, Volume 20, Issue 6, pp 669–678 | Cite as

Effect of abscisic acid on galactomannan degradation and endo-β-mannanase activity in seeds of Sesbania virgata (Cav.) Pers. (Leguminosae)

  • P. P. Tonini
  • C. G. S. Lisboa
  • L. Freschi
  • H. Mercier
  • S. C. Mazzoni-Viveiros
  • M. S. BuckeridgeEmail author
Original Article


Seeds of Sesbania virgata (Cav.) Pers. (Leguminosae) have an endosperm which accumulates galactomannan as a storage polysaccharide in the cell walls. After germination, it is hydrolysed by three enzymes: α-galactosidase (EC, endo-β-mannanase (EC and β-mannosidase (EC This work aimed at studying the effect of abscisic acid (ABA) on galactomannan degradation during and after germination. Seeds were imbibed in water or in 10−4 M ABA, and used to evaluate the effect of exogenous and endogenous ABA. Tissue printing was used to follow biochemical events by detecting and localising endo-β-mannanase in different tissues of the seed. The presence of exogenous ABA provoked a delay in the cellular disassembly of the endosperm and disappearance of endo-β-mannanase in the tissue. This led to a delay in galactomannan degradation. The testa (seed coat) of S. virgata contains endogenous ABA, which decreases ca. fourfold during storage mobilisation after germination, permitting the galactomannan degradation in the endosperm. Furthermore, endo-β-mannanase was immunolocalised in the testa, which has a living cell layer. The ABA appears to modulate storage mobilisation in the legume seed of S. virgata, and a cause–effect relationship between ABA (probably through testa) and activities of hydrolases is proposed.


Sesbania virgata ABA Testa Galactomannan degradation Endo-β-mannanase 



Authors wish to acknowledge financial support by FAPESP (BIOTA – 98/05124-8). PPT and LF were also granted with fellowships from CAPES and FAPESP, respectively. MSB acknowledges a personal grant from CNPq. We thank Professor Dr. Jarbas Giorgini for the kind gift of anti-endo-β-mannanase antibody and Rosemary Frederico Oliveira for the help with anatomy work.


