, Volume 19, Issue 4, pp 385–401 | Cite as

Climate-tree-growth relationships of European beech (Fagus sylvatica L.) in the French Permanent Plot Network (RENECOFOR)

  • F. LebourgeoisEmail author
  • N. Bréda
  • E. Ulrich
  • A. Granier
Original Article


The influence of climate on the radial growth of Fagus sylvatica was investigated using 15 chronologies developed from mature stands of the French Permanent Plot Network (RENECOFOR) growing under different climatic and soil conditions. The relationships between climate and ring widths were analyzed using extreme growth years, simple correlations and response functions analysis. Monthly climatic regressors were derived by a physiological water balance model that used daily climatic data and stand parameters to estimate soil water deficits. The three most frequent negative pointer years (1959, 1989, 1976) result from a particularly intense and durable drought, whereas positive years (1977, 1958) coincide with wet conditions. The total ring chronology variance attributable to climate averages 34.1% (15.8% –57%). Current early-summer soil water deficit enters in 10 models and the deficit in June explains alone a large part of the radial growth variability (mean value: 26.6%). Temperature or soil water deficit for the other months and weather conditions during the previous season were of little consistency across stands. The response pattern of earlywood is very similar and the percentage of variance explained is higher (16.2% –57.8%). Latewood widths present a different response pattern. High minimum temperature in August and/or September often favour wide latewood widths and monthly water deficits play a secondary role. The percentage of variance explained ranges from 8.8% to 67.4%. Soil water capacity strongly modulates ring characteristics and climate-growth relationships. Mean sensitivity, expressed population signal, signal-to-noise ratio and the strength of growth-climate correlations increase with decreasing soil water capacity.


Fagus sylvatica Tree ring Water balance Drought Pointer years 



We thank the European Commission, the French Agricultural Ministry The French National Institute of Forest Research and The French National Forest Office for providing funds to conduct this research (contract DG VI, no. 9760FR0030). We also thank Météo France for their helpful technical assistance for the selection of the meteorological stations


