Advertisement

Trees

, 20:334 | Cite as

Plant morphology and root hydraulics are altered by nutrient deficiency in Pistacia lentiscus (L.)

  • Roman TrubatEmail author
  • Jordi Cortina
  • Alberto Vilagrosa
Original Article

Abstract

The plants in arid and semiarid areas are often limited by water and nutrients. Morpho-functional adjustments to improve nutrient capture may have important implications on plant water balance, and on plant capacity to withstand drought. Several studies have shown that N and P deficiencies may decrease plant hydraulic conductance. Surprisingly, studies on the implications of nutrient limitations on water use in xerophytes are scarce. We have evaluated the effects of strong reductions in nitrogen and phosphorus availability on morphological traits and hydraulic conductance in seedlings of a common Mediterranean shrub, Pistacia lentiscus L.. Nitrogen deficiency resulted in a decrease in aboveground biomass accumulation, but it did not affect belowground biomass accumulation or root morphology. Phosphorus-deficient plants showed a decrease in leaf area, but no changes in aboveground biomass. Root length, root surface area, and specific root length were higher in phosphorus-deficient plants than in control plants. Nitrogen and phosphorus deficiency reduced both root hydraulic conductance and root hydraulic conductance scaled by total root surface area. On the other hand, nutrient limitations did not significantly affect root conductance per unit of foliar surface area. Thus, adaptation to low nutrient availability did not affect seedling capacity for maintaining water supply to leaves. The implications for drought resistance and survival during seedling establishment in semi-arid environments are discussed.

Keywords

Drought Root hydraulic conductance Nutrient deficiency Pistacia lentiscus Specific root length 

Notes

Acknowledgements

This research was funded by the CEAM Foundation (Project: “Selección de precedencias y producción de planta en vivero para la restauración de la cubierta vegetal y control de la erosión en clima semiárido”) and XylRefor (Manipulación de la arquitectura hidráulica en especies vegetales aplicada a la mejora de la calidad de la planta forestal. Grupos 03/155, financed by the Generalitat Valenciana). The CEAM Foundation is funded by Generalitat Valenciana and Bancaixa. We are also grateful to Marian Pérez.