  1. Beltrati CM, Paoli AAS (1989) Morfologia, anatomia e desenvolvimento das sementes e plântulas de Bauhinia forticata Link. (Leguminosae-Caesalpinioideae). Rev Bras Biol 49:583–590Google Scholar
  2. Bewley JD, Black M (1994) Seeds: physiology of development and germination, 2nd edn. Plenum Press, New YorkGoogle Scholar
  3. Buckeridge MS, Reid JSG (1994) Purification and properties of a novel β-galactosidase or exo-(1→4)-β-galactanase galactanase from the cotyledons of germinated Lupinus angustifolius L. seeds. Planta 192:502–511PubMedCrossRefGoogle Scholar
  4. Buckeridge MS, Dietrich SMC (1996) Mobilisation of the raffinose family oligosaccharides and galactomannan in germinating seeds of Sesbania marginata Benth (Leguminosae-Faboideae). Plant Sci 117:33–43CrossRefGoogle Scholar
  5. Buckeridge MS, Dietrich SMC, Lima DU (2000a) Galactomannans as the reserve carbohydrate in legume seeds. In: Gupta AK, Kaur N (eds) Carbohydrate reserves in plants—synthesis and regulation. Elsevier Science, Paris, pp 283–317Google Scholar
  6. Buckeridge MS, Santos HP, Tiné MAS (2000b) Mobilisation of storage cell wall polysaccharides in seeds. Plant Physiol Biochem 38:141–156CrossRefGoogle Scholar
  7. Buckeridge MS, Tiné MAS, Santos HP, Lima DU (2000c) Polissacarídeos de reserva de parede celular em sementes. Estrutura, metabolismo, funções e aspectos ecológicos. 137–162Google Scholar
  8. Cheng W-H, Endo A, Zhou L, Penney J, Chen H-C, Arroyo A, León P, Nambara E, Asami T, Mitsunori S, Koshiba T, Sheen J (2002) A unique short-chain dehydrogenase/reductase in Arabidopsis abscisic acid biosynthesis and glucose signaling. Plant Cell 14:2723–2743PubMedCrossRefGoogle Scholar
  9. Dea ICM, Morrison A (1975) Chemistry and interactions of seed galactomannan. Adv Carbohydr Chem Biochem 31:241–312Google Scholar
  10. Debeaujon I, Koornneef M (2000) Gibberellin requirement for arabidopsis seed germination is determined both by testa characteristics and embryonic abscisic acid. Plant Physiol 122:415–424PubMedCrossRefGoogle Scholar
  11. Delouche JC, Still TW, Rasppert M, Lienhard M (1962) The tetrazolium test seed viability. Miss Agric For Exp Stn Tech Bull 51:1–63Google Scholar
  12. Dirk LMA, Griffen AM, Downie B, Bewley JD (1995) Multiple isozymes of endo-β-d-mannanase in dry and imbibed seeds. Phytochemistry 40:1045–1056CrossRefGoogle Scholar
  13. Dop P, Gautié A (1928) Manuél de technique botanique. J Lamarre, ParisGoogle Scholar
  14. Dulson J, Bewley JD, Johnson RH (1988) Abscisic acid is an endogenous inhibitor in the regulation of mannanase production by isolated lettuce endosperms. Plant Physiol 87:660–665PubMedGoogle Scholar
  15. Feurtado JA, Ambrose SJ, Cutler AJ, Ross ARS, Abrams SR, Kermode AR (2004) Dormancy termination of western white pine (Pinus monticola Dougl. Ex D. Don) seeds is associated with changes in abscisic acid metabolism. Planta 218:630–639PubMedCrossRefGoogle Scholar
  16. Freund H (1970) Handbuch der mikroskopie in der tecknik, B and V, Tell 1. FrankfurtGoogle Scholar
  17. Frey A, Godin B, Bonnet M, Sotta B, Marion-Poll A (2004) Maternal synthesis of abscisic acid controls seed development and yield in Nicotiana plumbaginifolia. Planta 218:958–964PubMedCrossRefGoogle Scholar
  18. Giorgini JF, Comoli E (1996) Effect of embryo and exogenous GA3 on endospermic endo-β-mannanase activity of Coffea arabica L. during germination and early seedling growth. Rev Bras Fisiol Vegetal 8:43–49Google Scholar
  19. Groot SPC, Karssen CM (1987) Gibberellins regulate seed-germination in tomato by endosperm weakening—a study with gibberellin-deficient mutants. Planta 171:525–531CrossRefGoogle Scholar
  20. Guzmán JM, Hernandez GL (1982) Anatomía de la semilla y germinación de Turbina corumbosa (L.) Raf., Convolvulaceae. Phyton 42:1–8Google Scholar
  21. Halmer P, Bewley JD (1979) Mannanase production by the lettuce endosperm: control by the embryo. Planta 144:333–340CrossRefGoogle Scholar