  1. Antonova GF, Stasova VV (1993). Effects of environmental factors on wood formation in Scots pine stems. Trees 7:214–219CrossRefGoogle Scholar
  2. Antonova GF, Stasova VV (1997). Effects of environmental factors on wood formation larch (Larix sibirica Ldb.) stems. Trees 11:462–468CrossRefGoogle Scholar
  3. Aranda I, Gil L, Pardos JA (2000). Water relations and gas exchange in Fagus sylvatica L., and Quercus petraea (Mattuschka) Liebl. in a mixed stand at their southern limit of distribution in Europe. Trees 14:344–352CrossRefGoogle Scholar
  4. Aussenac G, (1968) Interception des précipitations par le couvert forestier. Ann Sci For 25:135–156Google Scholar
  5. Badeau V (1995) Etude dendroécologique du hêtre (Fagus sylvatica L.) sur les plateaux calcaires de Lorraine. Influence de la gestion sylvicole. PhD Thesis, Université de Nancy I Henri PoincaréGoogle Scholar
  6. Barbaroux C, Bréda N (2002). Contrasting distribution and seasonal dynamics of carbohydrate reserves in stem wood of adult ring-porous sessile oak and diffuse-porous beech trees. Tree Physiol 22:1201–1210PubMedGoogle Scholar
  7. Becker M, Niemenen T, Géremia F (1994) Short-term variations and long-term changes in oak productivity in northeastern France. The role of climate and atmospheric CO2. Ann Sci For 51:477–492Google Scholar
  8. Biondi F (1993). Climatic signals in tree rings of Fagus sylvatica L. from the central Apennines, Italy. Acta Oecol 14:57–71Google Scholar
  9. Bouriaud O, Bréda N, Le Moguédec G, Nepveu G (2003) Modeling variability of wood density in beech as affected by ring age, radial growth and climate. Trees 18:264–276Google Scholar
  10. Box GEP, Jenkins GM (1976) Time series analysis: forecasting and control. Holden-Day, OaklandGoogle Scholar
  11. Bréda N (1994) Analyse du fonctionnement hydrique des chênes sessile (Quercus petraea) et pédonculé (Quercus robur) en conditions naturelles; effets des facteurs du milieu et de l’éclaircie. PhD Thesis, University of Nancy I Henri PoincaréGoogle Scholar
  12. Bréda N (2003). Ground-based measurements of leaf area index: a review of methods, instruments and current controversies. J Exp Bot 54:2403–2417CrossRefPubMedGoogle Scholar
  13. Bréda N, Granier A, Aussenac G (1995). Effect of thinning on soil and tree water relations, transpiration and growth in an oak forest (Quercus petraea (Matt.) Liebl.). Tree Physiol 15:295–306PubMedGoogle Scholar
  14. Brêthes A, Ulrich E (1997) Renecofor. Caractéristiques pédologiques des 102 peuplements du réseau. Office National des Forêts, Département des Recherches Techniques, FranceGoogle Scholar
  15. Bridge MC, Gasson PE, Cutler DF (1996) Dendroclimatological observations on trees at Kew and Wakehurst place: event and pointer years. Forestry 69:263–269CrossRefGoogle Scholar
  16. Briffa KR, Jones PD (1990) Basic chronology statistics and assessment. In: Cook ER, Kairiukstis LA (eds) Methods of dendrochronology. Applications in the environmental sciences. Kluwer, Dordrecht, pp 137–152Google Scholar
  17. Cluzeau C, Ulrich E, Lanier M, Garnier F (1998) Renecofor. Interprétation des mesures dendrométriques de 1991 à 1995 des 102 peuplements du réseau. Office National des Forêts, Département des Recherches Techniques, FranceGoogle Scholar
  18. Desplanque C, Rolland C, Schweingruber FH (1999). Influence of species and abiotic factors on extreme tree ring modulation: Picea abies and Abies alba in Tarentaise and Maurienne (French Alps). Trees 13:218–227CrossRefGoogle Scholar
  19. Dittmar C, Zech W, Elling W (2003). Growth variations of Common becch (Fagus sylvatica L.) under different climatic and environmental conditions in Europe—a dendroecological study. For Ecol Manage 173:63–78Google Scholar
  20. Dobremez JF, Camaret S, Bourjot L, Ulrich E, Brêthes A, Coquillard P, Dumé G, Dupouey JL, Forgeard F, Gauberville C, Gueugnot J, Picard JF, Savoie JM, Schmitt A, Timbal J, Touffet J, Trémolières M (1997) Renecofor. Inventaire et interprétation de la composition floristique de 101 peuplements du réseau. Office National des Forêts, Département des Recherches Techniques, FranceGoogle Scholar
  21. Dupouey JL, Leavitt SW, Choisnel E, Jourdain S (1993). Modelling carbon isotope fractionation in tree rings based on effective evapotranspiration and soil water status. Plant Cell Environ 16:939–947Google Scholar
  22. Eckstein D, Richter K, Aniol RW, Quichel F (1984) Dendroklimatologische untersuchungen zum buchensterben im sudwestlichen vogelsberg. Forstw Cbl 103:274–290Google Scholar
  23. Foster JR, LeBlanc DC (1993). A physiological approach to dendroclimatic modeling of oak radial growth in the midwestern United States. Can J For Res 23:783–798Google Scholar
  24. Fritts HC (1976) Tree-ring and climate, Academic, LondonGoogle Scholar
  25. Giles DG, Black TA, Spittlehouse DL (1985). Determination of growing season soil water deficits on a forested slope using water balance analysis. Can J For Res 15:107–114Google Scholar
  26. Gindl W, Grabner M., Wimmer R (2000). The influence of temperature on lignin content in treeline Norway spruce compared with maximum density and ring width. Trees 14:409–414CrossRefGoogle Scholar
  27. Granier A, Biron P, Lemoine D (2000). Water balance, transpiration and canopy conductance in two beech stands. Agric For Meteorol 100:291–308CrossRefGoogle Scholar
