, Volume 21, Issue 2, pp 141–150 | Cite as

Uniform growth trends among central Asian low- and high-elevation juniper tree sites

  • Jan EsperEmail author
  • David C. Frank
  • Robert J. S. Wilson
  • Ulf Büntgen
  • Kerstin Treydte
Original Article


We present an analysis of 28 juniper tree-ring sites sampled over the last decades by several research teams in the Tien Shan and Karakorum mountains of western central Asia. Ring-width chronologies were developed on a site-by-site basis, using a detrending technique designed to retain low-frequency climate variations. Site chronologies were grouped according to their distance from the upper timberline in the Tien Shan (∼3,400 m a.s.l.) and Karakorum (∼4,000 m), and low- and high-elevation composite chronologies combining data from both mountain systems developed. Comparison of these elevational subsets revealed significant coherence (r = 0.72) over the 1438–1995 common period, which is inconsistent with the concept of differing environmental signals captured in tree-ring data along elevational gradients. It is hypothesized that the uniform growth behavior in central Asian juniper trees has been forced by solar radiation variations controlled via cloud cover changes, but verification of this assumption requires further fieldwork. The high-elevation composite chronology was further compared with existing temperature reconstructions from the Karakorum and Tien Shan, and long-term trend differences discussed. We concluded that the extent of warmth during medieval times cannot be precisely estimated based on ring-width data currently available.


Tree-rings Growth variations Timberline Karakorum Tien Shan 



Supported by the Swiss National Science Foundation, NCCR Climate, and Grant 2100-066628.


