, Volume 21, Issue 1, pp 1–11 | Cite as

Potential risks for European beech (Fagus sylvatica L.) in a changing climate

  • Arthur GeßlerEmail author
  • Claudia Keitel
  • Jürgen Kreuzwieser
  • Rainer Matyssek
  • Wolfgang Seiler
  • Heinz Rennenberg


Over large areas of Europe, coniferous monocultures are being transformed into mixed forests by the re-introduction of broadleaf tree species belonging to the potential natural vegetation. One important species of interest in this changing forest policy is European beech (Fagus sylvatica). However, at present, this forest management directive has ignored potential adverse effects of global climate change on wide-spread re-introduction of beech to these areas. Average global surface temperatures have risen by approx. 0.8°C in the period between 1861 and 2005 and are expected to continue to increase until the end of this century by 1.5–5.8°C above the 1990 value. To estimate the climate change in the southern part of central Europe in future, we reviewed calculations from regional climate models. Temperature increase for the southern part of central Europe is projected to be up to 2°C within the next 40 years. In contrast, the annual precipitation will most likely remain constant over the same time period, but will experience significant changes in seasonal patterns. Rising intensities of individual precipitation events may result in increasing number and intensities of flooding events and reduced precipitation during the growing season in a higher frequency of summer droughts. Growth and competitive ability of European beech will not, necessarily, respond to increasing CO2 concentrations but may be strongly impacted by intensive drought that occurs during the growing season. Seedlings as well as adult trees may suffer from xylem embolism, restricted nutrient uptake capacity and reduced growth under limited water availability. However, it remains uncertain to what extent other environmental factors (e.g. soil properties, competitive interactions) may modify the drought response of beech, thus either enhancing susceptibility or increasing drought tolerance and resilience potential. Water-logged soils, predicted during the spring for several regions due to higher than average precipitation, could negatively impact nutrient uptake and growth of beech. Whereas other dominant species as, e.g. oak are well adapted to that environmental stress, beech is known to be sensitive to water-logging and flooding. Thus, the competitive capacity of beech might—depending on the other environmental conditions—be reduced under the expected future climate conditions. Silvicultural practices must be aware today of the potential risks which a changing climate may impose on sustainable forest development.


Regional climate model Forest management Drought Air temperature Waterlogging Elevated CO2 


  1. Backes K, Leuschner C (2000) Leaf water relations of competitive Fagus sylvatica and Quercus petraea trees during 4 years differing in soil drought. Can J For Res 30:335–346CrossRefGoogle Scholar
  2. Bauer GA, Persson H, Persson T, Mund M, Hein M, Kummetz E, Matteuch G, Von Oene H, Sacrascia-Mugnozza G, Schultze E-D (2000) Linking plant nutrition and ecosystem processes. In: Schultze E-D (ed) Carbon and nitrogen cycling in European forest ecosystems, Ecological Series 142. Springer-Verlag, Berlin, pp 63–98Google Scholar
  3. Bertani A, Reggiani R (1991) Anaerobic metabolism in rice roots. In: Jackson MB, Davies DD, Lambers H (eds) Plant life under oxygen deprivation. SPB Academic, The Hague, The Netherlands, pp 187–200Google Scholar
