Trees

, Volume 20, Issue 2, pp 229–246

Effect of initial fertilisation on biomass and nutrient contentof Norway spruce and Douglas-fir plantations at the same site

Original Article

Abstract

Norway spruce (NS) and Douglas-fir (DF) are among the main species used for production forestry in France. In low-elevation mountains and under-acidic conditions, they often occupy the same ecological situations. It is therefore of paramount interest to have a good understanding of how the two species behave under similar conditions and how they react to site improvement by fertilisation. The study stands are part of an experimental stand located in the estate forest of Breuil-Chenue in the Morvan (east central part of France). Its aim is to compare the impact of change in species on ecosystem functions. Destructive sampling of 10 trees per stand, distributed over the whole spectrum of inventoried classes of circumference at breast height (c1.30), was carried out within four stands, e.g., fertilised and control (non-fertilised) NS; fertilised and control (non-fertilised) DF. Allometric relationships between c1.30 and biomass or nutrient content per tree compartment were calculated. These equations were applied to the stand inventory for quantifying stand biomass and nutrient content on a hectare basis. The standard deviations of results were estimated using Monte-Carlo simulations. Specific emphasis was given to explain the origin of differences observed between species and treatments, i.e., changes in carbon allocation leading to specific allometric relationships, changes in stand structure (tree size distributions) and changes in stand density due to mortality.

DF was more productive than NS (+28% for total tree biomass, +50% for ligneous biomass and +53% for stem wood). Both NS and DF were affected by fertilisation but in the case of NS, effects on the crown_c1.30 relationship and on average tree growth were predominant while in the case of DF, the stem_c1.30 relationship and stand density were affected by changes in soil fertility. The general fertilisation effect was an increment of 40% of ligneous dry matter for DF and only 22% for NS. In both cases, the amount of wood biomass produced per unit of leaf biomass (on a tree basis and, to a lesser extent, on a per hectare basis) was greater in fertilised plots. However, in the case of NS, the same amount of wood biomass was produced from a smaller quantity of leaves while in the case of DF, the same amount of leaves produced more wood biomass.

The amount of nutrients in total ligneous biomass was higher for N, P and K, but lower for Ca and Mg, in DF than in NS. A high variability was observed between nutrient content of the different compartments, e.g., DF < NS for needles (except Mg), DF < NS for K, Ca and Mg for stem wood and DF > NS for N and P of stem wood. Fertilisation did not considerably change the hierarchy. On the basis of this study, all the indexes concerning stand production, wood density, nutrient use efficiency and response to fertilisation gave a net advantage to DF. This information is highly relevant for both ecological and practical purposes.

Keywords

Douglas-fir (DF) Norway spruce (NS) Biomass Nutrient content Fertility Allometry Nutrient use efficiency 

