Advertisement

Trees

, Volume 18, Issue 3, pp 264–276 | Cite as

Modelling variability of wood density in beech as affected by ring age, radial growth and climate

  • O. Bouriaud
  • N. BrédaEmail author
  • G. Le Moguédec
  • G. Nepveu
Original Article

Abstract

Although it has been recognized as a key parameter of wood quality and a good source of information on growth, annual wood density has been little studied within diffuse-porous trees such as beech ( Fagus sylvatica Liebl.). In this paper we examine the variability encountered in beech ring density series and analyze the influences of ring age, ring width, climate and between-tree variability on density. Thirty ring sequences were sampled from 55-year- old dominant beech trees growing within the same stand; ring density and width were measured using radiography. Ring density proved to be less variable through time than ring width. The relationship between these two variables was less than observed in ring-porous trees and it showed great variation between trees. The sensitivity of ring width and density to climate was also different; width was strongly linked to soil water deficit whereas density was correlated to temperature and August rainfall. Unlike ring width, wood density showed sensitivity towards climatic characteristics of the late growing season. A large part of annual density variability remains unexplained, even using advanced modelled water balance variables. We hypothesize that a significant part of the tree ring is under internal control. We also demonstrated great inter-tree variability (the tree effect) in ring density, which has an influence on density but not on trees’ response to climate.

Keywords

Fagus sylvatica L. Tree ring Bioclimatology Tree effect Water balance 

Notes

Acknowledgements

The authors are grateful to the French Forest Management Service (Office National des Forêts) for allowing the sample of trees, and to P. Behr, P. Gelhaye, F. Gérémia, C. Kieffer and R. Schipfer for their technical support. We thank F. Mothe who provided X-ray analysis software and helpful advises. We also gratefully acknowledge A. Granier for supplying water and carbon balance simulations and for his constructive comments. The Ph.D. student, O.B., received a grant from the French Government (Ministry of Research).