  4. Brazee RJ, Newman DH (1999) Observations on recent forest economic research on risk and uncertainty. J For Econ 5:193–200Google Scholar
  5. Brohan P, Kennedy JJ, Haris I, Tett SFB, Jones PD (2006) Uncertainty estimates in regional and global observed temperature changes: a new dataset from 1850. J Geophys Res 111:D12106, doi:10.1029/2005JD006548CrossRefGoogle Scholar
  6. Ceulemans R, Janssens IA, Jach ME (1999) Effects of CO2 enrichment on trees and forests: lessons to be learned in view of future ecosystem studies. Ann Bot 84:577–590CrossRefGoogle Scholar
  7. Christensen JH, Carter TR, Rummukainen M (2006) Evaluating the performance and utility of regional climate models: the PRUDENCE project. Clim Change, in pressGoogle Scholar
  8. Ciais P, Reichstein M, Viovy N, Granier A, Ogée J, Allard V, Aubinet M, Buchmann N, Bernhofer C, Carrara A, Chevallier F, De Noblet N, Friend D, Friedlingstein P, Grünwald T, Heinesch B, Keronen P, Knohl A, Krinner G, Loustau D, Manca G, Matteucci G, Miglietta F, Ourcival JM, Papale D, Pilegaard K, Rambal S, Seufert G, Soussana JF, Sanz MJ, Schulze ED, Vesala T, Valentini R (2005) Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437:529–533PubMedCrossRefGoogle Scholar
  9. Clark UP, Pisias NG, Stocker TF, Weaver AJ (2002) The role of the thermohaline circulation in abrupt climate change. Nature 415:863–869PubMedCrossRefGoogle Scholar
  10. Cochard H, Breda N, Granier A (1996) Whole tree hydraulic conductance and water loss regulation in Quercus during drought: evidence for stomatal control of embolism? Ann Sci For 53:197–206Google Scholar
  11. Cochard H, Coll L, Le Roux X, Ameglio T (2002) Unraveling the effects of plant hydraulics on stomatal closure during water stress in walnut. Plant Physiol 128:282–290PubMedCrossRefGoogle Scholar
  12. Colin-Belgrand M, Dreyer E, Biron P (1991) Sensitivity of seedlings from different oak species to waterlogging: effects on root growth and mineral nutrition. Ann Sci For 48:193–204Google Scholar
  13. Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IJ (2000) Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408:184–187PubMedCrossRefGoogle Scholar
  14. Dickson B, Yashayaev I, Meinecke J, Turrell B, Dye S, Holfort J (2002) Rapid freshening of the the deep Atlantic Ocean over the past four decades. Nature 416:832–837PubMedCrossRefGoogle Scholar
  15. Dittmar C, Zech W, Elling W (2003) Growth variations of Common beech (Fagus sylvatica L.) under different environmental conditions in Europe—a dendroecological study. For Ecol Manage 173:63–78CrossRefGoogle Scholar
  16. Dorn W, Dethloff K, Rinke A, Roeckner E (2003) Competition of NAO regime changes and increasing greenhouse gases and aerosols with respect to Artic climate projections. Clim Dyn 21:447–458CrossRefGoogle Scholar
  17. Drew MC (1991) Oxygen deficiency in the roots environment and plant mineral nutrition. In: Jackson MB, Davies DD, Lambers H (eds) Plant life under oxygen deprivation. SPB Academic, The Hague, The Netherlands, pp 303–316Google Scholar
  18. Dreyer E (1994) Compared sensitivity of seedlings from 3 woody species (Quercus robur L., Quercus rubra L. and Fagus sylvatica L.) to water-logging and associated root hypoxia: effects on water relations and photosynthesis. Ann Sci For 51:417–429Google Scholar
  19. Dyckmans J, Flessa H (2002) Influence of tree internal nitrogen reserves on the response of beech (Fagus sylvatica) trees to elevated atmospheric carbon dioxide concentration. Tree Physiol 22:41–49PubMedGoogle Scholar
  20. Ellenberg H (1996) Vegetation Mitteleuropas mit den Alpen, 5th edn. Ulmer, Stuttgart, Germany, p 1095Google Scholar