References

  1. AFES (1992) Association Française pour l'Etude du Sol, Référentiel pédologique. Paris. INRA edn., p 222Google Scholar
  2. Alban DH, Perala DA, Schlaegel BE (1978) Biomass and nutrient distribution in aspen, pine and spruces stands on the same soil type in Minnesota. Can J For Res 8:290–299Google Scholar
  3. Algan H (1901) Tarifs unifiés. Revue des Eaux et Forêts 555–562Google Scholar
  4. Alriksson A, Eriksson HM (1998) Variations in mineral nutrient and C distribution in the soil and vegetation compartments of five temperate tree species in NE Sweden. For Ecol Manage 108:261–273CrossRefGoogle Scholar
  5. Aurousseau P (1976) Morphologie et génèse des sols sur granite du Morvan. Phd Thesis, Université de Rennes, 210 pGoogle Scholar
  6. Augusto L, Ranger J, Binkley D, Rothe A (2002) Impact of several common tree species of European temperate forests on soil fertility. Ann For Sci 59(3):233–253CrossRefGoogle Scholar
  7. Binkley D (1995) The influence of tree species on forest soils: processes and patterns. In: Mead DJ, Cornforth IS (eds) Proceedings of the trees and soil workshop, Lincoln University, 28 Feb–2 March 1994. Agronomy society of New Zealand Special Publication No. 10. Lincoln University Press, Canterbury, pp 1–33Google Scholar
  8. Bonneau M (1977) Rapport final DGRST-CNRS. Modification de fertilité des sols sous boisements artificiels de résineux purs. Action concertée Equilibres Biologiques. 88pGoogle Scholar
  9. Cannell MGR (1982) World biomass and primary production data. Academic Press Publishers, London, 391pGoogle Scholar
  10. Cunia T (1987) On the error of forest inventory estimates: double sampling with regression. In: Wharton EH, Cunia T (eds) Estimating tree biomass regressions and their error. Proceedings of the workshop on tree biomass regression functions and their contribution to the error of forest inventory estimates, Syracuse, New-York, May 26–30, 1986. USDA Forest Service General Technical Report no. 117, pp 79–87Google Scholar
  11. D'Agostino RB, Belanger A, D'Agostino RB jr (1990) A suggestion for using powerful and informative tests of normality. Am Stat 44(4):316–321Google Scholar
  12. Décourt N (1967) Table de production pour le Douglas dans le Nord-Est du Massif central. Rev For Fr XXIV(8–9):547–557CrossRefGoogle Scholar
  13. Dhôte J-F (1997) Effet des éclaircies sur le diamètre dominant dans les futaies régulières du hêtre ou de chêne sessile. Rev For Fr XLIX-6:557–578Google Scholar
  14. Dhôte J-F (1999) Compétition entre classes sociales chez le chêne sessile et le hêtre. Rev For Fr LI(2):309–325Google Scholar
  15. Duchaufour Ph, Bonneau M (1959) Une nouvelle méthode de dosage du phosphore assimilable dans les sols forestiers. Bull AFES 4:193–198Google Scholar
  16. Eriksson HM, Rosen K (1994) Nutrient distribution in a Swedish tree species experiment. Plant Soil 164:51–59Google Scholar
  17. Fisher RF, Binkley D (2000) Ecology and management of forest soils, 3 edn. Wiley, New York, 489pGoogle Scholar
  18. Hagen-Thorn A, Armolaitis K, Callesen I, Stjernquist I (2004) Macronutrients in tree stems and foliage: a comparative study of six temperate forest species planted at the same sites. Ann For Sci 61:489–498CrossRefGoogle Scholar
  19. Heller R (1969) Biologie végétale: III Nutrition et métabolisme. Masson, Paris, 578pGoogle Scholar
  20. IFN (2003) Annual Report of the French National Inventory. Available at http://www.ifn.fr/. 40p
  21. Kozak A (1970) Methods for ensuring additivity of biomass components by regression analysis. For Chron 46(5):402–404Google Scholar
  22. Larsen S (1967) Soil phosphorus. Adv Agron 19:151–210Google Scholar
  23. Larson PR (1963) Stem form development of forest trees. For Sci Monogr 5:42pGoogle Scholar
  24. Le Goaster S, Dambrine E, Ranger J (1991) Croissance et nutrition minérale d'un peuplement d'épicéa sur sol pauvre. I: Evolution de la biomasse et dynamique d'incorporation d'éléments minéraux. Acta Oecol Oecol Plant 12(6):771–789Google Scholar
  25. Mengel K, Kirby EA (1978) Principle of plant nutrition. International Potash Institute, Bern, SwitzerlandGoogle Scholar
  26. Nambiar EKS, Bowen GD (1986) Uptake, distribution and retranslocation of nitrogen by Pinus radiata from15N-labelled fertilizer applied to podzolized sandy soil. For Ecol Manage 15:269–284CrossRefGoogle Scholar