References

  1. Albaladejo L, Martínez-Mena M, Roldán A, Castillo V (1998) Soil degradation and desertification induced by vegetation in a semiarid environment. Soil Use Manage 14(1):1–5CrossRefGoogle Scholar
  2. Anuradha M, Narayanan A (1991) Promotion of root elongation by phosphorus deficiency. Plant Soil 136:273–275CrossRefGoogle Scholar
  3. Bielenberg DG, Lynch JP, Pell EJ (2001) A decline in nitrogen availability affects plant responses to O3. New Phytol 151:413–425CrossRefGoogle Scholar
  4. Blanco MJ, Rodríguez P, Morales MA, Ortuño MF, Torrecillas A (2002) Comparative growth and water relations of Cistus albidus and Cistus montpeliensis plants during water deficit conditions and recovery. Plant Sci 162:107–113CrossRefGoogle Scholar
  5. Búcio JL, Abreu EH, Calderón LS, Jacobo MF, Simpson J, Estrella LH (2002) Phosphate availability alters architecture and causes changes in hormone sensitivity in the Arabidopsis root system. Plant Physiol 129:244–256CrossRefPubMedGoogle Scholar
  6. Canadell J, Zedler PH (1995) Underground structures of woody plants in Mediterranean ecosystems of Australia, California and Chile. In: Fox M, Kalin M, Zedler PH (eds) Ecology and Biogeography of Mediterranean Ecosystems in Chile, California and Australia. Springer-Verlag, Berlin, pp 177–210Google Scholar
  7. Clearwater MJ, Meinzer FC (2001) Relationships between hydraulic architecture and leaf photosynthetic capacity in nitrogen-fertilized Eucalyptus grandis trees. Tree Physiol 21:683–690PubMedGoogle Scholar
  8. Comas LH, Eissenstat DM (2002) Linking fine root traits to maximal potential growth rate among 11 mature temperate tree species. Funct Ecol 18:388–397CrossRefGoogle Scholar
  9. Connor DJ, Fereres E (2005) The physiology of adaptation and yield expression in Olive. In: Janick J. (ed) Horticultural reviews, vol 31. Wiley.Google Scholar
  10. Cortina J, Bellot J, Vilagrosa A, Caturla R, Maestre F, Rubio E, Martínez JM, Bonet A (2004) Restauración en semiárido. In: Vallejo y VR, Alloza JA (eds) Avances en el Estudio de la Gestión del Monte Mediterráneo. Fundación CEAM, Valencia, pp. 345–406Google Scholar
  11. De Lucia EH, Sipe TW, Herrick J, Maherali H (1998) Sapling biomass allocation and growth in the understory of a deciduous hardwood forest. Am J Bot 85:955–963CrossRefGoogle Scholar
  12. Eissenstat DM (1991) On the relationship between specific root length and rate of root proliferation: a field study using citrus rootstocks. New Phytol 118:63–68CrossRefGoogle Scholar
  13. Ewers B, Oren R, Sperry J (2000) Influence of nutrient versus water supply on hydraulic architecture and water balance in Pinus taeda. Plant Cell Environ 23:1055–1066CrossRefGoogle Scholar
  14. Field C, Mooney HA (1982) Leaf age and seasonal effects on light, water, and nitrogen use efficiency in California shrub. Oecologia 56:348–355CrossRefGoogle Scholar
  15. Fiscus EL (1975) The interaction between osmotic- and pressure-induced water flow in plant roots. Plant Physiol 55:917–922PubMedGoogle Scholar
  16. Fitter AH (1991) The ecological significance of root system architecture: an economic approach. In: Atkinson D (ed) Plant root growth: an ecological perspective, Blackwell, OxfordGoogle Scholar
  17. Fitter AH, Stickland TR, Harvey ML, Wilson GW (1991) Architectural analysis of plant root systems. I. Architectural correlates of exploitation efficiency. New Phytol 118:375–382CrossRefGoogle Scholar
  18. Fonseca DE (1999) Manipulación de las características morfoestructurales de plantones de especies forestales mediterráneas producidos en vivero. Implicaciones sobre su viabilidad y adaptación a condiciones de campo en ambiente semi´rido. MSc. thesis IAMZ. Zaragoza.Google Scholar
  19. Forde BG, Lorenzo H (2001) The nutritional control of root development. Plant Soil 232:51–68CrossRefGoogle Scholar
  20. Green JJ, Baddeley JA, Cortina J, Watson CA (2005) Root development in the Mediterranean shrub Pistacia lentiscus as affected by nursery treatments. J Arid Environ 61:1–12CrossRefGoogle Scholar
  21. Grundon NJ, Robson AD, Lambert MJ, Snowball KA (1997) Nutrient Deficiency & Toxicity Symptoms. In: Reuter DJ, Robinson JB, Dutkiewicz C (eds) Plant Analysis, An interpretation manual, 2nd edn., Collingwood, CSIRO Publishing, Australia 1:35–47Google Scholar