References

  1. Ackermann F (1995) Influence du type de station forestière sur les composantes intracernes de la densité du bois de chêne pédonculé ( Quercus robur L.) dans les chênaies de l’Adour et des côteaux basco-béarnais. Ann Sci For 52:635–652Google Scholar
  2. Antonova GF, Stasova VV (1993) Effects of environmental factors on wood formation in Scots pine stems. Trees 7:214–219Google Scholar
  3. Antonova GF, Stasova VV (1997) Effects of environmental factors on wood formation larch ( Larix sibirica Ldb.) stems. Trees 11:462–468CrossRefGoogle Scholar
  4. Aranda I, Gil L, Pardos JA (2000) Water relations and gas exchange in Fagus sylvatica L. and Quercus petraea (Mattuschka) Liebl. in a mixed stand at their southern limit of distribution in Europe. Trees 14:344–352CrossRefGoogle Scholar
  5. Badeau V, Dupouey JL, Becker M, Picard JF (1995) Long-term trends of Fagus sylvatica L. in northeastern France. A comparison between high and low density stands. Acta Oecol 16:571–583Google Scholar
  6. Barbaroux C, Bréda N (2002) Contrasting distribution and seasonal dynamics of carbohydrate reserves in stem wood of adult ring-porous sessile oak and diffuse-porous beech trees. Tree Physiol 22:1201–1210PubMedGoogle Scholar
  7. Becker M, Bert GD, Bouchon J, Dupouey JL, Picard JF, Ulrich E (1995) Long term changes in forest productivity: the dendrochronological approach. In: Landmann G, Bonneau M (eds) Forest decline and atmospheric deposition effects in the French mountains. Springer, Berlin Heidelberg New York, pp 143–153Google Scholar
  8. Beismann H, Schweingruber F, Speck T, Körner C (2002) Mechanical properties of spruce and beech wood grown in elevated CO2. Trees 16:511–518CrossRefGoogle Scholar
  9. Bergès L, Dupouey JL, Franc A (2000) Long term changes in wood density and radial growth of Quercus petraea Liebl. in northern France since the middle of the nineteenth century. Trees 14:398–408CrossRefGoogle Scholar
  10. Briffa KR, Bartholin TS, Eckstein D, Jones PD, Karlen W, Schweingruber FH, Zetterberg P (1990) A 1,400-year tree-ring record of summer temperatures in Fennoscandia. Nature 346:434–439CrossRefGoogle Scholar
  11. Briffa KR, Jones PD, Schweingruber FH, Shiyatov SG, Cook ER (1995) Unusual twentieth-century summer warmth in a 1,000-year temperature record from Siberia. Nature 376:156–159Google Scholar
  12. Brix H (1972) Nitrogen fertilization and water effects on photosynthesis and earlywood-latewood production in Douglas fir. Can J For Res 2:467–478Google Scholar
  13. Chantre G, Gouma R (1993) Influence du génotype, de l’âge et de la station sur la relation entre l’infradensité du bois et la vigueur chez l’Epicéa commun ( Picea abies Karst.). AFOCEL, Medoc, France, pp 61–89Google Scholar
  14. Cook ER, Kairiukstis L.A (eds) (1990) Methods of dendrochronology: applications in environmental science. Kluwer, DordrechtGoogle Scholar
  15. Cregg BM, Dougherty PM, Hennesey TC (1988) Growth and wood quality of young loblolly pine trees in relation to stand density and climatic factors. Can J For Res 18:851–858Google Scholar
  16. D’Arrigo RD, Jacoby GC, Free RM (1992) Tree ring width and maximum latewood density at the North American tree line: parameters of climate change. Can J For Res 22:1290–1296Google Scholar
  17. DeBell D, Singleton R, Harrington CA, Gartner BL (2002) Wood density and fiber length in young Populus stems: relation to clone, age, growth rate, and pruning. Wood Fiber Sci 34:529–539Google Scholar
  18. Degron R, Nepveu G (1996) Prévision de la variabilité intra- et interarbre de la densité du bois de chêne rouvre ( Quercus petraea Liebl.) par modélisation des largeurs et des densités de bois initial et final en fonction de l’âge cambial, de la largeur de cerne et du niveau dans l’arbre. Ann For Sci 53:1019–1030Google Scholar
  19. Domec JC, Gardner BL (2002) Age- and position-related changes in hydraulic versus mechanical dysfunction of xylem: inferring the design criteria for Douglas-fir wood structure. Tree Physiol 22:91–104PubMedGoogle Scholar
  20. Fritts HC (1976) Tree rings and climate. Academic Press, LondonGoogle Scholar
  21. Gindl W, Grabner M, Wimmer R (2000) The influence of temperature on lignin content in treeline Norway spruce compared with maximum density and ring width. Trees 14:409–414CrossRefGoogle Scholar
  22. Granier A, Bréda N, Biron S, Villette S (1999) A lumped water balance model to evaluate duration and intensity of drought constraints in forest stands. Ecol Model 116:269–283CrossRefGoogle Scholar
