Trees

, Volume 18, Issue 3, pp 346–353 | Cite as

Studies of crystallinity of Scots pine and Norway spruce cellulose

  • Seppo Andersson
  • Hanne Wikberg
  • Erkki Pesonen
  • Sirkka Liisa Maunu
  • Ritva Serimaa
Original Article

Abstract

The variation in the mass fraction of crystalline cellulose (crystallinity of wood), the intrinsic crystallinity of cellulose, and the thickness of cellulose crystallites in early wood of Norway spruce [Picea abies (L.) Karst.], and Scots pine (Pinus sylvestris L.) grown in Finland were studied using wide angle X-ray scattering and nuclear magnetic resonance spectroscopy. The mass fraction of crystalline cellulose in wood increased slightly with the distance from the pith and was about 30±4% in mature wood of both species. The crystallinity of cellulose and the thickness of cellulose crystallites were almost constant for both species. The crystallinity of cellulose was 52±3% for both species and the average thickness of the cellulose crystallites was 32±1 Å and 31±1 Å for Norway spruce and Scots pine, respectively. The mass fraction of cellulose in wood, calculated from the crystallinity values, increased with the distance from the pith for both species.

Keywords

Crystallinity  Picea abies  Pinus sylvestris X-ray diffraction NMR 

Notes

Acknowledgements

The financial support of the Academy of Finland and Jenny and Antti Wihuri Foundation are gratefully acknowledged. Dr. Bo Hortling is thanked for the sulphate lignin sample and Dr. Kaija Jokela for assistance in data analysis. Mr. Tapio Järvinen is thanked for preparing the wood samples.