  22. Hamilton EW III, Giovannini MS, Moses SJ, Coleman JS, McNaughton SJ (1998) Biomass and mineral element responses of a Serengheti short grass species to nitrogen supply and defoliation: compensation requires a critical [N]. Oecologia 116:407–418CrossRefGoogle Scholar
  23. Heckathorn SA, De Lucia EH, Zielinski RE (1997) The contribution of drought-related decreases in foliar nitrogen concentration to decreases in photosynthetic capacity during and after drought in prairie grasses. Physiologia Plantarum 101:173–182CrossRefGoogle Scholar
  24. Henkin Z, Seligman NG, Noy-Meir I, Kafkafi U, Gutman M (1998) Rehabilitation of Mediterranean dwarf-shrub rangeland with herbicides, fertilizers, and fire. J Range Manage 51(2):193–199CrossRefGoogle Scholar
  25. Huang B, Nobel PS (1994) Hydraulic conductivity and anatomy for lateral roots of Agave deserti during root growth and drought-induced abscission. J Exp Bot 43:1441–1449CrossRefGoogle Scholar
  26. Hubbard RM, Ryan MG, Stiller V, Sperry JS (2001) Stomatal conductance and photosynthesis vary linearly with plant hydraulic conductance in ponderosa pine. Plant Cell Environ 24:113–121CrossRefGoogle Scholar
  27. Hunt R (1978) Plant growth anaylsis. Studies in biology no. 96. Edward Arnold, LondonGoogle Scholar
  28. Ingestad T, Ågren G (1991) The influence of plant nutrition on biomass allocation. Ecol Appl 1:168–174CrossRefGoogle Scholar
  29. Jackson RB, Sperry JS, Dawson TE (2000) Root water uptake and transport: scaling physiological processes for global predictions. Trends Plant Sci 5:482–488CrossRefPubMedGoogle Scholar
  30. Killham K (1995) Soil Ecology. Cambridge University Press, Cambridge, UKGoogle Scholar
  31. Kramer PJ (1988) Changing concepts regarding plant water relations. Plant Cell Environt, (Oxford), 11(7):565–568Google Scholar
  32. Larcher W (1995) Physiological plant ecology. Springer-Verlag, New York.Google Scholar
  33. Le Houérou HN (1981) Long-term dynamics in arid-land vegetation and ecosystem of North Africa. In: Goodall DW, Perry RA (eds), Arid-land ecosystems: structure, functioning and management. vol 2. Cambridge University Press, Cambridge, UK, 357–384.Google Scholar
  34. Levitt J (1980) Responses of plants to environmental stresses. Academic Press, New YorkGoogle Scholar
  35. Linton MJ, Sperry JS, Williams DG (1998) Limits to water transport in Juniperus osteosperma and Pinus edulis: implications for drought tolerance and regulation of transpiration. Funct Ecol 12:906–911CrossRefGoogle Scholar
  36. Lloret F, Casanovas C, Peñuelas J (1999) Seedling survival of Mediterranean shrubland species in relation to root: shoot ratio, seed size and water and nitrogen use. Funct Ecol 13:210–216CrossRefGoogle Scholar
  37. Marschner H (1986) Mineral nutrition of higher plants. Academic Press, New YorkGoogle Scholar
  38. Martínez-Vilalta J, Prat E, Oliveras I, Piñol J (2002) Xylem hydraulic properties of roots and stems of nine Mediterranean woody species. Oecologia 133:19–29CrossRefGoogle Scholar
  39. Nardini A, Salleo S, Tyree MT, Vertovec M (2000) Influence of the ectomycorrhizas formed by Tuber melanosporum Vitt. on hydraulic conductance and water relations of Quercus ilex L. seedlings. Ann For Sci 57:305–312CrossRefGoogle Scholar
  40. Nardini A, Salleo S, Lo Gullo MA (1998) Root hydraulic conductance of six forest trees: possible adaptive significance of seasonal changes. Plant Biosyst 132(2):97–104Google Scholar
  41. Naveh Z (1989) Fire in the Mediterranean: a landscape ecological perspective. In: Goldammer JG, Jenkins J (eds) Fire in Ecosystem Dynamics. 3rd international symposium on fire ecology, Freiburg, FRG, pp. 1–20Google Scholar
  42. Nielsen ET, Orcutt DM (1996) Physiology of plants under stress: abiotic factors. Wiley, New YorkGoogle Scholar
  43. Osonubi O, Oren R, Werk KS, Schulze E-D, Heilmeier H (1988) Performance of two Picea abies (L.) Karst. Stands at different stages of decline. IV. Xylem sap concentrations of magnesium, calcium, potassium, and nitrogen. Oecologia 77:1–6CrossRefGoogle Scholar
  44. Passioura JB (1988) Response to Dr P.J. Kramer's article, ‘Changing concepts regarding plant water relations’. Plant Cell Environ 11(7):569–571CrossRefGoogle Scholar
  45. Radin JW (1984) Stomatal responses to water stress and to abscisic acid in phosphorus-deficient cotton plants. Plant Physiol 76:392–394PubMedGoogle Scholar