  23. Granier A, Ceschia E, Damesin C, Dufrêne E, Epron D, Gross P, Lebaube S, Ledantec V, Le Goff N, Lemoine D, Lucot E, Ottorini JM, Pontailler JY, Saugier B (2000) The carbon balance of a young beech forest. Funct Ecol 14:312–325CrossRefGoogle Scholar
  24. Guilley E, Nepveu G (2003) Interprétation anatomique des composantes d’un modèle mixte de densité de bois chez le chêne sessile ( Quercus petraea Liebl.): âge du cerne compté depuis la moelle, largeur de cerne, arbre, variabilité interannuelle et duraminisation. Ann For Sci 60:331–346CrossRefGoogle Scholar
  25. Guilley E, Hervé JC, Huber F, Nepveu G (1999) Modelling variability of within-ring density components in Quercus petraea Liebl. with mixed-effect models and simulating the influences of contrasting silvicultures on wood density. Ann For Sci 56:449–458Google Scholar
  26. Guilley E, Hervé JC, Nepveu G (2003) The influence of site quality, silviculture and region on the wood density mixed model Quercus petraea Liebl. For Ecol Manage (in press)Google Scholar
  27. Hervé JC (1999) Mixed-effects modelling of between-tree and within-tree variations: application to wood basic density in the stem. FAIR CT96–1915. Product properties prediction—improved utilization in the forestry—wood chain applied on spruce sawnwood, Sub-task 2.1. CPL, Newbury, pp 25–42Google Scholar
  28. Hughes MK, Schweingruber FH, Cartwright D, Kelly PM (1984) July-August temperature at Edinburgh between 1721 and 1975 from tree-ring density and width data. Nature 308:341–344Google Scholar
  29. Keller R, Timbal J, Le Tacon F (1976) La densité du bois de hêtre dans le Nord-Est de la France. Influence des caractéristiques du milieu et du type de sylviculture. Ann For Sci 33:1–17Google Scholar
  30. Kienast F, Schweingruber FH, Bräker OU, Schär E (1987) Tree-ring studies along ecological gradients and the potential of single-year analyses. Can J For Res 17:683–696Google Scholar
  31. Lachaud S (1981) Xylogenèse chez les Dicotylédones arborescentes. II. Evolution avec l’âge des modalités de la réactivation cambiale et de la xylogenèse chez le hêtre et le chêne. Can J Bot 59:2692–2697Google Scholar
  32. Lachaud S, Bonnemain JL (1981) Xylogenèse chez les Dicotylédones arborescentes. I. Modalités de la remise en activité du cambium et de la xylogenèse chez les Hêtres et les Chênes âgés. Can J Bot 59:1222–1230Google Scholar
  33. Larson PR (1994) The vascular cambium: development and structure. Springer, Berlin Heidelberg New YorkGoogle Scholar
  34. Le Moguédec G, Dhote JF, Nepveu G (2002) Choosing simplified mixed model for simulations when data have a complex hierarchical organization: an example with some basic properties in sessile oak wood ( Quercus petraea Liebl). Ann For Sci 59:847–855CrossRefGoogle Scholar
  35. Littell RC, Milliken GA, Stroup WW, Wolfinger RD (1996) SAS system for Mixed Models, SAS Institute, Cary, N.C.Google Scholar
  36. Mörling T (2002) Evaluation of annual ring width and ring density development following fertilization and thinning of Scots pine. Ann For Sci 59:29–40CrossRefGoogle Scholar
  37. Mothe F, Duchanois G, Leban JM, Nepveu G (1998) Analyse microdensitométrique appliquée au bois: une méthode de traitement des données aboutissant à la description synthétique et homogène des profils de cerne (programme CERD). Ann For Sci 55:301–315Google Scholar
  38. Nepveu G (1981a) Prédiction juvénile de la qualité du bois de hêtre. Ann For Sci 38:425–447Google Scholar
  39. Nepveu G (1981b) Propriétés du bois de hêtre. In: Tessier du Cros E, Le Tacon F, Nepveu G, Pardé J, Perrin R, Timbal J (eds) Le Hêtre. INRA, Paris, pp 377–387Google Scholar
  40. Nepveu G (2001) Effet de la conservation en forêt sans exploitation sur l’altération de chablis de hêtre ( Fagus sylvatica L.). Convention ONF/INRA/AFOCEL BP 009. INRA-CRF, Nancy, ChampenouxGoogle Scholar
  41. Pape R (1999) Influence of thinning and tree diameter class on the development of basic density and ring width in Picea abies. Scand J For Res 14:27–37CrossRefGoogle Scholar
  42. Parker ML, Henoch WNS (1971) The use of Engelmann spruce latewood density for dendrochronological purposes. Can J For Res 1:90–98Google Scholar
  43. Perrin JR, Ferrand JC (1984) Automatisation des mesures sur carottes de sondage de la densité du bois, de son retrait et des contraintes de croissance. Ann For Sci 491:69–86Google Scholar
  44. Polge H (1973) Etat actuel des recherches sur la qualité du bois de hêtre. BT ONF Bull Tech 4:13–22Google Scholar