  1. Bräuning A (1994) Dendrochronology for the last 1400 years in eastern Tibet. GeoJournal 34:75–95CrossRefGoogle Scholar
  2. Bräuning A, Mantwill B (2004) Summer temperature and summer monsoon history on the Tibetan plateau during the last 400 years recorded by tree rings. Geophys Res Lett 32. DOI 10.1029/2004GL020793Google Scholar
  3. Briffa KR (2000) Annual climate variability in the Holocene: interpreting the message from ancient trees. Quat Sci Rev 19:87–105CrossRefGoogle Scholar
  4. Briffa KR, Jones PD, Bartholin TS, Eckstein D, Schweingruber FH, Karlén W, Zetterberg P, Eronen M (1992) Fennoscandian summers from ad 500: temperature changes on short and long timescales. Clim Dyn 7:111–119CrossRefGoogle Scholar
  5. Briffa KR, Jones PD, Schweingruber FH, Shiyatov S, Cook ER (1995) Unusual twentieth-century summer warmth in a 1,000-year temperature record from Siberia. Nature 376:156–159CrossRefGoogle Scholar
  6. Briffa KR, Jones PD, Schweingruber FH, Karlén W, Shiyatov S (1996) Tree-ring variables as proxy-climate indicators: problems with low-frequency signals. In: Jones PD, Bradley RS, Jouzel J (eds) Climatic variations and forcing mechanisms of the last 2000 years. Springer, Berlin Heidelberg New York, pp 9–41Google Scholar
  7. Buckley BM, Cook ER, Peterson MJ, Barbetti M (1997) A changing temperature response with elevation for Lagarostrobos Franklinii in Tasmania, Australia. Clim Change 36:477–498CrossRefGoogle Scholar
  8. Büntgen U, Esper J, Frank DC, Nicolussi K, Schmidhalter M (2005) A 1052-year alpine tree-ring proxy for Alpine summer temperatures. Clim Dyn 25:141–153CrossRefGoogle Scholar
  9. Büntgen U, Frank DC, Nievergelt D, Esper J (2006) Summer temperature variations in the European Alps, ad 755–2004. J Clim 19:5606–5623Google Scholar
  10. Cook ER, Kairiukstis LA (1990) Methods of dendrochronology: applications in environmental science. Kluwer, DordrechtGoogle Scholar
  11. Cook ER, Briffa KR, Meko DM, Graybill DA, Funkhouser G (1995) The ‘segment length curse’ in long tree-ring chronology development for palaeoclimatic studies. Holocene 5:229–237Google Scholar
  12. Cook ER, Peters K (1997) Calculating unbiased tree-ring indices for the study of climatic and environmental change. Holocene 7:361–370Google Scholar
  13. Cook ER, Buckley BM, D’Arrigo RD, Peterson MJ (2000) Warm-season temperatures since 1600 BC reconstructed from Tasmanian tree-rings and their relationship to large-scale sea surface temperature anomalies. Clim Dyn 16:79–91CrossRefGoogle Scholar
  14. Cook ER, Krusic PJ, Jones PD (2003) Dendroclimatic signals in long tree-ring chronologies from the Himalayas of Nepal. Int J Clim 23:707–732CrossRefGoogle Scholar
  15. Cramer T (1994) Klimaökologische Studien im Bagrottal (Nordwest Karakorum, Pakistan). Ph.D. thesis, University Bonn, p 231Google Scholar
  16. D’Arrigo R, Jacoby G, Frank D, Pederson N, Cook E, Buckley B, Nachin B, Mijiddorj R, Dugarjav C (2001) 1738 years of Mongolian temperature variability inferred from a tree-ring width chronology of Siberian pine. Geophys Res Let 28:543–546CrossRefGoogle Scholar
  17. D’Arrigo R, Wilson R, Jacoby G (2006) On the long-term context for late twentieth century warming. J Geophys Res 111. DOI 10.1029/2005JD006352Google Scholar
  18. Davi NK, Jacoby GC, Curtis AE, Baatarbileg N (2006) Extension of drought records for central Asia using tree rings: West-Central Mongolia. J Clim 19:288–299CrossRefGoogle Scholar
  19. Esper J, Bosshard A, Schweingruber FH, Winiger M (1995) Tree-rings from the upper timberline in the Karakorum as climatic indicators for the last 1000 years. Dendrochronologia 13:79–88Google Scholar
  20. Esper J (2000a) Long term tree-ring variations in junipers at the upper timberline in the Karakorum (Pakistan). Holocene 10:253–260CrossRefGoogle Scholar
  21. Esper J (2000b) Paläoklimatische Untersuchungen an Jahrringen im Karakorum und Tien Shan Gebirge (Zentralasien). Bonner Geographische Abhandlungen 103:137Google Scholar
  22. Esper J, Cook ER, Schweingruber FH (2002a) Low-frequency signals in long tree-ring chronologies and the reconstruction of past temperature variability. Science 295:2250–2253PubMedCrossRefGoogle Scholar
  23. Esper J, Schweingruber FH, Winiger M (2002b) 1,300 years of climate history for Western Central Asia inferred from tree-rings. Holocene 12:267–277CrossRefGoogle Scholar
  24. Esper J, Treydte K, Gärtner H, Neuwirth B (2002c) A tree-ring reconstruction of climatic extreme years since ad 1427 for Western Central Asia. Palaeobot 50:141–152Google Scholar
  25. Esper J, Shiyatov SG, Mazepa VS, Wilson RJS, Graybill DA, Funkhouser G (2003a) Temperature-sensitive Tien Shan tree-ring chronologies show multi-centennial growth trends. Clim Dyn 8:699–706CrossRefGoogle Scholar
  26. Esper J, Cook ER, Krusic PJ, Peters K, Schweingruber FH (2003b) Tests of the RCS method for preserving low-frequency variability in long tree-ring chronologies. Tree-Ring Res 59:81–98Google Scholar