  21. European Environmental Agency (EEA) (2004) Impacts of Europe’s changing climate. EEA Report No. 2, Copenhagen ISBN 92–9167-692–6Google Scholar
  22. Forkel R, Knoche R (2006) Regional climate change and its impact on photooxidant concentrations in southern Germany: simulations with a coupled regional climate–chemistry model. J Geophys Res 111:D12302CrossRefGoogle Scholar
  23. Forstreuter M (2002) Auswirkungen globaler Klimaänderungen auf das Wachstum und den Gaswechsel (CO2/H2O) von Rotbuchenbeständen (Fagus sylvatica L.). Landesentwicklung und Umweltforschung—Schriftenreihe der Fakultät Architektur, Umwelt, Gesellschaft, Nr. 119. Technische Universität Berlin, Berlin, Germany, p 317Google Scholar
  24. Fotelli NM, Geßler A, Peuke AD, Rennenberg H (2001) Drought affects the competitive interaction between Fagus sylvatica seedlings and an early successional species, Rubus fruticosus: responses of growth, water status and δ13C composition. New Phytol 151:427–435CrossRefGoogle Scholar
  25. Fotelli NM, Rennenberg H, Geßler A (2002) Effects of drought on the competitive interference of an early successional species (Rubus fruticosus) on Fagus sylvatica L. seedlings: 15N uptake and partitioning, responses of amino acids and other N compounds. Plant Biol 4:311–320CrossRefGoogle Scholar
  26. Fotelli MN, Rennenberg H, Holst T, Mayer H, Geßler A (2003) Effects of climate and silviculture on the carbon isotope composition of understorey species in a beech (Fagus sylvatica L.) forest. New Phytol 159:229–244CrossRefGoogle Scholar
  27. Fotelli MN, Rienks M, Rennenberg H, Geßler A (2004). Climate and forest management affect 15N-uptake, N balance and biomass of European beech (Fagus sylvatica L.) seedlings. Trees 18:157–166Google Scholar
  28. Fotelli MN, Rudolph P, Rennenberg H, Geßler A (2005) Irradiance and temperature affect the competitive interference of blackberry on the physiology of European beech seedlings. New Phytol 165:453–462PubMedCrossRefGoogle Scholar
  29. Fredericksen TS, Zedaker SM, Seiler JR, Smith DW, Kreh RE (1991) Competition mechanisms between pines hardwoods and herbaceous vegetation in a field replacement series experiment. Bull Ecol Soc Am 72(2 Suppl):119Google Scholar
  30. Frei C, Schöll R, Fukutome S, Schmidli J, Vidale PL (2006) Future changes of precipitation extremes in Europe: intercomparison of scenarios from regional models. J Geophys Res 111:D06105CrossRefGoogle Scholar
  31. Geßler A, Schrempp S, Matzarakis A, Mayer H, Rennenberg H, Adams MA (2001) Radiation modifies the effect of water availability on the carbon isotope composition of beech (Fagus sylvatica L.). New Phytol 50:653–664CrossRefGoogle Scholar
  32. Geßler A, Keitel C, Nahm N, Rennenberg H (2004) Water shortage affects the water and nitrogen balance in Central European beech forests. Plant Biol 6:289–298PubMedCrossRefGoogle Scholar
  33. Gorzelak A (2000) Effect of flooding on the flora—the example of the flooding of the Oder in 1997. Beiträge zur Forstwirtschaft und Landschaftsökologie 34:8–11Google Scholar
  34. Granier A, Biron P, Lemoine D (2000) Water balance, transpiration and canopy conductance in two beech stands. Agric For Meteorol 100:291–308CrossRefGoogle Scholar
  35. Hacke U, Sauter JJ (1995) Vulnerability of xylem to embolism in relation to leaf water potential and stomatal conductance in Fagus sylvatica f. purpurea and Populus balsamifera. J Exp Bot 46:1177–1183Google Scholar
  36. Hansen J, Ruedy R, Sato M, Imhoff M, Lawrence W, Easterling D, Peterson T, Karl T (2001) A closer look at United States and global surface temperature change. J Geophys Res 106:23947CrossRefGoogle Scholar
