, Volume 18, Issue 5, pp 566–575 | Cite as

Morphological and ecophysiological variation of the hybrid oak Quercus subpyrenaica (Q. faginea × Q. pubescens)

  • Hocine Himrane
  • Jesús Julio Camarero
  • Eustaquio Gil-PelegrínEmail author
Original Article


Natural hybridization is common among oaks. We studied the variability of morphological and ecophysiological variables in the hybrid Quercus subpyrenaica and its assumed parental species Q. faginea and Q. pubescens, which co-occur in NE Spain. To assess the fitness of these taxa we studied several ecophysiological variables (hydraulic conductivity, Kh; hydraulic specific conductivity, Ks; leaf specific conductivity, LSC; water potential corresponding to a 50% loss of conductivity, PLC50; efficiency of light absorption, Ea). We performed a correspondence analysis (CA) to ordinate seedlings, grown under homogeneous environmental conditions, according to their plant and leaf morphology. The CA axis 1 synthesized intra-taxon variability, while the CA axis 2 summarized inter-taxa variability. Q. subpyrenaica showed a wide spectrum of forms, but they were overall closer to those of Q. faginea. We defined three phenotypes within the hybrid based on morphology, which were: (i) the robur group (Qs-r; auriculate leaf base, rounded lobe apex); (ii) Q. pubescens (Qs-p; rounded leaf base, acute lobe apex); and (iii) Q. faginea (Qs-f; acute leaf base, acute-spiny lobe apex). The mean values of Ks and PLC50 arranged the hybrid groups in the same order as the ordination based on leaf morphology. The Qs-r group showed the highest values of Ks and PLC50, while the Qs-f group showed the lowest. Both morphologically and ecophysiologically, the hybrids showed a wide range of values, which spanned and even exceeded the variation of parental taxa.


Hydraulic conductivity Xylem vulnerability to cavitation Leaf morphology Sub-Mediterranean oaks 



This work was supported by 1FD97-0911-C03-01 project (Subpr. 1) and AECI grant to H.H. We sincerely thank F. Valladares (CCMA, CSIC) and J. Esteso (CITA) for their advices on the use of Y-Plant software. We also thank M.A. Pascual and J. Voltas for their assistance, and P.G. Goicoechea for improving an earlier version of the manuscript. JJC acknowledges the financial support of a INIA-DGA contract.