  28. Granier A, Bréda N, Biron P, Villette S (1999). A lumped water balance model to evaluate duration and intensity of drought constraints in forest stands. Ecol Model 116:269–283CrossRefGoogle Scholar
  29. Guiot J (1986). ARMA techniques for modelling Tree-ring response to climate and for reconstructing variations of paleoclimates. Ecol Model 33:149–171CrossRefGoogle Scholar
  30. Guiot J (1991) The bootstrapped response function. Tree-Ring Bull 51:39–41Google Scholar
  31. Guiot J, Goeury C (1996). PPPBase, a software for statistical analysis of paleoecological and paleoclimatological data. Dendrochronologia 14:295–300Google Scholar
  32. Gutiérrez E (1988). Dendroecological study of Fagus sylvatica L. in the Montseny mountains (Spain). Acta Oecol Oecol Plant 9:301–309Google Scholar
  33. Holmes RL (1994) Dendrochronology program library user’s manual. Laboratory of tree-ring research, University of Arizona, TucsonGoogle Scholar
  34. Holmsgaard E (1962) Influence of weather on growth and reproduction of beech. Commun Inst For Fenn 55.5:1–4Google Scholar
  35. Lebaube S, Le Goff N, Ottorini JM, Granier A (2000). Carbon balance and tree growth in a Fagus sylvatica stand. Ann For Sci 57:49–61CrossRefGoogle Scholar
  36. Lebourgeois F (1997) Renecofor. Etude dendrochronologique des 102 peuplements du réseau. Office National de Forêts, Département des Recherches Techniques, 307 pagesGoogle Scholar
  37. Lebourgeois F, Cousseau G, Ducos Y (2004) Climate-tree-growth relationships of Quercus petraea Mill stand in the Forest of Bercé (Futaie des Clos, Sarthe, France). Ann For Sci 61:361–372CrossRefGoogle Scholar
  38. Lebourgeois F, Differt J, Granier A, Bréda N, Ulrich E (2002). Premières observations phénologiques des peuplements du réseau national de suivi à long terme des écosystèmes forestiers (RENECOFOR). Rev For Fr 54:407–418Google Scholar
  39. Lebourgeois F, Granier A, Bréda N (2001) Une analyse des changements climatiques régionaux en France entre 1956 et 1997. Ann For Sci 58:733–754CrossRefGoogle Scholar
  40. Lemoine D, Granier A, Cochard H (1999). Mechanism of freeze-induced embolism in Fagus sylvatica L. Trees 13:206–210CrossRefGoogle Scholar
  41. Oberhuber W, Stumbock M, Kofler W (1998). Climate-tree-growth relationships of Scots pine stands (Pinus sylvestris L.) exposed to soil dryness. Trees 13:19–27CrossRefGoogle Scholar
  42. Penninckx V, Meerts P, Herbauts J, Gruber W (1999). Ring width and element concentrations in beech (Fagus sylvatica L.) from a periurban forest in central Belgium. For Ecol Manage 113:23–33Google Scholar
  43. Piutti E, Cescatti A (1997). A quantitative analysis of the interactions between climatic response and intraspecific competition in European beech. Can J For Res 27:277–284CrossRefGoogle Scholar
  44. Raftoyannis Y, Radoglou K (2002). Physiological responses of beech and sessile oak in a natural mixed stand during a dry summer. Ann Bot 89:723–730CrossRefPubMedGoogle Scholar
  45. Roberston EO, Jozsa LA, Spittlehouse DL (1990). Estimating douglas-fir wood production from soil and climate. Can J For Res 20:357–364Google Scholar
  46. Rozas V (2001). Detecting the impact of climate and disturbances on tree-rings of Fagus sylvatica L. and Quercus robur L. in a lowland forest in Cantabria, Northern Spain. Ann For Sci 58:237–251CrossRefGoogle Scholar
  47. Saurer M, Borella S, Schweingruber F, Siegwolf R (1997). Stable carbon isotopes in tree rings of beech: climatic versus site-related influences. Trees 11:291–297CrossRefGoogle Scholar
  48. Schweingruber FH, Aellen-Rumo K, Weber U, Wehrli U (1990). Rhythmic growth fluctuations in forest trees of Central Europe and the Front Range in Colorado. Trees 4:99–106CrossRefGoogle Scholar
  49. Schmitt U, Möller R, Eckstein D (2000). Seasonal wood formation dynamics of beech (Fagus sylvatica L.) and black locust (Robinia pseudoacacia L.) as determined by the “pinning” technique. J Appl Bot 74:10–16Google Scholar
  50. Tessier L (1989). Spatio-temporal analysis of climate-tree ring relationships. New Phytol 111:517–529Google Scholar
  51. Wickramasinghe A (1988). Modeling tree growth potential based on effective evapotranspiration. For Sci 34:864–881Google Scholar
  52. Wigley TM, Briffa KR, Jones PD (1984). On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. J Clim Appl Meteorol 23:201–213CrossRefGoogle Scholar
  53. Zahner R, Donnelly AR (1967). Refining correlations of water deficits and radial growth in young red pine. Ecology 48:523–530Google Scholar
  54. Zahner R, Stage AR (1966). A procedure for calculating daily moisture stress and its utility in regressions of tree growth on weather. Ecology 47:64–74Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • F. Lebourgeois
    • 1
    Email author
  • N. Bréda
    • 2
  • E. Ulrich
    • 3
  • A. Granier
    • 2
  1. 1.UMR INRA-ENGREF 1092, Laboratoire d’Etude des Ressources Forêt-Bois (LERFOB)Equipe Ecosystèmes Forestiers et Dynamique du PaysageNancy CedexFrance
  2. 2.UMR INRA-UHP 1137Ecologie et Ecophysiologie Forestières, INRAChampenouxFrance
  3. 3.Office National des Forêts, Département RechercheFontainebleauFrance

Personalised recommendations