Trees

, Volume 20, Issue 1, pp 99–110 | Cite as

Growth/climate response shift in a long subalpine spruce chronology

  • Ulf Büntgen
  • David C. Frank
  • Martin Schmidhalter
  • Burkhard Neuwirth
  • Mathias Seifert
  • Jan Esper
Original Article

Abstract

A new Norway spruce (Picea abies (L.) Karst.) tree-ring width chronology based on living and historic wood spanning the AD 1108–2003 period is developed. This composite record combines 208 high elevation samples from 3 Swiss subalpine valleys, i.e., Lötschental, Goms, and Engadine. To retain potential high- to low-frequency information in this dataset, individual spline detrending and the regional curve standardization are applied. For comparison, 22 high elevation and 6 low-elevation instrumental station records covering the greater Alpine area are used. Previous year August–September precipitation and current year May–July temperatures control spruce ring width back to ∼1930. Decreasing (increasing) moving correlations with monthly mean temperatures (precipitation) indicate instable growth/climate response during the 1760–2002 period. Crucial June–August temperatures before ∼1900 shift towards May-July temperature plus August precipitation sensitivity after ∼1900. Numerous of comparable subalpine spruce chronologies confirm increased late-summer drought stress, coincidently with the recent warming trend. Comparison with regional-, and large-scale millennial-long temperature reconstructions reveal significant similarities prior to ∼1900 (1300–1900 mean r=0.51); however, this study does not fully capture the commonly reported 20th century warming (1900–1980 mean r=−0.17). Due to instable growth/climate response of the new spruce chronology, further dendroclimatic reconstruction is not performed.

Keywords

Alps Dendroclimatology Growth/climate response High–low frequency Standardization 

Notes

Acknowledgements

We thank R. Böhm for providing instrumental data, the ITRDB contributors for tree-ring data, and K. Treydte and R.J.S. Wilson for comments and discussion. Supported by the Swiss National Science Foundation Project EURO-TRANS (#200021-105663) and the European Union Project ALP-IMP (BBW #01.0498-1).