  1. Aas G (1993) Taxonomical impact of morphological variation in Quercus robur and Q. petraea: a contribution to the hybrid controversy. Ann Sci For 50:107–114Google Scholar
  2. Abrams MD (1990) Adaptations and responses to drought in Quercus species of North America. Tree Physiol 7:227–238PubMedGoogle Scholar
  3. Amaral Franco J (1990) Quercus L. In: Castroviejo S, Laínz M, López G, Montserrat P, Muñoz F, Paiva J, Villar L (eds) Flora Ibérica. II. Plantas Vasculares de la Península Ibérica e Islas Baleares. RJBM-CSIC, Madrid, pp 16–36Google Scholar
  4. Axelrod DI (1983) Biogeography of oaks in the Arcto-Tertiary province. Ann Miss Bot Gard 70:629–657Google Scholar
  5. Bacilieri R, Ducousso A, Petit RJ, Kremer A (1996) Mating system and asymmetric hybridization in a mixed stand of European oaks. Evolution 50:900–908Google Scholar
  6. Benzécri JP (1992) Correspondence analysis handbook. Dekker, New YorkGoogle Scholar
  7. Blanco E, Casado MA, Costa M, Escribano R, García M, Génova M, Gómez A, Gómez F, Moreno JC, Morla C, Regato P, Sáinz H (1997) Los bosques ibéricos: una interpretación geobotánica. Planeta, MadridGoogle Scholar
  8. ter Braak CJF (1995) Ordination. In: Jongman RHG, ter Braak CJF, van Tongeren OFR (eds) Data analysis in community and landscape ecology. Cambridge University Press, Cambridge, pp 91–174Google Scholar
  9. Brubaker LB (1986) Responses of tree populations to climatic change. Vegetatio 67:119–130Google Scholar
  10. Bruschi P, Vendramin GG, Bussotti F, Grossoni P (2000) Morphological and molecular differentiation between Quercus petraea (Matt.) Liebl. and Quercus pubescens Willd. (Fagaceae) in northern and central Italy. Ann Bot 85:325–333CrossRefGoogle Scholar
  11. Bruschi P, Grossoni P, Bussotti F (2003) Within- and among-tree variation in leaf morphology of Quercus petraea (Matt.) Liebl. natural populations. Trees 17:164–172Google Scholar
  12. Bussotti F, Grossoni P (1997) European and Mediterranean oaks (Quercus, Fagaceae)—SEM characterization of the micromorphology of the abaxial leaf surface. Bot J Linn Soc 124:183–199CrossRefGoogle Scholar
  13. Camarero JJ, Sisó S, Gil-Pelegrín E (2003) Fractal dimension does not adequately describe the complexity of leaf margin in seedlings of Quercus species. An Jardín Bot Madrid 60:63–71Google Scholar
  14. Carlisle A, Brown AHF (1965) The assessment of the taxonomic status of mixed oak (Quercus spp.) populations. Watsonia 6:120–127Google Scholar
  15. Catalán Bachiller G (1991) Semillas de árboles y arbustos forestales. MAP-ICONA, MadridGoogle Scholar
  16. Ceballos L, Ruiz de la Torre J (1979) Árboles y arbustos de la España peninsular. ETSIM, MadridGoogle Scholar
  17. Cochard H, Tyree MT (1990) Xylem dysfunction in Quercus: vessel sizes, tyloses, cavitation and seasonal changes in embolism. Tree Physiol 6:393–407PubMedGoogle Scholar
  18. Cochard H, Cruiziat P, Tyree MT (1992) Use of positive pressures to establish vulnerability curves. Plant Physiol 100:205–209Google Scholar
  19. Cochard H, Breda N, Granier A (1996) Whole tree hydraulic conductance and water loss regulation in Quercus during drought: evidence for stomatal control of embolism? Ann Sci For 53:197–206Google Scholar
  20. Corcuera L, Camarero JJ, Gil-Pelegrín E (2002) Functional groups in Quercus species derived from the analysis of pressure–volume curves. Trees 16:465–472CrossRefGoogle Scholar
  21. Craft KJ, Ashley MV, Koenig WD (2002) Limited hybridization between Quercus lobata and Quercus douglasii (Fagaceae) in a mixed stand in central coastal California. Am J Bot 89:1792–1798Google Scholar
  22. Dervin C (1992) Comment interpréter les résultats d’une analyse factorielle des correspondances? Coll. STAT-ITCF, ITCF, FranceGoogle Scholar
  23. Díaz Fernández PM, Jiménez Sancho P, Martín Albertos S, De Tuero y Reyna M, Gil Sánchez L (1995) Regiones de procedencia de Quercus robur L., Quercus petraea (Matt.) Liebl. y Quercus humilis Miller. ICONA, MadridGoogle Scholar
  24. Ducousso A, Bacilieri R, Demesure B, Dumolin-Lapègue S, Kremer A, Petit R, Zanetto A (1997) Structuration géographique de la diversité génétique chez les chênes à feuilles caduques européens. ONF-Bull Tech 33:7–19Google Scholar
  25. Dumolin-Lapègue S, Demesure B, Fineschi S, Le Corre V, Petit RJ (1997) Phylogeographic structure of white oaks throughout the European continent. Genetics 146:1475–1487PubMedGoogle Scholar
  26. Dupouey JL (1983) Analyse multivariable de quelques caractères morphologiques de populations de chênes (Quercus robur L. et Quercus petraea (Matt.) Liebl.) du Hurepoix. Ann Sci For 40:265–282Google Scholar