  37. Hansen J, Ruedy R, Sato M, Lo K (2002) Global warming continues. Science 295:275PubMedCrossRefGoogle Scholar
  38. IEA (2005) World Energy Outlook 2005. International Energy Agency, OECD/IEA Publication, 2005, ISBN 92-64-1094-98-2005Google Scholar
  39. IPCC (1997) Stabilization of atmospheric greenhouse gases: physical, biological and socio-economic implications. IPCC technical paper III,
  40. IPCC (2001) Climate Change 2001: impacts, adaptation and vulnerability. In: McCarthy JJ, Canziani OF, Leary NA, Dokken DJ, White KS (eds) Contribution of Working Group II to the Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press, Cambridge, UKGoogle Scholar
  41. Jones PD, Moberg A (2003) Hemispheric and large-scale surface air temperature variations: an extensive revision and an update to 2001. J Clim 16:206–223CrossRefGoogle Scholar
  42. Keitel C (2003) Isotope signatures (d13C, d18O, d15N) as a measure of environmental effects on the physiology of trees in the northern and southern hemisphere. PhD thesis, University of Freiburg, GermanyGoogle Scholar
  43. Keitel C, Adams MA, Holst T, Matzarakis A, Mayer H, Rennenberg H, Geßler A (2003) Carbon and oxygen isotope composition of organic compounds in the phloem sap provides a short-time measure for stomatal conductance of European beech (Fagus sylvativa). Plant Cell Environ 26:1157–1168CrossRefGoogle Scholar
  44. Keitel C, Matzarakis A, Rennenberg H, Geßler A (2006) Carbon isotope composition and oxygen isotope enrichment in phloem and total leaf organic matter of European beech (Fagus sylvatica L.) along a climate gradient. Plant Cell Environ 29:1492–1507PubMedCrossRefGoogle Scholar
  45. Klein Tank AMG, Wijngaard JB, Können GP, Böhm R, Demarée G, Gocheva A, Mileta M, Pashiardis S, Hejkrlik L, Kern-Hansen C, Heino R, Bessemoulin P, Müller-Westermeier G, Tzanakou M, Szalai S, Pálsdóttir T, Fitzgerald D, Rubin S, Capaldo M, Maugeri M, Leitass A, Bukantis A, Aberfeld R, van Engelen AFV, Forland E, Mietus M, Coelho F, Mares C, Razuvaev V, Nieplova E, Cegnar T, Antonio López J, Dahlström B, Moberg A, Kirchhofer W, Ceylan A, Pachaliuk O, Alexander LV, Petrovic P (2002) Daily dataset of 20th-century surface air temperature and precipitation series for the European Climate Assessment. Int J Climatol 22:1441–1453CrossRefGoogle Scholar
  46. Knoche R, Forkel R (2004) Regionale Klimaänderung und ihr Einfluss auf UV-Strahlung und Photosmog. In: Rundgespräche der Kommission für Ökologie, Band 27, Erhöhte UV-Strahlung: Folgen und Maßnahmen, pp 39–46Google Scholar
  47. Kolb TE, Matyssek R (2001) Limitations and perspectives about scaling ozone impact in trees. Environ Pollut 115:373–393CrossRefGoogle Scholar
  48. Körner C (2003) Carbon limitation in trees. J Ecol 91:4–17CrossRefGoogle Scholar
  49. Körner C, Asshoff R, Bignucolo O, Hättenschwiler S, Keel SG, Peláez-Riedl S, Pepin S, Siegwolf RTW, Zotz G (2005) Carbon flux and growth in mature deciduous forest trees exposed to elevated CO2. Science 309:1360–1362PubMedCrossRefGoogle Scholar
  50. Köstler JN, Brückner E, Bibelriether H (1968) Die Wurzeln der Waldbäume. Parey, Hamburg, Germany, p 284Google Scholar
  51. Kozlowski TT (1984) Responses of woody plants to flooding. In: Kozlowski TT (ed) Flooding and plant growth. Academic, Orlando, FL, pp 129–163Google Scholar
  52. Kozovits AR, Matyssek R, Winkler JB, Göttlein A, Blaschke H, Grams TEE (2005a) Aboveground space sequestration determines competitive success in juvenile beech and spruce trees. New Phytol 167:181–196PubMedCrossRefGoogle Scholar