  22. Hara M, Eto H, Kuboi T (2001) Tissue printing for myrosinase activity in roots of turnip and japanese radish and horseradish: a technique for localizing myrosinases. Plant Sci 160:425–431PubMedCrossRefGoogle Scholar
  23. Haupt AW (1930) A gelatin fixative for paraffin sections. Stain Technol 5:97–98Google Scholar
  24. Hilhorst HWM, Downie B (1996) Primary dormency in tomato (Lycopersicon escutelum) studies with the sitiens mutant. J Exp Bot 47:89–97Google Scholar
  25. Kontos F, Spyropoulos CG (1996) Seed coat inhibits the production of α-galactosidase and endo-β-mannanase in the endosperm of developing carob seeds. Plant Physiol Biochem 34:787–793Google Scholar
  26. Le Page-Degivry MT, Garello G (1992) In situ abscisic acid synthesis: a requirement for induction of embryo dormancy in Helianthus annuus. Plant Physiol 98:1386–1390PubMedCrossRefGoogle Scholar
  27. León P, Sheen J (2003) Sugar and hormone connections. Trends Plant Sci 8:110–116PubMedCrossRefGoogle Scholar
  28. Lersten WR, Curtis JD (1988) Secretory reservois (ducts) of two kinds in giant ragweed (Ambrosia trifida – Asteraceae). Am J Bot 75:1313–1323CrossRefGoogle Scholar
  29. Leviatov S, Shoseyov O, Wolf S (1995) Involvement of endo mannanase in the control of tomato seed germination under low temperature conditions. Ann Bot 76:1–6CrossRefGoogle Scholar
  30. Lisboa CGS, Tonini PP, Tiné MAS, Buckeridge MS (2006) Endo-beta-mannanase from the endosperm of seeds of Sesbania virgata (Cav.) Pers. (Leguminosae): purification, characterisation and its dual role in germination and early seedling growth. Braz J Plant Physiol 18Google Scholar
  31. Marraccini P, Rogers WJ, Allard C, André M-L, Caillet V, Lacoste N, Lausanne F, Michaux S (2001) Molecular and biochemical characterization of endo-β-mannanases from germination coffee (Coffea arabica) grains. Planta 213:296–308PubMedCrossRefGoogle Scholar
  32. Mayer AM, Poljakoff-Mayber A (1975) The germination of seeds, 2nd edn. Pergamon Press, OxfordGoogle Scholar
  33. McCleary BV (1983) Enzymic interaction in the hydrolysis of galactomannan in germinating guar: the role of exo-β-mannanase. Phytochem22:649–658CrossRefGoogle Scholar
  34. McCleary BV, Matheson NK (1976) Galactomannan utilization in germinating legume seeds. Phytochem 15:43–47CrossRefGoogle Scholar
  35. Nambara E, Marion-Poll A (2003) ABA action and interactions in seeds. Trends Plant Sci 8:213–217PubMedCrossRefGoogle Scholar
  36. Nomaguchi M, Nonogaki H, Yukio M (1995) Development of galactomannan-hydrolyzing in the micropilar endosperm tip of tomato seed prior germination. Physiol Plant 94:105–109CrossRefGoogle Scholar
  37. Nonogaki H, Morohashi Y (1996) An endo-β-mannanase develops exclusively in the micropylar endosperm of tomato seeds prior to radicle emergence. Plant Physiol 110:555–559PubMedGoogle Scholar
  38. Nonogaki H, Morohashi Y (1999) Temporal and spatial pattern of the development of endo-β-mannanase activity in germinating and germinated lettuce seeds. J Exp Bot 50:1307–1313CrossRefGoogle Scholar
  39. Nonogaki H, Nomaguchi M, Morohashi Y, Matsushima H (1998) Development and localization of endo-β-mannanase in the embryo of germinating and germinated tomato seeds. J Exp Bot 49:1501–1507CrossRefGoogle Scholar
  40. Nonogaki H, Gee OH, Bradford KJ (2000) A germination-specific endo-β-mannanase gene is expressed in the micropylar endosperm cap of tomato seeds. Plant Physiol 123:1235–1245PubMedCrossRefGoogle Scholar
  41. Peres LEP, Mercier H, Kerbauy GB, Zaffari GR (1997) Níveis endógenos de AIA, citocininas e ABA em uma orquídea acaule e uma bromélia sem raiz, determinados por HPLC e ELISA. Rev Bras Fisiol Vegetal 9:169–176Google Scholar
  42. Potomati A, Buckeridge MS (2002) Effect of abscisic acid on the mobilisation of galactomannan and embryo development of Sesbania virgata (Cav.) Pers. (Leguminosae-Faboideae). Rev Bras Bot 25:303–310CrossRefGoogle Scholar
