Advertisement

Trees

, Volume 18, Issue 1, pp 83–92 | Cite as

Effects of a severe drought on Quercus ilex radial growth and xylem anatomy

  • Leyre Corcuera
  • Jesús Julio Camarero
  • Eustaquio Gil-PelegrínEmail author
Original Article

Abstract

We assessed the response of Quercus ilex subsp. ballota to the severe summer drought recorded in 1994 in NE Spain through the study of changes in radial growth and wood anatomy. We selected a coppice stand in the Iberian Peninsula, which is characterized by a Mediterranean climate under continental influence. We measured internode length, tree-ring width, mean and maximum vessel diameter, and vessel density for 1981–1997. The annual predicted hydraulic conductance (K h) was calculated following Hagen-Poisseuille's law. We compared the tree-ring width, vessel diameter and K h of Q. ilex subsp. ballota and co-existing ring-porous oaks (Q. faginea, Q. pyrenaica) for a dry summer (1994) and a wet summer (1997). To evaluate the drought-resistance of xylem for Q. ilex subsp. ballota (dominant under continental conditions) and Q. ilex subsp. ilex (dominant in mild areas) we determined vulnerability curves. Dimensionless indices of internode length, tree-ring width, and vessel density were compared with climatic data (monthly total precipitation and mean temperature) using correlation analyses. Internode length, tree-ring width, K h, and mean and maximum vessel diameter declined in 1994. According to vulnerability curves, Q. ilex subsp. ballota showed a greater drought resistance than Q. ilex subsp. ilex. During the year of growth, we found a positive influence of January and June–August precipitation on the internode length, tree-ring width, and vessel density. The response of Q. ilex subsp. ballota radial-growth to summer drought was comparable to that of Q. faginea latewood. Overall, growth and wood anatomy of Q. ilex subsp. ballota showed a plastic response to drought.

Keywords

Cavitation Climate Dendroecology Vulnerability curve Xylem 

Notes

Acknowledgements

This work was supported by 1FD97–0911-C03–01 project (Subpr. 1) and a INIA grant to L.C. We thank M.A. Pascual Navarro (SIA-DGA), G. Montserrat Martí and C. Pérez Rontomé (IPE-CSIC) for their kind help with the vulnerability curves and the microtome. We thank N.M. Holbrook and two anonymous reviewers for their valuable comments.