  45. Polge H, Nicholls JWP (1972) Quantitative radiography and the densitometric analysis. Wood Sci 5:51–59Google Scholar
  46. Quentin C, Bigorre F, Granier A, Bréda N, Tessier D (2001) Etude des sols de la Forêt de Hesse (Lorraine). Contribution à l’étude du bilan hydrique. EGS 8:279–292Google Scholar
  47. Ray PM, Green PB, Cleland R (1972) Role of turgor in plant cell growth. Nature 239:163–164Google Scholar
  48. Rozas V (2001) Detecting the impact of climate and disturbances on tree-rings of Fagus sylvatica L. and Quercus robur L. in a lowland forest in Cantabria, Northern Spain. Ann For Sci 58:237–251CrossRefGoogle Scholar
  49. Ryan DAJ, McLaughlin DL, Gordon AM (1993) Interpretation of sugar maple ( Acer saccharum) ring chronologies from central and southern Ontario using a mixed linear model. Can J For Res 24:568–575Google Scholar
  50. Sass U, Eckstein D (1995) The variability of vessel size in beech ( Fagus sylvatica L.) and its ecophysiological interpretation. Trees 9:247–252Google Scholar
  51. Savva Y, Schweingruber F, Milyutin L, Vaganov E (2002) Genetic and environmental signals in tree rings from different provenances of Pinus sylvestris L. planted in the southern taiga, central Siberia. Trees 16:313–324CrossRefGoogle Scholar
  52. Schmitt U, Möller R, Eckstein D (2000) Seasonal wood formation dynamics of beech ( Fagus sylvatica L.) and black locust ( Robinia pseudoaccacia L.) as determined by the “pinning” technique. J Appl Bot 74:10–16Google Scholar
  53. Schweingruber FH (1983) Tree rings and environment dendroecology. Paul Haupt, StuttgartGoogle Scholar
  54. Schweingruber FH, Briffa KR (1996) Tree-ring density for climate reconstruction. In: Jones PD, Raymond SB, Jouzel J (eds) Climatic variations and forcing mechanisms of the last 2000 years. Springer, Berlin Heidelberg New YorkGoogle Scholar
  55. Tsoumis G (1958) Growth, specific gravity and shrinkage of the wood of Pinus nigra Arn., Fagus sylvatica L., Quercus sessiliflora Sm. and Castanea vesca Gärtn. Aristolian University, ThessalonicaGoogle Scholar
  56. Vaganov EA (1987) Histometric analysis of the tree rings in ecological and dendrochronological research. In: Kairiukstis L, Bednarz Z, Feliksis E (eds) Methods of dendrochronology.1. International Institute for Applied Systems Analysis, Laxenburg, Austria, and Polish Academy of Sciences-Systems Research Institute, Warsaw, PolandGoogle Scholar
  57. Von Pechmann H (1958) Die Auswirkung der Wuchsgeschwindigkeit auf die Holzstruktur und die Holzeigenschaften einiger Baumarten. Schweiz Z Forstwes 109:615–647Google Scholar
  58. Whitmore FW, Zahner R (1966) Development of the xylem ring in stems of young Red pine trees. For Sci 12:198–210Google Scholar
  59. Woodcock DW (1989) Climate sensitivity of wood-anatomical features in a ring-porous oak (Quercus macrocarpa). Can J For Res 19:639–644Google Scholar
  60. Yasue K, Funada R, Kobayashi O, Ohtoni J (2000) The effect of tracheid dimensions on variations in maximum density of Picea glehnii and relationships to climate factors. Trees 14:223–229CrossRefGoogle Scholar
  61. Zahner R, Whitmore F (1960) Early growth of radically thinned loblolly pine. J For 58:628–634Google Scholar
  62. Z’Graggen S (1990) Ring width, maximum density and vessel area of beech from a central alpine valley with subcontinental climate. Proceedings of a conference on Tree Rings and Environment, 3–9 September 1990, Ystad, South Sweden, pp 353–356Google Scholar
  63. Zhang SY, Eyono Owoundi R, Nepveu G, Mothe F, Dhôte JF (1993) Modelling wood density in European oak ( Quercus petraea L. and Quercus robur L.) and simulating the silvicultural influence. Can J For Res 23:2587–2593Google Scholar
  64. Zhang SY, Nepveu G, Eyono Owoundi R (1994) Intra-tree and inter-tree variation in selected wood quality characteristics of European oak ( Quercus robur L. and Quercus petraea L.). Can J For Res 24:1818–1823Google Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • O. Bouriaud
    • 1
  • N. Bréda
    • 1
    Email author
  • G. Le Moguédec
    • 2
  • G. Nepveu
    • 2
  1. 1.Unité Mixte de Recherche en Ecologie et Ecophysiologie forestières, Equipe Phytoécologie Forestière—Centre de NancyInstitut National de la Recherche Agronomique INRA—Centre de Recherches ForestièresFrance
  2. 2.Laboratoire d’Etude des Ressources Forêt-Bois, Equipe de Recherche sur la Qualité des Bois—Centre de NancyInstitut National de la Recherche Agronomique INRA—Centre de Recherches Forestières, Unité Mixte de Recherche INRA-ENGREF 1092France

Personalised recommendations