References

  1. Ahtee M, Hattula T, Mangs J, Paakkari T (1983) An X-ray diffraction method for determination of crystallinity in wood pulp. Pap Puu 8:475–480Google Scholar
  2. Alexander LE (1969) X-ray diffraction methods in polymer science. Wiley, New York, pp 137–197Google Scholar
  3. Andersson S, Serimaa R, Torkkeli M, Paakkari T, Saranpää P, Pesonen E (2000) Microfibril angle of Norway spruce [Picea abies (L.) Karst.] compression wood: comparison of different measuring techniques. J Wood Sci 46:343–349Google Scholar
  4. Andersson, S, Serimaa R, Paakkari T, Saranpää P, Pesonen E (2003) Crystallinity of wood and the size of cellulose crystallites in Norway spruce (Picea abies). J. Wood Sci 49:531–537Google Scholar
  5. Anttonen S, Manninen AM, Saranpää P, Kainulainen P, Linder S, Vapaavuori E (2002) Effects of long-term nutrient optimisation of stem wood chemistry in Picea abies. Trees 16:386–394CrossRefGoogle Scholar
  6. Atalla, RH, VanderHart DL (1999) The role of solid state 13C NMR spectroscopy in studies of the nature of native celluloses. Solid State Nucl Magn Reson 15:1–19CrossRefPubMedGoogle Scholar
  7. Baltá-Calleja FJ, Vonk. CG (1989) X-ray scattering of synthetic polymers. Elsevier, Amsterdam, pp 175–204Google Scholar
  8. Cave ID, Walker JCF (1994) Stiffness of wood in fast-grown plantation softwoods: the influence of microfibril angle. For Prod J. 44:43–48Google Scholar
  9. Costa e Silva J, Nielsen BH, Rodrigues J, Pereira H, Wellendorf H (1999) Rapid determination of the lignin content in Sitka spruce [Picea sitchensis (Bong.) Carr.] wood by Fourier transform infrared spectrometry. Holzforschung 53:597–602Google Scholar
  10. Cullity BD (1978) Elements of X-ray diffraction, 2nd edn. Addison-Wesley, New York, pp 101–102Google Scholar
  11. Donaldson LA, Burdon RD (1995) Clonal variation and repeatability of microfibril angle in Pinus radiata. N Z J For Sci 25:164–174Google Scholar
  12. Dwianto W, Tanaka F, Inoue M, Norimoto M (1996) Crystallinity changes of wood by heat or steam treatment. Wood Res 83:47–49Google Scholar
  13. Evans R, Newman RH, Roick UC, Suckling ID, Wallis FA (1995) Changes in cellulose crystallinity during kraft pulping. Comparison of infrared, X-ray diffraction and solid state NMR results. Holzforschung 49:498–504Google Scholar
  14. Fengel D (1978) Über die fibrilläre Structur von Cellulose aus Holz. Holzforschung 32:37–44Google Scholar
  15. Fengel D, Wegener G (1989) Wood chemistry, ultrastructure, reactions. De Gruyter, New York, pp 26–27, 56Google Scholar
  16. Gardner KH, Blackwell J (1974) The structure of native cellulose. Biopolymers 13:1975–2001Google Scholar
  17. Gindl W, Teischinger A (2002) Axial compression strength of Norway spruce related to structural variability and lignin content. Composites A 33:1623–1628CrossRefGoogle Scholar
  18. Gindl W, Gupta HS, Grünwald C (2002) Lignification of spruce tracheid secondary cell walls related to longitudinal hardness and modulus of elasticity using nano-indentation. Can J Bot 80:1029–1033CrossRefGoogle Scholar
  19. Horii F, Hirai A, Kitamaru R, Sakurada, I (1985) Cross-polarization/magic-angle spinning 13C NMR studies of cotton and cupra rayon with different water contents. Cell Chem Technol 19:513–523Google Scholar
  20. Hult E-L, Larsson PT, Iversen T (2000) A comparative CP/MAS 13C-NMR study of cellulose structure in spruce wood and kraft pulp. Cellulose 7:35–55CrossRefGoogle Scholar
  21. Jakob HF, Fengel D, Tschegg SE, Fratzl P (1995) The elementary cellulose fibril in Picea abies: Comparison of transmission electron microscopy, small-angle X-ray scattering, and wide-angle X-ray scattering results. Macromolecules 28:8782–8787Google Scholar
  22. Kennedy RW (1995) Coniferous wood quality in the future—Concerns and strategies. Wood Sci Technol 29:321–338Google Scholar
  23. Kraus W, Nolze G (1996) Powder cell—a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. J. Appl Crystallogr 29:301–303CrossRefGoogle Scholar
  24. Kubojima Y, Okano T, Ohta M (1997) Effect of annual ring widths on structural and vibrational properties of wood. Mokuzai Gakkaishi 43:634–641Google Scholar
  25. Leary GJ, Morgan KR, Newman RH (1987) Solid state carbon-13 nuclear magnetic resonance study of Pinus radiata wood. Appita J 40:181–184Google Scholar
  26. Lennholm H, Larsson T, Iversen, T (1994) Determination of cellulose Iα and Iβ in lignocellulosic materials. Carbohydr Res 261:119–131CrossRefGoogle Scholar
  27. Lichtenegger H, Reiterer A, Stanzl-Tschegg SE, Fratzl P (1999) Variation of cellulose microfibril angles in softwoods and hardwoods—a possible strategy of mechanical optimization. J Struct Biol 128:257–269CrossRefPubMedGoogle Scholar
  28. Lotfy M, El-osta M, Kellogg RM, Foschi RO, Butters RG (1974) A mechanistic approach to crystallite length as related to cell-wall structure. Wood Fiber 6:36–45Google Scholar
  29. Marton R, Rushton P, Sacco JS, Sumiya K (1972) Dimensions and ultrastructure in growing fibers. Tappi 55:1499–1504Google Scholar