  27. Esper J, Frank DC, Wilson RJS (2004) Climate reconstructions—low frequency ambition and high frequency ratification. EOS 85:113–120Google Scholar
  28. Esper J, Frank DC, Wilson RJS, Briffa KR (2005a) Effect of scaling and regression on reconstructed temperature amplitude for the past millennium. Geophys Res Lett 32. DOI 10.1029/2004GL021236Google Scholar
  29. Esper J, Wilson RJS, Frank DC, Moberg A, Wanner H, Luterbacher J (2005b) Climate: past ranges and future changes. Quat Sci Rev 24:2164–2166CrossRefGoogle Scholar
  30. Fritts HC (1976) Tree-rings and climate. Academic, LondonGoogle Scholar
  31. Fritts HC, Smith DG, Cardis JW, Budelsky CA (1965) Tree-ring characteristics along a vegetation gradient in northern Arizona. Ecology 46:393–401CrossRefGoogle Scholar
  32. Graybill DA, Shiyatov SG, Burmistrov VF (1992) Recent dendrochronological investigations in Kirghizia, USSR. Lundqua Rep 34:123–127Google Scholar
  33. Ives JD, Messerli B (1989) The Himalayan dilemma: reconciling development and conservation. Routledge, LondonGoogle Scholar
  34. Jones PD, Briffa KR, Barnett TP, Tett SFB (1998) High-resolution palaeoclimatic records for the past millennium: interpretation, integration and comparison with general circulation model control-run temperatures. Holocene 8:455–471CrossRefGoogle Scholar
  35. Kienast F, Schweingruber FH, Bräker OU, Schär E (1987) Tree-ring studies on conifers along ecological gradients and the potential of single-year analyses. Can J Forest Res 17:683–696Google Scholar
  36. La Marche VC (1974) Paleoclimatic inferences from long tree-ring records. Science 183:1043–1048CrossRefGoogle Scholar
  37. Luckman BH, Wilson RJS (2005) Summer temperatures in the Canadian Rockies during the last millennium: a revised record. Clim Dyn 24:131–144CrossRefGoogle Scholar
  38. Mann ME, Bradley RS, Hughes MK (1999) Northern Hemisphere temperatures during the past millennium: inferences, uncertainties, and limitations. Geophys Res Lett 26:759–762CrossRefGoogle Scholar
  39. Melvin TM (2004) Historical growth rates and changing climatic sensitivity of boreal conifers. Ph.D. thesis, Climatic Research Unit, p 171Google Scholar
  40. Naurzbaev MM, Vaganov EA, Sidorova OV, Schweingruber FH (2002) Summer temperatures in eastern Taimyr inferred from a 2427-year late-Holocene tree-ring chronology and earlier floating series. Holocene 12:727–736CrossRefGoogle Scholar
  41. Nemani RR, Keeling CD, Hashimoto H, Jolly WM, Piper SC, Tucker CJ, Myneni RB, Running SW (2003) Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 300:1560–1563PubMedCrossRefGoogle Scholar
  42. Schweingruber FH (1996) Tree-rings and environment—dendroecology. Haupt, Bern, p 609Google Scholar
  43. Thompson LG, Mosley-Thompson E, Davis ME, Bolzan JF, Dai J, Yao T, Gudestrup N (1989) Holocene-late Pleistocene climatic ice core records from Quinghai–Tibetan Plateau. Science 246:474–477CrossRefGoogle Scholar
  44. Treydte K (2003) Dendro-Isotope und Jahrringbreiten als Klimaproxis der letzten 1200 Jahre im Karakorumgebirge/Pakistan. Schriften des Forschungszentrums Jülich Umwelt/Environment 38, p 190Google Scholar
  45. Treydte K, Schleser GH, Helle G, Winiger M, Frank DC, Haug GH, Esper J (2006) Millennium-long precipitation record from tree-ring oxygen isotopes in northern Pakistan. Nature 440:1179–1182PubMedCrossRefGoogle Scholar
  46. Troll C (1942) Büsserschnee in den Hochgebirgen der Erde: Ein Beitrag zur Geographie der Schneedecke und ihrer Ablationsformen. PGM Ergänzungsheft 240, p 103Google Scholar
  47. Wang RS, Wang SW (1989) Reconstruction of winter temperature in China for the last 500 years. Acta Meteorol Sinica 3:279–289Google Scholar
  48. Weiers S (1998) Wechselwirkungen zwischen sommerlicher Monsunaktivität und außertropischer Westzirkulation in den Hochgebirgsregionen Nordpakistans. PGM 142:85–104Google Scholar
  49. Weischet W, Endlicher W (2000) Regionale Klimatologie. Teil 2: Die Alte Welt. Teubner, LeipzigGoogle Scholar
  50. Wilson RJS, Hopfmueller M (2001) Dendrochronological investigations of Norway spruce along an elevational transect in the Bavarian Forest, Germany. Dendrochronologia 19:67–79Google Scholar
  51. Winiger M, Gumpert M, Yamout H (2005) Karakorum–Hindukush–western Himalaya: assessing high-altitude water resources. Hydrol Process 19:2329–2338CrossRefGoogle Scholar
  52. Yang B, Bräuning A, Johnson KR, Yafeng S (2002) General characteristics of temperature variation in China during the last two millennia. Geophys Res Lett 29:381–384Google Scholar
  53. Zhang DE (1994) Evidence for the existence of the medieval warm period in China. Clim Change 3:289–297CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Jan Esper
    • 1
    Email author
  • David C. Frank
    • 1
  • Robert J. S. Wilson
    • 2
  • Ulf Büntgen
    • 1
  • Kerstin Treydte
    • 1
  1. 1.Swiss Federal Research Institute WSLBirmensdorfSwitzerland
  2. 2.School of GeoSciencesGrant Institute, Edinburgh UniversityEdinburghUK

Personalised recommendations