  43. Reid JSG (1971) Reserve carbohydrate metabolism in germinating seeds of Trigonella foenum-graecum L. (Leguminosae). Planta 100:131–142CrossRefGoogle Scholar
  44. Reid JSG (1985) Structure and function in legume-seed polysaccharides. In: Brett C, Hilman JR (eds) Biochemistry of plant cell walls. Cambridge University Press, Cambridge, pp 259–268Google Scholar
  45. Reid JSG, Bewley JD (1979) A dual role for the endosperm and its galactomannan reserve in the germinative physiology of fenugreek (Trigonella foenum-graecum L.): an endospermic leguminous seed. Planta 147:145–150CrossRefGoogle Scholar
  46. Reid JSG, Meier H (1972) The function of the aleurone layer during galactomannan mobilisation in germination seeds of fenugreek (Trigonella foenum-graecum L.), crimson clover (Trifolium incarnatum L.) and lucerne (Medicago sativa L.): a correlative biochemical and ultrastructural study. Planta 106:44–60CrossRefGoogle Scholar
  47. Reid JSG, Meier H (1973) Enzymic activities and galactomannan mobilisation in germination seeds of fenugreek (Trigonella foenum-graecum L. Leguminosae). Secretion of α-galactosidases and β-mannosidase by aleurone layer. Planta 112:301–308CrossRefGoogle Scholar
  48. Richter HG (1981) Wood and bark anatomy of Lauraceae. I. Aniba Aublet. Iawa Bull n.s. 2:79–87Google Scholar
  49. Santos HP, Purgatto E, Mercier H, Buckeridge MS (2004) The control of storage xyloglucan mobilization in cotyledons of Hymenaea courbaril. Plant Physiol 135:287–299PubMedCrossRefGoogle Scholar
  50. Seiler A (1977) Glaktomannanabbau in keimenden Johanisbrotsamen (Ceratonia siliqua L.). Planta 134:209–221CrossRefGoogle Scholar
  51. Tonini PP, Lisboa CGS, Silva CO, Mazzoni-Viveiros SC, Buckeridge MS (2006) Testa is involved in the control of storage mobilisation in seeds of Sesbania virgata (Cav.) Pers., a tropical legume tree from of the Atlantic Forest. Trees: Struct Funct (in press)Google Scholar
  52. Tookey HL, Lohmar RL, Wolff IA (1962) New sources of seed mucilages. J Agric Food Chem 10:131–133CrossRefGoogle Scholar
  53. Toorop PE, Bewley JD, Hilhorst HWM (1996) Endo-β-mannanase isoforms are present in the endosperm and embryo of tomato seeds, but are not essentially linked to the completion of germination. Planta 200:153–158CrossRefGoogle Scholar
  54. Toorop PE, Bewley JD, Abrams SR, Hilhorst HWM (1999) Structure–activity studies with ABA analogs on germination and endo-β-mannanase activity in tomato and lettuce seeds. J Plant Physiol 154:679–685Google Scholar
  55. Toorop PE, Van AAC, Hilhorst HWM (2000) The second step of the biphasic endosperm cap weakening that mediates tomato (Lycopersicon esculentum) seed germination is under control of ABA. J Exp Bot 51:1371–1379PubMedCrossRefGoogle Scholar
  56. Van Staden J, Manning JC, Dickens CWS (1987) A phylogenetic analysis of the role of plant hormones in the development and germination of legume seeds. In: Stirton CH (ed) Advances in legume systematics, Part 3. Royal Botanic Gardens, Kew, pp 387–432Google Scholar
  57. Voigt B, Bewley JD (1996) Developing tomato seeds when removed from the fruit produce multiple forms of germinative and post-germinative endo-β-mannanase: responses to desiccation, abscisic acid and osmoticum. Planta 200:71–77CrossRefGoogle Scholar
  58. Wang M, Heimovaara-Dijkstra S, Van Duijn B (1995) Modulation of germination of embryos isolated from dormant and nondormant barley grains by manipulation of endogenous abscisic acid. Planta 195:586–592CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • P. P. Tonini
    • 1
  • C. G. S. Lisboa
    • 1
  • L. Freschi
    • 1
  • H. Mercier
    • 1
  • S. C. Mazzoni-Viveiros
    • 2
  • M. S. Buckeridge
    • 1
    Email author
  1. 1.Departamento de BotânicaInstituto de Biociências, Universidade de São PauloSão PauloBrazil
  2. 2.Seção de Morfologia e Anatomia de PlantasInstituto de BotânicaSão PauloBrazil

Personalised recommendations