  27. Návar J, Méndez E, Dale V (2002) Estimating stand biomass in the Tamulipan thornscrub of north-eastern Mexico. Ann For Sci 59(8):813–821CrossRefGoogle Scholar
  28. Nihlgård B (1972) Plant biomass, primary production and distribution of chemical elements in a beech and a planted spruce forest in South Sweden. Oikos 23:69–81Google Scholar
  29. Pardé J, Bouchon J (1988) Dendrométrie, 2nd edn. Engref, Nancy, France, ISBN 2-85710-025-6. 328pGoogle Scholar
  30. Parresol BR (1999) Assessing tree and stand biomass: a review with examples and critical comparisons. For Sci 45(4):573–593Google Scholar
  31. Parresol BR (2001) Additivity of nonlinear biomass equations. Can J For Res 31:865–878CrossRefGoogle Scholar
  32. Perala DA, Alban DH (1982) Biomass, nutrient distribution and litterfall in populus, pinus and picea stands on two different soils in Minnesota. Plant Soil 64:177–192CrossRefGoogle Scholar
  33. Ponette Q, Ranger J, Ottorini JM, Ulrich E (2001) Aboveground biomass and nutrient content of five Douglas-fir stands in France. For Ecol Manage 142(1–3):109–127CrossRefGoogle Scholar
  34. Ranger J, Cuirin G, Bouchon J, Colin-Belgrand M, Gelhaye D, Mohamed Ahamed D (1992) Biomasse et minéralomasse d'une plantation d'épicéa commun (Picea abies Karst.) de forte production dans les Vosges (France). Ann Sci For 49:651–668Google Scholar
  35. Ranger J, Marques R, Colin-Belgrand M, Flammang N, Gelhaye D (1995) The dynamics of biomass and nutrient accumulation in a Douglas-fir (Pseudotsuga menziesii Franco) stand studied using a chronosequence approach. For Ecol Manage 72:167–183CrossRefGoogle Scholar
  36. Ranger J (ed), Aandreux F (ed), Bienaime S, Berthelin J, Bonnaud P, Boudot JP, Brechet C, Buee M, Calmet JP, Chaussod R, Gelhaye D, Gelhaye L, Gerard F, Jaffra in J, Lejon D, Le Tacon F, Leveque J, Maurice JP, Merlet D, Moukoumi J, Munier-Lamy C, Nourrisson G, Pollier B, Ranjard L, Simonsson M, Turpault MP, Vairelles D, Zeller B (2004) Effet des substitutions d'essence sur le fonctionnement organo-minéral de l'écosystème forestier, sur les communautés microbiennes et sur la diversité des communautés fongiques mycorhiziennes et saprophytes (cas du dispositif expérimental de Breuil – Morvan). Rapport final du contrat INRA-GIP Ecofor 2001–24, n°INRA 1502A Nancy: INRA Champenoux, Biogéochimie des Ecosystèmes forestiers, 202 pGoogle Scholar
  37. Reed DD, Green EJ (1985) A method forcing additivity of biomass tables when using non-linear models. Can J For Res 15(6):1184–1187Google Scholar
  38. Saint-André L, Thongo M'Bou, Mabiala A, Mouvondy W, Jourdan C, Roupsard O, Deleporte Ph, Hamel O, Nouvellon Y (2005) Age-related equations for above- and below-ground biomass of a Eucalyptus hybrid in Congo. For Ecol Manage 205:199–214CrossRefGoogle Scholar
  39. Safou-Matondo R, Deleporte P, Laclau JP, Bouillet JP (2005) Hybrid and clonal variability of nutrient content and nutrient use efficiency in Eucalyptus stands in Congo. For Ecol Manage 210:193–204CrossRefGoogle Scholar
  40. SAS Institute, Inc. (1990) Sas© Procedures Guide, Version 6, 3 edn. SAS Institute Inc., Cry, NC, 705pGoogle Scholar
  41. Satoo T, Madgwick HAI (1982) Forest biomass. Martinus Nijhoff, The HagueGoogle Scholar
  42. Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6:461–464MATHGoogle Scholar
  43. Switzer GL, Nelson LE (1972) Nutrient accumulation and cycling in loblolly Pine (Pinus taeda L) Plantation Ecosystems: The first twenty years. Soil Sci Soc Am Proc 36:143–147Google Scholar
  44. Wallace A, Frolich E, Lunt OR (1966) Calcium requirements of higher plants. Nature 209:634ADSGoogle Scholar
  45. Weissen (1991) Le fichier écologique des essences vol(2). Ministère de la Région Wallone Editeur; DG Resources Naturelles de l'Environnement, Division de la Nature et des Forêts Namur, Belgique, 190pGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • C. Sicard
    • 1
  • L. Saint-Andre
    • 2
  • D. Gelhaye
    • 1
  • J. Ranger
    • 1
  1. 1.INRA UR 1138 Biogéochimie des Ecosystèmes ForestiersChampenouxFrance
  2. 2.CIRAD-FORÊT, UPR 80 Fonctionnement et Pilotage des Ecosystèmes Tropicaux PlantésMontpellier Cedex 5France

Personalised recommendations