References

  1. Anfodillo T, Rento S, Carraro V, Furlanetto L, Urbinati C, Carrer M (1998) Tree water relations and climate variations at the alpine timberline: seasonal changes of sap flux and xylem water potential in Larix deciduas Miller, Picea abies (L.) Karst. and Pinus cembra L. Ann Sci For 55:159–172CrossRefGoogle Scholar
  2. Auer I et al. (2005) A new instrumental precipitation dataset for the greater alpine region for the period 1800–2002. Int J Climatol 25:139–166CrossRefGoogle Scholar
  3. Barber VA, Juday GP, Finney BP (2000) Reduced growth of Alaskan white spruce in the twentieth century from temperature-induced drought stress. Nature 405:668–672CrossRefPubMedGoogle Scholar
  4. Bauer E, Claussen M, Brovkin V (2003) Assessing climate forcings of the Earth system for the past millennium. Geophys Res Lett 30/61276 doi:10.1029/2002GL016639Google Scholar
  5. Becker M, Bert GD, Bouchon J, Dupouey JL, Picard JF, Ulrich E (1995) Long-term changes in forest productivity in northeastern France: the dendrochronological approach. In: Landmann G, Bonneau M (eds) Forest decline and atmospheric deposition effects in the French mountains. Springer, Berlin Heidelberg New York, pp 143–156Google Scholar
  6. Beniston M (2003) Climate change in mountain regions: a review of possible impacts. Clim Change 59:5–31CrossRefGoogle Scholar
  7. Böhm R, Auer I, Brunetti M, Maugeri M, Nanni T, Schöner W (2001) Regional temperature variability in the European Alps: 1760–1998 from homogenized instrumental time series. Int J Climatol 21:1779–1801CrossRefGoogle Scholar
  8. Bräker OU (1981) Der Alterstrend bei Jahrringdichten und Jahrringbreiten von Nadelhölzern und sein Ausgleich. Mitt der Forstl Bundesversuchsanst Wien 142:75–102Google Scholar
  9. Briffa KR (2000) Annual climate variability in the Holocene: interpreting the message of ancient trees. Quat Sci Rev 19:87–105CrossRefGoogle Scholar
  10. Briffa KR, Jones PD, Schweingruber FH (1988) Summer temperature patterns over Europe: A reconstruction from 1750 A.D. based on maximum latewood density indices of conifers. Quat Res 30:36–52CrossRefGoogle Scholar
  11. Briffa KR, Jones PD (1990) Basic chronology statistics and assessment. In: Cook ER, Kairiukstis LA (eds) Methods of dendrochronology: Applications in the environmental sciences. Kluwer Academic Publisher, Dodrecht, pp 137–152Google Scholar
  12. Briffa KR, Jones PD, Bartholin TS, Eckstein D, Schweingruber FH, Karlen W, Zetterberg P, Eronen M (1992) Fennoscandian summers from AD 500: temperature changes on short and long timescales. Clim Dyn 7:111–119CrossRefGoogle Scholar
  13. Briffa KR, Jones PD, Schweingruber FH, Karlen W, Shiyatov SG (1996) Tree ring variables as proxy-climate indicators. Problems with low-frequency signals. In: Jones PD, Bradley RS, Jouzel J (eds) Climatic variations and forcing mechanisms of the last 2000 years. Springer, Berlin Heidelberg New York, pp 9–41Google Scholar
  14. Briffa KR, Jones PD, Schweingruber FH, Osborne TJ (1998a) Influence of volcanic eruptions on Northern Hemisphere summer temperature over the past 600 years. Nature 393:450–455CrossRefGoogle Scholar
  15. Briffa KR, Schweingruber FH, Jones PD, Osborne TJ, Shiyatov SG, Vaganov EA (1998b) Reduced sensitivity of recent tree-growth to temperature at high northern latitudes. Nature 391:678–681CrossRefGoogle Scholar
  16. Briffa KR, Osborn TJ, Schweingruber FH, Harris IC, Jones PD, Shiyatov SG, Vaganov EA (2001) Low-frequency temperature variations from a northern tree ring density network. J Geophys Res 106:2929–2941CrossRefGoogle Scholar
  17. Büntgen U, Esper J, Schmidhalter M, Frank DC, Treydte K, Neuwirth B, Winiger M (2004) Using recent and historical larch wood to build a 1300-year Valais-chronology. In: Gärtner H, Esper J, Schleser G (eds) TRACE vol. 2, pp 85–92Google Scholar