  53. Kozovits AR, Matyssek R, Blaschke H, Göttlein A, Grams TEE (2005b) Competition increasingly dominates the responsiveness of juvenile beech and spruce to elevated CO2 and/or O3 concentrations throughout two subsequent growing seasons. Global Change Biol 11:1387–1401CrossRefGoogle Scholar
  54. Kreuzwieser J, Fürniss S, Rennenberg H (2002) Impact of waterlogging on the N-metabolism of flood tolerant and non-tolerant tree species. Plant Cell Environ 25:1039–1049CrossRefGoogle Scholar
  55. Kundzewicz ZW, Radziejewski M, Pinskwar I (2006) Precipitation extremes in the changing climate of Europe. Clim Res 31:51–58Google Scholar
  56. Kunstmann H, Schneider K, Forkel R, Knoche R (2004) Impact analysis of climate change for an Alpine catchment using high resolution dynamic downscaling of ECHAM4 time slices. Hydrol Earth Syst Sci 8:1030–1044CrossRefGoogle Scholar
  57. Leuschner C (1998) Mechanismen der Konkurrenzüberlegenheit der Rotbuche. Berichte der Reinh.-Tüxen-Gesellschaft 10:5–18Google Scholar
  58. Leuschner C, Hertel D, Coners H, Büttner V (2001) Root competition between beech and oak: a hypothesis. Oecologia 126:276–284CrossRefGoogle Scholar
  59. Levy G, Becker M, Garreau B (1986) Comportement experimental de semis de chene pedoncule, chene sessile et hetre en presence dúne nappe déau dans le sol. Ann Sci For 43:131–146Google Scholar
  60. Lyr H (1993) Vergleichende Untersuchungen zu physiologischen Reaktionen auf Wurzel-anaerobiose bei Fagus sylvatica, Quercus robur und Tilia cordata. Beiträge zur Forstwirtschaft und Landschaftsökologie 27:18–23Google Scholar
  61. Mayer H, Holst T, Brugger U, Kirchgassner A (2005) Trends of the forest significant climate variables air temperature and precipitation in south-west Germany from 1950 to 2000. Allgemeine Forst und Jagdzeitung 176:45–56Google Scholar
  62. McCarthy JJ, Canziani OF, Leary NA, Dokken DJ, White KS (2001) Climate change 2001: impacts, adaptation and vulnerability. Contribution of Working Group II to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UKGoogle Scholar
  63. Medlyn BE, Badeck F-W, de Pury DGG, Barton CVM, Broadmeadow M, Ceulemans R, De Angelis P, Forstreuther M, Jach ME, Kellomäki S, Laitat E, Marek M, Philippot S, Rey A, Strassenmeyer J, Laitinen K, Liozon R, Portier B, Roberntz P, Wang K, Jarvis PG (1999) Effects of elevated [CO2] on photosynthesis in European forest species: a meta-analysis of model parameters. Plant Cell Environ 22:1475–1495CrossRefGoogle Scholar
  64. Medlyn BE, Rey A, Barton CVM, Forstreuther M (2001) Above-ground growth responses of forest trees to elevated atmospheric CO2 concentrations. In: Karnosky DF, Ceulemans R, Scarascia-Mugnozza GE, Innes JL (eds) The impact of carbon dioxide and other greenhouse gases on forest ecosystems. CAB International, Wallingsford, UK, pp 127–146Google Scholar
  65. Moosmayer H-U (2002) Langfristige regionale Waldbauplanung in Baden-Württemberg—Grundlagen und Ergebnisse. Landesforstverwaltung Baden-Württemberg, Stuttgart, GermanyGoogle Scholar
  66. Nahm M, Rennenberg H, Geßler A (2006) Soluble non-protein nitrogen compounds in various tissues of adult beech indicate nutritional changes mediated by local climate and silvicultural treatment. Eur J For Res 125:1–14Google Scholar
  67. New M, Hulme M, Jones PD (1999) Representing twentieth century space–time climate variability. Part I: development of a 1961–1990 mean monthly terrestrial climatology. J Clim 12:829–856CrossRefGoogle Scholar
  68. NOAA (National Oceans and Atmosphere Administration) (2001) Climate Monitoring and Diagnostics Laboratory (NOAA-CMDL): update the global trends in long-lived greenhouse gases. Boulder, COGoogle Scholar