  46. Radin JW, Boyer JS (1982) Control of leaf expansion by nitrogen nutrition in sunflower plants. Role of hydraulic conductivity and turgor. Plant Physiol 69:771–775PubMedGoogle Scholar
  47. Radin JW, Eidenbock MP (1984) Hydraulic conductance as a factor limiting leaf expansion of phosphorus deficient cotton plants. Plant Physiol 75:372–377PubMedCrossRefGoogle Scholar
  48. Radin JW, Eidenbock MP (1986) Vascular patterns in roots of phosphorus- and nitrogen-deficient cotton plants. In: Proceedings of the 1986 Beltwide Cotton Production Research Conference, National Cotton Council, Memphis, TN, 85–89Google Scholar
  49. Radin JW, Matthews MA (1989) Water transport properties of cortical cells in roots of nitrogen-and phosphorus- deficient cotton seedlings. Plant Physiol 89:264–268PubMedGoogle Scholar
  50. Reinbott TM, Blevins DG (1999) Phosphorus nutritional effects on root hydraulic conductance, xylem water flow and flux of magnesium and calcium in squash plants. Plant Soil 209:263–273CrossRefGoogle Scholar
  51. Rubio G, Zhu J. Lynch JP (2003) A critical test of the two prevailing theories of plant response to nutrient availability. Am J Bot 90(1):143–152CrossRefGoogle Scholar
  52. Scholander PF, Hammel HT, Bradstreet ED, Hemmingsen EA (1965) Sap pressure in vascular plants. Science 148:339–346PubMedCrossRefGoogle Scholar
  53. Schulze ED, Grebauer G, Ziegler H, Lange OL (1991) Estimates of nitrogen fixation by trees on an aridity gradient in Namibia. Oecologia 88:451–455CrossRefGoogle Scholar
  54. Sperry JS (2000) Hydraulic constraints on plant gas exchange. Agric Forest Meteorol 104:13–23CrossRefGoogle Scholar
  55. Sperry JS (2003) Evolution of water transport and xylem structure. Int J Plant Sci 164(3):115–127CrossRefGoogle Scholar
  56. Sperry JS, Hacke UG, Oren R, Comstock JP (2002) Water deficits and hydraulic limits to leaf water supply. Plant Cell Environ 25:251–263CrossRefPubMedGoogle Scholar
  57. Syvertsen JP, Graham JH (1985) Hydraulic conductivity of roots, mineral nutrition, and leaf gas exchange of citrus roots stocks. J Am Soc Hortic Sci 110:865–869Google Scholar
  58. Trubat R, Cortina J, Vilagrosa A (2004) Estado nutricional y establecimiento de especies leñosas en ambiente semiárido. Actas de la III Reunión sobre Repoblaciones Forestales. Cuadernos de la SECF 17:245–251Google Scholar
  59. Vallejo VR, Cortina J, Ferran A, Fons J, Romanyà J, Serrasolsas I (1998) Sobre els trets distintius dels sòls mediterranis. Acta Bot Barc 45:603–632.Google Scholar
  60. Valladares F, Balaguer L, Martínez-Ferri E, Pérez-Corona ML, Manrique E (2002). Plasticity, instability and canalization: is the phenotypic variation in seedlings of sclerophyll oaks consistent with the environmental unpredictability of Mediterranean ecosystems? New Phytol 156:457–467CrossRefGoogle Scholar
  61. Valladares F, Martínez-Ferri E, Balaguer L, Pérez-Corona ML, Manrique E (2000) Low leaf-level response to light and nutrients in Mediterranean evergreen oaks: a conservative resource-use strategy? New Phytol 148:79–91CrossRefGoogle Scholar
  62. Vilagrosa A, Bellot J, Vallejo VR, Gil-Pelegrín E (2003) Cavitation, stomatal conductance, and leaf dieback in seedlings of two co-occurring Mediterranean shrubs during an intense drought. J Exp Bot 54:2015–2024CrossRefPubMedGoogle Scholar
  63. Waring RH, McDonald AJS, Larsson S, Ericcson T, Wiren A, Ericcson A, Lohammar T (1985) Differences in chemical compositions of plants grown at constant relative growth rates with stable mineral nutrition. Oecologia 66:157–160CrossRefGoogle Scholar
  64. Williamson L, Ribrioux S, Fitter AH, Leyser HMO (2001) Phosphate availability regulates root system architecture in Arabidopsis thaliana. Plant Physiol 126:875–882CrossRefPubMedGoogle Scholar
  65. Yates EJ, Ashwath N, Midmore D (2002) Responses to nitrogen, phosphorus and sodium chloride by three mangrove species in pot culture. Trees 16:120–125CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Roman Trubat
    • 1
    Email author
  • Jordi Cortina
    • 1
  • Alberto Vilagrosa
    • 2
  1. 1.Depto. de EcologíaU. de AlicanteAlicanteSpain
  2. 2.Fundcion Centro de Estudios Ambientales del Mediterráneo (CEAM)Parque Tecnologico, C/Charles DarwinPaternaSpain

Personalised recommendations