  27. Ehleringer JR, Smedley MP (1989) Stomatal sensitivity and water-use efficiency in oaks and their hybrids. USDA Forest Serv Gen Tech Rep INT-256:98–102. USDA, WashingtonGoogle Scholar
  28. Fotelli MN, Radoglou KM, Constantinidou HIA (2000) Water stress responses of seedlings of four Mediterranean oak species. Tree Physiol 20:1065–1075PubMedGoogle Scholar
  29. Gardiner AS (1970) Pedunculate and sessile oak (Quercus robur L. and Quercus petraea (Matt.) Liebl.). A review of the hybrid controversy. Forestry 43:151–160Google Scholar
  30. Govaerts R, Frodin DG (1998) World checklist and bibliography of Fagales (Betulaceae, Corylaceae, Fagaceae and Ticodendraceae). Royal Botanic Gardens, KewGoogle Scholar
  31. Grandjean G, Sigaud P (1987) Contribution à la taxonomie et à l’écologie des chênes du Berry. Ann Sci For 44:35–66Google Scholar
  32. Herrán A, Espinel S, Goicoechea PG (1999) Utilización del polimorfismo del ADN de cloroplastos para definir regiones de procedencia materna en los robles blancos de la Península Ibérica. Invest Agric Syst Rec For 8:139–150Google Scholar
  33. Hewitt GM (1999) Post-glacial re-colonization of European biota. Biol J Linn Soc 68:87–112CrossRefGoogle Scholar
  34. Himrane H (2002) Etude de l’hétérogeneité de la progéniture de l’hybride Quercus subpyrenaica E.H. del Villar. CIHEAM, SaragosaGoogle Scholar
  35. Howard DJR, Preszler W, Williams J, Fenchel S, Boecklen WJ (1997) How discrete are oak species? Insights from a hybrid zone between Quercus grisea and Quercus gambelii. Evolution 51:747–755Google Scholar
  36. Huguet del Villar EH (1935) Sur le nom de quelques Quercus et la systématique du faginea. Cavanillesia 7:57–70Google Scholar
  37. Iestwaart JH, Feij AE (1989) A multivariate analysis of introgression between Q. robur and Q. petraea in The Netherlands. Acta Bot Neerl 38:313–325Google Scholar
  38. Jalas J, Suominen J, Lampinen R (1999) Atlas Florae Europaeae. (Available at
  39. Jarbeau JA, Ewers FW, Davis SD (1995) The mechanism of water-stress-induced embolism in two species of chaparral shrubs. Plant Cell Environ 18:189–196Google Scholar
  40. Jensen RS, Essaugh NH (1976) Numerical taxonomic studies of hybridization in Quercus. Syst Bot 1:1–19Google Scholar
  41. Jiggins CD, Mallet J (2000) Bimodal hybrid zones and speciation. Tree 15:250–255CrossRefPubMedGoogle Scholar
  42. Jiménez Sancho MP, Díaz Fernández PM, Martín Albertos S, Gil Sánchez L (1998) Regiones de procedencia de Quercus pyrenaica Willd., Quercus faginea Lam. y Quercus canariensis Willd. OAPN, MadridGoogle Scholar
  43. Kissling P (1977) Les poils des quatre espèces de chênes du Jura (Quercus pubescens, Q. petraea, Q. robur et Q. cerris). Ver Schweiz Bot Ges 87:1–18Google Scholar
  44. Kleinschmit J, Kleinschmit JGR (2000) Quercus roburQuercus petraea: a critical review of the species concept. Glas Sum Pokuse 37:441–452Google Scholar
  45. Kleinschmit JRG, Bacilieri R, Kremer A, Roloff A (1995) Comparison of morphological traits of pedunculate oak (Quercus robur L.) and sessile oak (Quercus petraea (Matt.) Liebl. Silv Genet 44:256–269Google Scholar
  46. Kremer A, Dupouey JL, Deans JD, Cottrell J, Csaikl U, Finkeldey R, Espinel S, Jensen J, Kleinschmit J, Dam BV, Ducousso A, Forrest I, Heredia UL, Lowe AJ, Tutkova M, Munro RC, Steinhoff S, Badeau V (2003) Morphological variation in mixed oak stands (Quercus robur and Quercus petraea) is stable across western European populations. Ann Sci For 59:777–787CrossRefGoogle Scholar
  47. Krüssman G (1986) Manual of cultivated broad-leaves trees and shrubs. Timber, PortlandGoogle Scholar
  48. Legendre P, Legendre L (1998) Numerical ecology. Elsevier, AmsterdamGoogle Scholar
  49. Loidi J, Herrera M (1990) The Quercus pubescens and Quercus faginea forests in the Basque Country (Spain): distribution and typology in relation to climatic factors. Vegetatio 90:81–92Google Scholar
  50. Manos PS, Doyle JJ, Nixon KC (1999) Phylogeny, biogeography, and processes of molecular differentiation in Quercus subgenus Quercus (Fagaceae). Mol Phylogenet Evol 12:333–349CrossRefPubMedGoogle Scholar
  51. Manos PS, Zhou ZK, Cannon CH (2001) Systematics of Fagaceae: phylogenetic tests of reproductive trait evolution. Int J Plant Sci 162:1361–1379CrossRefGoogle Scholar
  52. Muir G, Fleming CC, Schlötterer Ch (2000) Species status of hybridizing oaks. Nature 405:1016PubMedGoogle Scholar
  53. Nardini A, Pitt F (1999) Drought resistance of Quercus pubescens as a function of root hydraulic conductance, xylem embolism and hydraulic architecture. New Phytol 143:485–493CrossRefGoogle Scholar
  54. Nardini A, LoGullo MA, Salleo S (1998) Seasonal changes of root hydraulic conductance (K-RL) in four forest trees: an ecological interpretation. Plant Ecol 139:81–90CrossRefGoogle Scholar