  69. Parmesan C, Yohe GA (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42PubMedCrossRefGoogle Scholar
  70. Parry ML (ed) (2000) Assessment of potential effects and adaptations for climate change in Europe: The Europe ACACIA Project. Jackson Environment Institute, University of East Anglia, Norwich, UKGoogle Scholar
  71. Perry MA, Mitchell RJ, Zutter BR, Glover GR, Gjerstad DH (1994) Seasonal variation in competitive effect on water stress and pine responses. Can J For Res 24:1440–1449CrossRefGoogle Scholar
  72. Petit JR, Jouzel J, Raynaud D, Barkov NI, Barnola J-M, Basile I, Benders M, Chappellaz J, Davis M, Delayque G, Delmotte M, Kotlyakov VM, Legrand M, Lipenkov VY, Lorius C, Pépin L, Ritz C, Saltzman E, Stievenard M (1999) Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399:429–436CrossRefGoogle Scholar
  73. Peuke AD, Schraml C, Hartung W, Rennenberg H (2002) Identification of drought-sensitive beech ecotypes by physiological parameters. New Phytol 154:373–387CrossRefGoogle Scholar
  74. Picon-Cochard C, Nsourou-Obame A, Collet C, Guehl J-M, Ferhi A (2001) Competition for water between walnut seedlings (Juglans regia) and rye grass (Lolium perenne) assessed by carbon isotope discrimination and delta18O enrichment. Tree Physiol 21:183–191PubMedGoogle Scholar
  75. Reiter IM, Häberle K-H, Nunn AJ, Heerdt C, Reitmayer H, Grote R, Matyssek R (2005) Competitive strategies in adult beech and spruce: space-related foliar carbon investment versus carbon gain. Oecologia 146:337–349PubMedCrossRefGoogle Scholar
  76. Rennenberg H, Kreutzer K, Papen H, Weber P (1998) Consequences of high loads of nitrogen for spruce (Picea abies L.) and beech (Fagus sylvatica L.) forests. New Phytol 139:71–86CrossRefGoogle Scholar
  77. Rial JA, Pielke SRRA, Beniston M, Claussen M, Canadell J, Cox P, Held H, De Noblet-Ducoudré N, Prinn R, Reynolds JF, Salas JD (2004) Nonlinearities, feedbacks and critical thresholds within the earth’s climate system. Clim Change 65:11–38CrossRefGoogle Scholar
  78. Salisbury EJ (1926) The geographical distribution of plants in relation to climatic factors. Geogr J 67:312–335. Stable URL:
  79. Santos J, Corte-Real J (2006) Temperature extremes in Europe and wintertime large-scale atmospheric circulation: HadCM3 future scenarios. Clim Res 31:3–18Google Scholar
  80. Saxe H, Ellsworth DS, Heath J (1998) Tree and forest functioning in an enriched CO2 atmosphere. New Phytol 139:395–436CrossRefGoogle Scholar
  81. Scheffer M, Brovkin V, Cox PM (2006) Positive feedback between global warming and atmospheric CO2 concentration inferred from past climate change. Geophys Res Lett 33:L10702, doi:10.1029/2005GL025044Google Scholar
  82. Schmidt I, Kazda M (2001) Vertical distribution and radial growth of coarse roots in pure and mixed stands of Fagus sylvatica and Picea abies. Can J For Res 31:539–548CrossRefGoogle Scholar
  83. Schmidt S, Stewart GR (1998) Transport, storage and mobilisation of nitrogen by trees and shrubs in wet/dry tropics of Northern Australia. Tree Physiol 18:403–410PubMedGoogle Scholar
  84. Schmull M, Thomas FM (2000) Morphological and physiological reactions of young deciduous trees (Quercus robur L., Q. petraea [Matt.] Liebl., Fagus sylvatica L.) to waterlogging. Plant Soil 225:227–242CrossRefGoogle Scholar
  85. Schraml U, Volz K-R (2004) Conversion of coniferous forests in social and political perspectives. Findings from selected countries with special respect to Germany. In: Spiecker H, Hansen J, Klimo E, Skovsgaard JP, Sterba H, v. Teuffel K (eds) The question of conversion of pure secondary Norway spruce forests on sites naturally dominated by broadleaves for sustainable fulfilment of society’s needs. EFI Research Report. S. Brill, Leiden, The Netherlands, pp 97–119Google Scholar