  18. Büntgen U, Esper J, Frank DC, Nicolussi K, Schmidhalter M (2005a) A 1052-year tree-ring proxy for Alpine summer temperatures. Clim Dyn Doi: 10.1007/s00382-005-0028-1Google Scholar
  19. Büntgen U, Esper J, Bellwald I, Kalbermatten H, Frank DC, Freund H, Schmidhalter M, Bellwald W, Neuwirth B (2005b) 700 years of settlement and building history in the Lötschental/Valais. Erdkunde (in press)Google Scholar
  20. Camuffo D, Enzi S (1994) Chronology of ‘Dry Fogs’ in Italy, 1374–1891. Theor Appl Climatol 50:31–33CrossRefGoogle Scholar
  21. Carrer M, Anfodillo T, Urbinati C, Carraro V (1998) High altitude forest sensitivity to global warming: results from long-term and short-term analyses in the Eastern Italien Alps. In: Beniston M, Innes JL (eds) The impacts of climate variability on forests, Lecture notes in earth sciences, 74. Springer, Berlin Heidelberg New York, pp 171–189Google Scholar
  22. Cook ER (1985) A time series analysis approach to tree-ring standardization. Lamont-Doherty Geological Observatory, New York, pp 171Google Scholar
  23. Cook ER, Peters K (1981) The smoothing spline: A new approach to standardizing forest interior tree-ring width series for dendroclimatic studies. Tree-Ring Bulle 41:45–53Google Scholar
  24. Cook ER, Kairiukstis LA (1990) Methods of dendrochronology: applications in environmental science. Kluwer, Dordrecht, pp 104–123Google Scholar
  25. Cook ER, Briffa KR, Meko DM, Graybill DA, Funkhouser G (1995) The ‘segment length curse’ in long tree-ring chronology development for palaeoclimatic studies. The Holocene 5:229–237CrossRefGoogle Scholar
  26. Cook ER, Peters K (1997) Calculating unbiased tree-ring indices for the study of climatic and environmental change. The Holocene 7:361–370CrossRefGoogle Scholar
  27. Cook ER, Buckley BM, D’Arrigo RD, Peterson MJ (2000) Warm-season temperatures since 1600 BC reconstructed from Tasmanian tree rings and their relationship to large-scale sea surface temperature anomalies. Clim Dyn 16:79–91CrossRefGoogle Scholar
  28. Cook ER, Woodhouse C, Eakin CM, Meko DM, Stahle DW (2004) Long-term aridity changes in the Western United States. Science 306:1015–1018CrossRefPubMedGoogle Scholar
  29. D'Arrigo RD, Kaufmann RK, Davi N, Jacoby GC, Laskowski C, Myneni RB, Cherubini P (2004) Thresholds for warming-induced growth decline at elevational tree line in the Yukon Territory, Canada. Global Biogeochem Cycles doi:10.1029/2004GB002249Google Scholar
  30. D'Arrigo RD, Mashig E, Frank D, Wilson R, Jacoby G (2005) Temperature variability over the past millennium inferred from Northwestern Alaska tree rings. Clim Dyn 24:227–236CrossRefGoogle Scholar
  31. Davi N, Jacoby G, Wiles G (2003) Boreal temperature variability inferred from maximum latewood density and tree-ring width data, Wrangell Mt. Region, Alaska Quat Res 60:252–262Google Scholar
  32. Desplanque C, Rolland C, Schweingruber FH (1999) Influence of species and abiotic factors on extreme tree ring modulation. Trees 13:218–227CrossRefGoogle Scholar
  33. Dittmar C, Elling W (1999) Jahrringbreite von Fichte und Buche in Abhängigkeit von Witterung und Höhenlage. Forstw Cbl 118:251–270CrossRefGoogle Scholar
  34. Eckstein D (1982) Europe. In: Hughes MK, Kelly PM, Pilcher JR, LaMarch VC (eds) Climate from tree-rings. Cambridge University Press, Cambridge, pp 142–148Google Scholar
  35. Eckstein D, Sass U (1989) Dendroecological assessment of decline and recovery of fir and spruce in the Bavarian Forest. In: Bucher JB, Bucher-Wallin I (eds) Air pollution and forest decline. Proceedings of the 14th International Meeting for specialists in Air Pollution Effects on forest ecosystems, IUFRO P2.05, Interlaken, Switzerland, Oct. 2(8): pp 255–260Google Scholar
  36. Eddy J (1977) Climate and the changing sun. Clim Change 1:173–190CrossRefGoogle Scholar