  55. Nixon KC (1993) Infrageneric classification of Quercus (Fagaceae) and typification of sectional names. Ann Sci For 50:25–34Google Scholar
  56. Olalde M, Herrán A, Espinel S, Goicoechea PG (2002) White oaks phylogeography in the Iberian Peninsula. For Ecol Manage 156:89–102CrossRefGoogle Scholar
  57. Olsson U (1975) A morphological analysis of phenotypes in populations of Quercus (Fagaceae) in Sweden. Bot Not 128:53–68Google Scholar
  58. Pammenter NW, Vander Willigen C (1998) A mathematical and statistical analysis of the curves illustrating vulnerability of xylem to cavitation. Tree Physiol 18:589–593PubMedGoogle Scholar
  59. Pearcy RW, Yang W (1996) A three-dimensional crown architecture model for assessment of light capture and carbon gain by understory plants. Oecologia 108:1–12Google Scholar
  60. Petit RJ, Brewer S, Bordács S, Burg K, Cheddadi R, Coart E, Cottrell J, Csaikl UM, van Dam B, Deans JD, Espinel S, Fineschi S, Finkeldey R, Glaz I, Goicoechea PG, Jensen JS, König AO, Lowe AJ, Madsen SF, Mátyás G, Munro RC, Popescu F, Slade D, Tabbener H, de Vries SGM, Ziegenhagen B, de Beaulieu J-L, Kremer A (2002) Identification of refugia and post-glacial colonisation routes of European white oaks based on chloroplast DNA and fossil pollen evidence. For Ecol Manage 156:49–74CrossRefGoogle Scholar
  61. Rieseberg LH (1997) Hybrid origins of plant species. Annu Rev Ecol Syst 28:359–389CrossRefGoogle Scholar
  62. Rieseberg LH, Ellstrand NC (1993) What can molecular and morphological markers tell us about plant hybridization. Crit Rev Plant Sci 12:213–241Google Scholar
  63. Rieseberg LH, Archer MA, Wayne RK (1999) Transgressive segregation, adaptation, and speciation. Heredity 83:363–372Google Scholar
  64. Rieseberg LH, Raymond O, Rosenthal DM, Lai Z, Livingstone K, Nakazato T, Durphy JL, Schwarzbach AE, Donovan LA, Lexer C (2003) Major ecological transitions in wild sunflowers facilitated by hybridization. Science 301:1211–1216CrossRefPubMedGoogle Scholar
  65. Rivas-Martínez S, Sáenz C (1991) Enumeración de los Quercus de la Península Ibérica. Rivasgodaya 6:101–110Google Scholar
  66. Rushton BS (1978) Quercus robur L. and Quercus petraea (Matt.) Liebl.: a multivariate approach to the hybrid problem. I. Data acquisition, analysis and interpretation. Watsonia 12:81–101Google Scholar
  67. Rushton BS (1983) An analysis of variation of leaf characters in Quercus robur L. and Quercus petraea (Matt.) Liebl. population samples from Northern Ireland. Ir For 40:52–77Google Scholar
  68. Rushton BS (1993) Natural hybridization within the genus Quercus. Ann Sci For 50:73–91Google Scholar
  69. Schwarzbach AE, Donovan LA, Rieseberg LH (2001) Transgressive character expression in a hybrid sunflower species. Am J Bot 88:270–277PubMedGoogle Scholar
  70. Schweitzer JA, Martinsen GD, Whitham TG (2002) Cottonwood hybrids gain fitness traits of both parents: a mechanism for their long-term persistence? Am J Bot 89:981–990Google Scholar
  71. Sisó S, Camarero JJ, Gil-Pelegrín E (2001) Relationship between hydraulic resistance and leaf morphology in broadleaf Quercus species: a new interpretation of leaf lobation. Trees 15:341–345CrossRefGoogle Scholar
  72. Sokal RR, Rohlf FJ (1995) Biometry: the principles and practice of statistics in biological research. Freeman, New YorkGoogle Scholar
  73. Tognetti R, Longobucco A, Raschi A (1998) Vulnerability of xylem to embolism in relation to plant hydraulic resistance in Quercus pubescens and Quercus ilex co-occurring in a Mediterranean coppice stand in central Italy. New Phytol 139:437–447CrossRefGoogle Scholar
  74. Tyree MT (1999) Water relations and hydraulic architecture. In: Pugnaire FI, Valladares F (eds) Handbook of functional plant ecology. Dekker, New York, pp 221–268Google Scholar
  75. Tyree MT, Cochard H (1996) Summer and winter embolism in oak: impact on water relations. Ann Sci For 53:173–180Google Scholar
  76. Valladares F, Skillman JB, Pearcy RW (2002) Convergence in light capture efficiencies among tropical forest understory plants with contrasting crown architectures: a case of morphological compensation. Am J Bot 89:1275–1284Google Scholar
  77. Williams DG, Ehleringer JR (2000) Carbon isotope discrimination and water relations in oak hybrid populations in southwestern Utah. West N Am Nat 60:121–129Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Hocine Himrane
    • 1
    • 2
  • Jesús Julio Camarero
    • 1
  • Eustaquio Gil-Pelegrín
    • 1
    Email author
  1. 1.Unidad de Recursos ForestalesCentro de Investigación y Tecnología AgroalimentariaZaragozaSpain
  2. 2.Institut National de la Recherche ForestièreAlgiersAlgeria

Personalised recommendations