  86. Schulze E-D, Hall AE (1982) Stomatal responses, water loss and CO2 assimilation rates of plants in contrasting environments. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Physiological plant ecology II water relations and carbon assimilation. Springer-Verlag, Berlin, Germany, pp 181–230Google Scholar
  87. Spiecker H, Kahle H-P, Hauser S (2001) Klima und Witterung als Einflussfaktoren auf das Baumwachstum in Laubwäldern: Retrospektive Analysen und Monitoring. In: Buchendominierte Laubwälder unter dem Einfluss von Klima und Bewirtschaftung: Ökologische, waldbauliche und sozialwissenschaftliche Analysen. Abschlussbericht des SFB 433. Universität Freiburg, Freiburg, Germany, pp 307–334Google Scholar
  88. Spinnler D, Egli P, Körner C (2002) Four-year growth dynamics of beech-spruce model ecosystems under CO2 enrichment on two different forest soils. Trees 16:423–436CrossRefGoogle Scholar
  89. Studer S, Appenzeller C, Defila C (2005) Inter-annual variability and decadal trends in alpine spring phenology: a multivariate analysis approach. Clim Change 73:295–414CrossRefGoogle Scholar
  90. SV-GUA (Sachverständigenkreis “Globale Umweltaspekte”) (2003) Herausforderung Klimawandel—Bestandsaufnahme und Perspektiven der Klimaforschung. BMBF, Bonn, Germany, 60 p.
  91. Tarp P, Helles F, Holten-Andersen P, Larsen JB, Strange N (2000) Modelling near-natural silvicultural regimes for beech—an economic sensitivity analysis. For Ecol Manage 130:187–198CrossRefGoogle Scholar
  92. Thejll P, Lassen K (2000) Solar forcing of the Northern hemisphere land air temperature: new data. J Atmos SolarTerrestrial Phys 62:1207–1213CrossRefGoogle Scholar
  93. Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, Erasmus BFN, de Squeira MF, Grainiger A, Hannah L, Hughes L, Huntley B, van Jaarsfeld AS, Midgley GF, Miles L, Ortega-Huerta MA, Peterson AT, Phillips OL, Williams SE (2004) Extinction risk from climate change. Nature 427:145–148PubMedCrossRefGoogle Scholar
  94. Vartapetian BB, Jackson MB (1997) Plant adaptations to anaerobic stress. Ann Bot 79:3–20CrossRefGoogle Scholar
  95. Von Storch H, Zorita E, Jones J, Dimitriev Y, González-Rouco F, Tett S (2004) Reconstructing past climate from noisy data. Science 306:679–682PubMedCrossRefGoogle Scholar
  96. Wargo PM, Houston DR (1974) Infection of defoliated sugar maple trees by Armillaria mellea. Phytopathology 64:817–822CrossRefGoogle Scholar
  97. Woods PV, Nambiar EKS, Smethurst PJ (1990) Effect of annual weeds on water and nitrogen availability of Pinus radiata trees in a young plantation. For Ecol Manage 48:145–163CrossRefGoogle Scholar
  98. Yang FL, Kumar A, Schlesinger ME, Wang WQ (2003) Intensity of hydrological cycles in warmer climates. J Clim 16:2419–2423CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Arthur Geßler
    • 1
    • 4
    • 5
    Email author
  • Claudia Keitel
    • 1
    • 4
  • Jürgen Kreuzwieser
    • 1
  • Rainer Matyssek
    • 2
  • Wolfgang Seiler
    • 3
  • Heinz Rennenberg
    • 1
  1. 1.Institute of Forest Botany and Tree PhysiologyUniversity of FreiburgFreiburgGermany
  2. 2.Department of EcologyTechnical University of MunichFreisingGermany
  3. 3.Institute for Meteorology and Climate Research (IMK-IFU)Forschungszentrum Karlsruhe GmbHGarmisch-PartenkirchenGermany
  4. 4.Environmental Biology GroupResearch School of Biological Sciences, Australian National UniversityCanberraAustralia
  5. 5.Centre for Biosystem Analysis, Core Facility MetabolomicsUniversity of FreiburgFreiburgGermany

Personalised recommendations