  37. Ellenberg H (1996) Die Vegetation Mitteleuropas mit den Alpen. 5. Aufl Ulmer, Stuttgart, pp 1095Google Scholar
  38. Elling W (1990) Schädigungsverlauf und Schädigungsgrad von Hochlagen-Fichtenbeständen in Nordostbayern. Allg Forstztg 45:74–77Google Scholar
  39. Esper J, Cook ER, Schweingruber FH (2002) Low-frequency signals in long tree-ring chronologies for reconstructing past temperature variability. Science 295:2250–2252CrossRefPubMedGoogle Scholar
  40. Esper J, Shiyatov SG, Mazepa VS, Wilson RJS, Graybill DA, Funkhouser G (2003a) Temperature-sensitive Tien Shan tree-ring chronologies show multi-centennial growth trends. Clim Dyn 21:699–706CrossRefGoogle Scholar
  41. Esper J, Cook ER, Krusic PJ, Peters K, Schweingruber FH (2003b) Tests of the RCS method for preserving low-frequency variability in long tree-ring chronologies. Tree-Ring Res 59:81–98Google Scholar
  42. Esper J, Schweingruber FH (2004) Large-scale treeline changes recorded in Siberia. Geophys Res Lett 31:doi:10.1029/2003GL019178Google Scholar
  43. Etheridge DM, Steele LP, Langenfelds RL, Francey RJ, Barnola J-M, Morgan VI (1996) Natural and anthropogenic changes in atmospheric CO2 over the last 1000 years from air in Antarctic ice and firn. J Geophys Res 106:4115–4128CrossRefGoogle Scholar
  44. Frank DC, Esper J (2005a) Characterization and climate response patterns of a high elevation, multi species tree-ring network for the European Alps. Dendrochronologia 22:107–121CrossRefGoogle Scholar
  45. Frank DC, Esper J (2005b) Temperature reconstructions and comparisons with instrumental data from a tree-ring network for the European Alps. Int J Climatol (in press)Google Scholar
  46. Frank DC, Wilson RJS, Esper J (2005c) Synchronous variability changes in Alpine temperature and tree-ring data over the last two centuries. Boreas (in press)Google Scholar
  47. Fritts HC (1976) Tree rings and climate. Academic Press, London, pp 567Google Scholar
  48. Grove JM (1988) The little ice age. Methuen & Co., London and New York, pp 498Google Scholar
  49. Hasenauer H, Nemani RR, Schadauer K, Running SW (1999) Forest growth response to changing climate between 1961 and 1990 in Austria. For Ecol Manage 12:209–219CrossRefGoogle Scholar
  50. Holmes RL (1983) Computer-assisted quality control in tree-ring dating and measurements. Tree-Ring Bulle 43:69–78Google Scholar
  51. Holzhauser HP (2002) Dendrochronologische Auswertung fossiler Hölzer zur Rekonstruktion der nacheiszeitlichen Gletschergeschichte. Schweiz Z Forstwes 153:17–28CrossRefGoogle Scholar
  52. Jacoby GC, D'Arrigo RD (1989) Reconstructed northern hemisphere annual temperature since 1671 based on high-latitude tree-ring data from Northern America. Clim Change 14:39–59CrossRefGoogle Scholar
  53. Jacoby GC, D'Arrigo RD (1995) Tree ring width and density evidence of climatic and potential forest change in Alaska. Glob Biogeochem Cycles 9:227–234CrossRefGoogle Scholar
  54. Keller F, Kienast F, Beniston M (2000) Evidence of response of vegetation to environmental change on high-elevation sites in the Swiss Alps. Reg Environ Change 1:70–77CrossRefGoogle Scholar
  55. Kienast F, Wildi O, Brzeziecki B (1998) Potential impacts of climate change on species richness in mountain forests—an ecological risk assessment. Biol Conserv 83(3):291–305CrossRefGoogle Scholar
  56. Körner C (1998) A re-assessment of high elevation treeline positions and their explanation. Oecologia 115:445–459CrossRefGoogle Scholar
  57. Körner C, Paulsen J (2004) A world-wide study of high altitude treeline temperatures. J Biogeog 31:713–732CrossRefGoogle Scholar
  58. Kozlowski TT, Pallardy SG (1997) Physiology of wood plants. Academic Press, San Diego, California, pp 1–411CrossRefGoogle Scholar
  59. Lamb HH (1965) The early medieval warm epoch and its sequel. Palaeogeogr palaeoclimatol palaeoecol 1:13–37CrossRefGoogle Scholar