  30. Mazet JF, Nepveu G (1991) Relations entre caractéristiques de retrait et densité du bois chez le pinsylvestre, le sapin pectiné et l’épicéa commun. Ann Sci For 48:87–100Google Scholar
  31. Newman RH (1999) Estimation of the lateral dimensions of cellulose crystallites using 13C NMR signal strengths. Solid State Nucl Magn Reson 15:21–29CrossRefPubMedGoogle Scholar
  32. Newman RH, Hemmingson JA (1990) Determination of the degree of cellulose crystallinity in wood by carbon-13 nuclear magnetic resonance spectroscopy. Holzforschung 44:351–355Google Scholar
  33. Newman RH, Hemmingson JA (1995) Carbon-13 NMR distinction between categories of molecular order and disorder in cellulose. Cellulose 2:95–110Google Scholar
  34. Nishimura H, Okano T, Asano I (1982) Fine structure of wood cell walls. IV. Size and disorder parameter of cellulose crystallites in Akamatsu wood and ramie fibers. Mokuzai Gakkaishi 28:659–668Google Scholar
  35. Nomura T, Yamada T (1972) Structural observation on wood and bamboo by X-ray. Wood Res 52:1–12Google Scholar
  36. Paakkari T, Serimaa R (1984) A study of the structure of wood cells by X-ray diffraction. Wood Sci Technol 18:79–85Google Scholar
  37. Paakkari T, Blomberg M, Serimaa R, Järvinen M (1988) A texture correction for quantitative X-ray powder diffraction analysis of cellulose. J Appl Crystallogr 21:393–397CrossRefGoogle Scholar
  38. Panshin AJ, de Zeeuw C (1980) Textbook of wood technology, structure, identification, properties, and uses of the commercial woods of the United States and Canada, 4th edn. McGraw-Hill, New YorkGoogle Scholar
  39. Rissanen A, Sirviö J (2000) Männyn (Pinus sylvestris) ja kuusen (Picea abies) puuaineen ja -kuitujen ominaisuuksien vaihtelu. Publication 23. Department of Forest Resource Management, University of HelsinkiGoogle Scholar
  40. Ruland W (1961) X-ray determination of crystallinity and diffuse disorder scattering. 14:1180–1185Google Scholar
  41. Sahlberg U, Salmen L, Oscarsson A (1997) The fibrillar orientation in the S2-layer of wood fibres as determined by X-ray diffraction analysis. Wood Sci Technol 31:77–86CrossRefGoogle Scholar
  42. Sanio K (1872) Ueber die Grösse der Holssellen bei der gemeinen Kiefer (Pinus sylvestris). Jahrb Wiss Bot 8:401–420Google Scholar
  43. Sarén M, Andersson S, Serimaa R, Saranpää P, Pesonen E, Paakkari T (2001) Structural variation of tracheids in Norway Spruce [Picea abies (L.) Karst.]. J Struct Biol 136:101–109CrossRefPubMedGoogle Scholar
  44. Sivonen H, Maunu SL, Sundholm F, Jämsä S, Viitaniemi P (2002) Magnetic resonance studies of thermally modified wood. Holzforschung 56:648–654Google Scholar
  45. Sjöström E (1993) Wood chemistry, fundamentals and applications, 2nd edn. Academic Press, San DiegoGoogle Scholar
  46. Sugiyama J, Vuong R, Chanzy H (1991) Electron diffraction study on the two crystalline phases occurring in native cellulose from an algal cell wall. Macromolecules 24:4168–4175Google Scholar
  47. Tanaka F, Koshijima T, Okamura K (1981) Characterization of cellulose in compression and opposite woods of a Pinus densiflora tree grown under the influence of strong wind. Wood Sci Technol 15:265–273Google Scholar
  48. Teeäär R, Serimaa R, Paakkari T (1987) Crystallinity of cellulose, as determined by CP/MAS-NMR and XRD methods. Polymer Bull 17:231–237Google Scholar
  49. Vainio U, Andersson S, Serimaa R, Paakkari T, Saranpää P, Treacy M, Evertsen J (2002) Variation of microfibril angle between four provenances of Sitka spruce (Picea sitchensis [Bong.] Carr.). Plant Biol 4:27–33Google Scholar
  50. VanderHart DL, Atalla RH (1984) Studies of microstructures in native celluloses using solid-state 13C NMR. Macromolecules 17:1465–1472Google Scholar
  51. Verkasalo E, Leban J-M (2002) MOE and MOR in static bending of small clear specimens of Scots pine, Norway spruce and European fir from Finland and France and their prediction for the comparison of wood quality. Pap Puu 84:332–340Google Scholar
  52. Vonk CG (1973) Computerization of Ruland’s X-ray method for determination of the crystallinity in polymers J Appl Crystallogr 6:148–152Google Scholar
  53. Vonk CG (1983) The determination of the crystallinity in glass-ceramic materials by the method of Ruland. J Appl Crystallogr 16:274–276CrossRefGoogle Scholar
  54. Wagenführ R, Scheiber C (1989) Holzatlas, 3rd edn. VEB, Leipzig, pp 656–665Google Scholar
  55. Willis JM, Herring FG (1987) Effect of water in the 13C CP/MAS NMR spectrum of white spruce wood. Macromolecules 20:1554–1556Google Scholar
  56. Wodzicki TJ (2001) Natural factors affecting wood structure. Wood Sci Technol 35:5–26CrossRefGoogle Scholar
  57. Zobel BJ, Jett JB (1995) Genetics of wood production. Springer, Berlin Heidelberg New York, pp 13–16Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Seppo Andersson
    • 1
  • Hanne Wikberg
    • 2
  • Erkki Pesonen
    • 3
  • Sirkka Liisa Maunu
    • 2
  • Ritva Serimaa
    • 1
  1. 1.Department of Physical SciencesUniversity of HelsinkiHelsinkiFinland
  2. 2.Laboratory of Polymer ChemistryUniversity of HelsinkiHelsinkiFinland
  3. 3.Finnish Forest Research InstituteVantaaFinland

Personalised recommendations