenology Airborne pollen Phenological model Pollinosis 

Notes

Acknowledgments

This study was supported by the ‘‘Servizio Sanitario Regionale della Toscana’’ (Italy), MeteoSalute Project. The authors wish to thank Dr F. Giovannini of ARPAT-Firenze (Agenzia Regionale per la Protezione Ambientale della Toscana) for providing meteorological data.

References

  1. Andersen TB (1991) A model to predict the beginning of the pollen season. Grana 30:269–275Google Scholar
  2. Ariano R, Antico A, Di Lorenzo G, Artesani MC, Bagnato G, Bonadonna P, Bossi A, Bucher E, Calabrese R, Campi P, Corsico R, Dama A, Del Giacco S, Belmonte J, Canela M, Guardia R, Sbai L, Vendrell M, Cariñanos P, Diaz de la Guardia C, Dopazo A, Fernandez D, Gutierrez M, Trigo MM (1999) Aerobiological dynamics of the Cupressaceae pollen in Spain, 1992–98. Polen 10:27–38CrossRefGoogle Scholar
  3. Benninghoff WS, Edmonds RL (1972) Ecological system approaches to aerobiology: identification of component elements and their functional relationships. International Biological Program, Aerobiology Program. US/IBP Aerobiology Program handbook N. 2, University of Michigan, Ann ArborGoogle Scholar
  4. Caiaffa MF, Macchia I, Strada F, Bariletto G, Scarpelli F, Tursi A (1993) Airborne Cupressaceae pollen in southern Italy. Ann Allergy 71:45–50PubMedGoogle Scholar
  5. Calleja M, Farrera I (2003) Le cypres: un nouveau fleau pour la region Rhone-Alpes? Allergy Immunol 35:92–96CrossRefGoogle Scholar
  6. Caramiello R, Gallesio MT, Siniscalco C, Leone F (1991) Aerobiological data and clinical incidence in urban and extra urban environments. Grana 30:109–112Google Scholar
  7. D’Amato G, Licciardi G (1994) Pollen-related allergy in European Mediterranean area. Clin Exp Allergy 24:210–219PubMedCrossRefGoogle Scholar
  8. Emberlin J, Savage M, Woodman R (1993) Annual variations in the concentrations of Betula pollen in the London area, 1961–1990. Grana 32:359–363Google Scholar
  9. Galan G, Fuillerat MJ, Comtois P, Dominguez-Vilches E (1998a) Bioclimatic factors affecting daily Cupressaceae flowering in southwest Spain. Int J Biometeorol 41:95–100CrossRefGoogle Scholar
  10. Galan G, Fuillerat MJ, Comtois P, Dominguez-Vilches E (1998b) A predictive study of Cupressaceae pollen season onset, severity, maximum value and maximum value date. Aerobiolog 4:195–199Google Scholar
  11. Giner MM, Garcia JSC, Camacho CN (2002) Seasonal fluctuations of the airborne pollen spectrum in Murcia (SE Spain). Aerobiolog 18:141–151CrossRefGoogle Scholar
  12. Hidalgo PJ, Galan C, Dominguez E (1999) Pollen production of the genus Cupressus. Grana 38:296–300CrossRefGoogle Scholar
  13. Hidalgo PJ, Galan C, Dominguez E (2003) Male phenology of three species of cupressus: correlation with airborne pollen. Trees 17:336–344. doi:10.1007/s00468-002-0243-xGoogle Scholar
  14. Hirst JM (1952) An automatic volumetric spore trap. Ann Appl Biol 39:257–265CrossRefGoogle Scholar
  15. Jato V, Rodríguez-Rajo FJ, Alcázar P, De Nuntiis P, Galán C, Mandrioli P (2006) May the defnition of pollen season influence aerobiological results? Aerobiolog 22:13–25. doi:10.1007/s10453-005-9011-xCrossRefGoogle Scholar
  16. Keynan N, Waisel Y, Shomer-Ilan A, Tamir R (1989) Forecasting pollen pollution: correlation with floral development. Ann Allergy 63:417–420PubMedGoogle Scholar
  17. Laaidi M (2001) Forecasting the start of the pollen season of Poaceae: evaluation of some methods based on meteorological factors. Int J Biometeorol 45:1–7PubMedCrossRefGoogle Scholar
  18. Mandrioli P, Puppi G (1978) Pollini allergenici in Emilia Romagna. Collana Studi e Documentazione n. 13, Dip. Ambiente e territorio R.E.R., BolognaGoogle Scholar
  19. Mandrioli P, De Nuntiis P, Ariatti A, Magnani R (2000) Cypress in Italy: landscape and pollen monitoring. Allergy Immunol 31:116–121Google Scholar
  20. Michel , Bousquet (1997) Les allergies. Hachette ParisGoogle Scholar
  21. Nilsson S, Persson S (1981) Tree pollen spectra in the Stockholm region (Sweden) 1973–1980. Grana 20:179–182CrossRefGoogle Scholar
  22. Panzani R, Centanni G, Brunel M (1986) Increase of respiratory allergy to the pollens of cypress in the south of France. Ann Allergy 56:460–463PubMedGoogle Scholar
  23. Papa G, Romano A, Quarantino D, Di Fonso M, Viola M, Artesani MC, Sernia S, Priftanji A, Gjebrea E, Shkurti A (2000) Cupressaceae in Tirana (Albania) 1996–1998: aerobiological data and prevalence of Cupressaceae sensitization in allergic patients. Allergy Immunol 31:122–124Google Scholar
  24. Priftanji A, Gjebrea E, Shkurti A (2000). Cupressaceae in Tirana (Albania) 1996–1998 aerobiological data and prevalence of Cupressaceae sensitization in allergic patients. Allerg Immunol 31:122–124Google Scholar
  25. Rodríguez-Rajo FJ, Dopazo A, Jato V (2004) Environmental factors affecting the start of pollen season and concentrations of airborne alnus pollen in two localities of Galicia (NW Spain). Ann Agric Environ Med 11:35–44PubMedGoogle Scholar
  26. Ruiz de Clavijo E, Galan C, Infante F, Dominguez E (1988) Variations of airborne winter pollen in Southern Spain. Allergol Inmunopathol 16:175–179Google Scholar
  27. Spieksma FTM, Nikkels AH (1998) Airborne grass pollen in Leiden, The Netherlands: annual variations and trends in quantities and season starts over 26 years. Aerobiolog 14:347–358Google Scholar
  28. Subiza J, Jerez M, Jimenez JA, Narganes MJ, Cabrera M, Varela S, Subiza E (1995) Allergenic pollen pollinosis in Madrid. J Allergy Clin Immunol 96:15–23PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Tommaso Torrigiani Malaspina
    • 1
  • Lorenzo Cecchi
    • 1
  • Marco Morabito
    • 1
  • Marzia Onorari
    • 2
  • Maria Paola Domeneghetti
    • 2
  • Simone Orlandini
    • 1
  1. 1.Interdepartmental Centre of BioclimatologyUniversity of FlorenceFlorenceItaly
  2. 2.Articolazione Funzionale di Aerobiologia, ARPATPistoiaItaly

Personalised recommendations