  60. Lingg W (1986) Dendroökologische Studien an Nadelbäumen im alpinen Trockental Wallis (Schweiz). Eidg Anst forstl Vers Wes 287:1–81Google Scholar
  61. Lloyd AH, Fastie CL (2002) Spatial and temporal variability in the growth and climate response of treeline trees in Alaska. Clim Change 52:481–509CrossRefGoogle Scholar
  62. Luterbacher J, Rickli R, Xoplaki E, Tinguely C, Beck C, Pfister C, Wanner H (2001) The Late Maunder Minimum (1675-1715)—a key period for studying decadal scale climatic change in Europe. Clim Change 49:441–462CrossRefGoogle Scholar
  63. Mann ME, Bradley RS, Hughes MK (1999) Northern Hemisphere temperatures during the past millennium: inferences, uncertainties and limitations. Geophys Res Lett 26:759–762CrossRefGoogle Scholar
  64. Mann ME (2004) On smoothing potentially non-stationary climate time series. Geophys Res Lett 31:doi:10.1029/2004GLO19569Google Scholar
  65. Masson-Delmotte V, Raffalli-Delerce G, Danis PA, Yiou P, Stievenard M, Guibal F, Mestre O, Bernard V, Goosse H, Hoffmann G, Jouzel J (2005) Changes in European precipitation seasonality and in drought frequencies revealed by a four-century-long tree-ring isotopic record from Brittany, western France. Clim Dyn 24:57–69CrossRefGoogle Scholar
  66. Meyer FD, Bräker OU (2001) Climate response in dominant and suppressed spruce trees, Picea abies (L.) Karst., on a subalpine and lower montane site in Switzerland. Ecoscience 8:105–114Google Scholar
  67. Mitchell VL (1967) An investigation of certain aspects of tree growth rates in relation to climate in the central Canadian boreal forest. Technical Report No 33. University of Wisconsin, Department of Meteorology, Wisconsin, pp 62Google Scholar
  68. Nemani RR, Keeling CD, Hashimoto H, Jolly WM, Piper SC, Tucker CJ, Myneni RB, Running SW (2003) Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 300:1560–1563CrossRefPubMedGoogle Scholar
  69. Neuwirth B (2005) Interannuelle Klima/Wachstums-Beziehungen zentraleuropäischer Bäume von AD 1901 bis 1971—eine dendroklimatologische Netzwerkanalyse. PhD thesis, University Bonn, pp 161Google Scholar
  70. Neuwirth B, Esper J, Schweingruber FH, Winiger M (2004) Site ecological differences to the climatic forcing of spruce pointer years from the Lötschental, Switzerland. Dendrochronologia 21(2):69–78CrossRefGoogle Scholar
  71. Nicolussi K, Patzelt G (2000) Discovery of Early Holocene wood and peat on the forefield of the Pasterze Glacier, Eastern Alps, Austria. The Holocene 10:191–199CrossRefGoogle Scholar
  72. Osborn TJ, Briffa KR, Jones PD (1997) Adjusting variance for sample-size in tree-ring chronologies and other regional-mean time-series. Dendrochronologia 15:89–99Google Scholar
  73. Pfister C (1999) Wetternachhersage. 500 Jahre Klimavariationen und Naturkatastrophen 1496–1995. Bern, Stuttgart Wien, pp 304Google Scholar
  74. Rolland C, Petitcolas V, Michalet R (1998) Changes in radial tree growth for Picea abies, Larix decidua, Pinus cembra and Pinus uncinata near the alpine timberline since 1750. Trees 13:40–53CrossRefGoogle Scholar
  75. Rolland C, Desplanque C, Michalet R, Schweingruber FH (2000) Extreme tree rings in spruce (Picea abies (L.) Karst.) and fir (Abies alba Mill.) stands in relation to climate, site and space in the Southern French and Italian Alps. Arctic, Antarctic, and Alpine Research 32:1–13CrossRefGoogle Scholar
  76. Sander C, Eckstein D, Kyncl J, Dobry J (1995) The growth of spruce (Picea abies (L.) Karst.) in the Krkonose (Giant) Mountains as indicated by ring width and wood density. Ann Sci Forest 52:401–410CrossRefGoogle Scholar
  77. Schweingruber FH (1996) Tree rings and environment—dendrochronology. Haupt, Bern, pp 609Google Scholar
  78. Simkin T, Siebert L (1994) Volcanoes of the world: a regional directory, gazetteer, and chronology of volcanism during the last 10,000 years. 2nd edn. Geoscience Ress, Tucson, Arizona, pp 349Google Scholar
  79. Stahle DW, Cleaveland MK (1994) Tree-ring reconstructed rainfall over the southeastern USA during the Medieval Warm Period and Little Ice Age. Clim Change 26:199–212CrossRefGoogle Scholar
  80. Tessier L (1989) Spatio-temporal analysis of climate tree-ring relationships. New Phytol 111:517–529CrossRefGoogle Scholar
  81. Tranquillini W (1964) The physiology of plants at high altitudes. Annu Rev Plant Physiol 15:345–362CrossRefGoogle Scholar
  82. Trenberth K (1984) Some effects of finite sample size and persistence on meteorological statistics. Part I: Autocorrelations. Mon Weath Rev 112:2359–2368CrossRefGoogle Scholar
  83. Usoskin IG, Solanki SK, Schlüssler M (2003) Millennium-scale sunspot number reconstruction: evidence for an unusually active sun since the 1940s. Phys Rev Lett 91:1–4CrossRefGoogle Scholar
  84. Vaganov EA, Hughes MK, Kirdyanov AV, Schweingruber FH, Silkin PP (1999) Influence of snowfall and melt timing on tree growth in subarctic Eurasia. Nature 400:149–151CrossRefGoogle Scholar
  85. Valentini R, Anfodillo T, Ehlringer J (1994) Water sources utilization and carbon isotope composition (δ13C) of co-occurring species along an altitudinal gradient in the Italian Alps. Can J For Res 24:1575–1578CrossRefGoogle Scholar
  86. Vogel RB, Schweingruber FH (2001) Centennial variability of tree-ring width of spruce, fir and oak in relation to climate in Switzerland for the last 450 years. Dendrochronologia 19(2):197–209Google Scholar
  87. Wanner H, Pfister C, Brazdil R, Frich P, Frydendahl K, Jonsson T, Knigton J, Lamb HH, RosenØrn S, Wishman E (1995) Wintertime European circulation patterns during the Late Maunder Minimum cooling period (1675-1704). Theor Appl Climatol 51:167–175CrossRefGoogle Scholar
  88. Wanner H, Luterbacher J, Gyalistras D, Rickli R, Salvisberg E, Schmutz C (2000) Klimawandel im Schweizer Alpenraum. Vdf Hochschulverlag AG, Zürich, pp 294Google Scholar
  89. Wigley T, Briffa KR, Jones PD (1984) On the average of value of correlated time series, with applications in dendroclimatology and hydrometeorology. J Clim Appl Meteorol 23:201–213CrossRefGoogle Scholar
  90. Wilmking M, Juday GP, Barber VA, Zald HSJ (2004) Recent climate warming forces contrasting growth responses of white spruce at treeline in Alaska through temperature thresholds. Global Change Biol 10(10):1724–1736CrossRefGoogle Scholar
  91. Wilson RJS, Luckman (2002) Tree-rin? reconstruction of maximum and minimum temperatures and the diurnal temperature range in British Columbia. Canada Dendrochronologia 20:1–12Google Scholar
  92. Wilson RJS, Topham J (2004) Violins and climate. Theor Appl Climatol 77:9–24CrossRefGoogle Scholar
  93. Wilson RJS, Elling W (2004) Temporal instability in tree-growth/climate response in the lower Bavarian Forest region: implications for dendroclimatic reconstructions. Trees 18:19–28Google Scholar
  94. Wilson RJS, Esper J, Luckman BH (2004) Utilizing historical tree-ring data for dendroclimatology: a case study from the Bavarian Forest, Germany. Dendrochronologia 21(2):53–68CrossRefGoogle Scholar
  95. Woodhouse CA, Overpeck JT (1998) 2000 years of drought variability in the central United States. Bull Am Meteorol Soc 79(12):2693–2714CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Ulf Büntgen
    • 1
  • David C. Frank
    • 1
  • Martin Schmidhalter
    • 2
  • Burkhard Neuwirth
    • 3
  • Mathias Seifert
    • 4
  • Jan Esper
    • 1
  1. 1.Swiss Federal Research Institute WSLBirmensdorfSwitzerland
  2. 2.Dendrolabor ValaisBrigSwitzerland
  3. 3.Department of GeographyUniversity BonnBonnGermany
  4. 4.Department of Archaeology GraubündenSchloss HaldensteinHaldensteinSwitzerland

Personalised recommendations