References

  1. Aït-Bachir S (1998) Utilisation des images-satéllite Landsat-TM pour l'étude diachronique du syndrome de déperissement des chênaies de la région de Cubel (Aragón). Master Thesis. IAMZ, SaragossaGoogle Scholar
  2. Allué Andrade JL (1990) Atlas fitoclimático de España: taxonomías. MAPA-INIA, MadridGoogle Scholar
  3. Axelrod DI (1983) Biogeography of oaks in the Arcto-Tertiary province. Ann Mo Bot Gard 70: 629–657Google Scholar
  4. Baas P, Schweingruber FH (1987) Ecological trends in the wood anatomy of trees, shrubs and climbers from Europe. IAWA Bull 8:245–274Google Scholar
  5. Baas P, Werker E, Fahn A (1983) Some ecological trends in vessel characters. IAWA Bull 4:141–159Google Scholar
  6. Becker M, Lévy G (1982) Le dépérissement du chêne en forêt de Tronçais. Les causes écologiques. Ann Sci For 39:439–444Google Scholar
  7. Blanco E, Casado MA, Costa M, Escribano R, García M, Génova M, Gómez A, Gómez F, Moreno JC, Morla C, Regato P, Sáinz H (1997) Los bosques ibéricos: una interpretación geobotánica. Planeta, MadridGoogle Scholar
  8. Bussotti F, Bettini D, Grossoni P, Mansuino S, Nibbi R, Soda C, Tani C (2002) Structural and functional traits of Quercus ilex in response to water availability. Environ Exp Bot 47:11–23CrossRefGoogle Scholar
  9. Carlquist S (1975) Ecological strategies of xylem evolution. University of California Press, Los AngelesGoogle Scholar
  10. Cartan-Son M, Floret C, Galan MJ, Grandjanny M, Le Floc'h E, Maistre M, Perret P, Romane F (1992) Factors affecting radial growth of Quercus ilex L. in a coppice stand in southern France. Vegetatio 99–100:61–68Google Scholar
  11. Castro-Díez P, Montserrat-Martí G (1998) Phenological pattern of fifteen Mediterranean phanaerophytes from Quercus ilex communities of NE-Spain. Plant Ecol 139:103–112CrossRefGoogle Scholar
  12. Castro-Díez P, Villar-Salvador P, Pérez-Rontomé C, Maestro-Martínez M, Montserrat-Martí G (1997) Leaf morphology and leaf chemical composition in three Quercus (Fagaceae) species along a rainfall gradient in NE Spain. Trees 11:127–134CrossRefGoogle Scholar
  13. Cavender-Bares J, Holbrook NM (2001) Hydraulic properties and freezing-induced cavitation in sympatric evergreen and deciduous oaks with contrasting habitats. Plant Cell Environ 24:1243–1256CrossRefGoogle Scholar
  14. Ceballos L, Ruiz de la Torre J (1979) Árboles y arbustos de la España peninsular. ETSIM, MadridGoogle Scholar
  15. Cochard H, Tyree MT (1990) Xylem dysfunction in Quercus: vessel sizes, tyloses, cavitation and seasonal changes in embolism. Tree Physiol 6:393–407Google Scholar
  16. Cochard H, Cruiziat P, Tyree MT (1992) Use of positive pressures to establish vulnerability curves. Plant Physiol 100:205–209Google Scholar
  17. Cook ER, Holmes RL (1992) Guide for computer program ARSTAN, Dendrochronology Program Library. Laboratory of Tree-Ring Research, University of Arizona, TucsonGoogle Scholar
  18. Corcuera L (2003) Respuesta al clima de distintas especies del género Quercus: Estructura y funcionamiento comparado. PhD thesis, University of Lleida, SpainGoogle Scholar
  19. Corcuera L, Camarero JJ, Gil-Pelegrín E (2002) Functional groups in Quercus species derived from the analysis of pressure-volume curves. Trees 16:465–472CrossRefGoogle Scholar
  20. Cramer HH (1984) On the predisposition to disorders of Middle European forests. Pflanzenschutz-Nachr 2:97–207Google Scholar
  21. Cutini A, Mascia V (1996) Silvicultural treatment of holm oak (Quercus ilex L.) coppices in Southern Sardinia: effects of thinning on water potential, transpiration and stomatal conductance. Ann Ist Sper Selv 27:47–53Google Scholar
  22. Davis SD, Sperry JS, Hacke UG (1999) The relationship between xylem conduit diameter and cavitation caused by freezing. Am J Bot 86:1367–1372PubMedGoogle Scholar
  23. Delatour C (1983) Le dépérissement des chênes en Europe. Rev For Fr 35:265–282Google Scholar
  24. Di Castri F (1981) Mediterranean-type shrublands of the world. In: Di Castri F, Goodall DW, Specht RL (eds), Mediterranean-type shrublands. Elsevier, Amsterdam, pp 1–52Google Scholar
  25. Douglass AE (1936) Climatic cycles and tree growth, vol III. A study of cycles. Publication 289. Carnegie Institute of Washington, WashingtonGoogle Scholar
  26. Ducrey M, Toth J (1992) Effect of cleaning and thinning on height growth and girth increment in holm oak coppices (Quercus ilex L.). Vegetatio 99–100:365–376Google Scholar
  27. Eckardt FE, Heim G, Methy M, Sauvezon R (1975) Interception de l'énergie rayonnante, échanges gazeux et croissance dans un forêt méditerranéenne à feuillage persistant (Quercetum ilicis). Photosynthetica 9:145–156Google Scholar
  28. Enjalbal I, Grandjanny M, Maistre M, Perret P, Romane F, Shater Z (1996) The holm oak (Quercus ilex L.) radial growth facing the rainfall unpredictability. An example in Southern France. Ann Ist Sper Selv 27:31–37Google Scholar
  29. Faci González JM, Martínez Cob A (1991) Cálculo de la evapotranspiración de referencia en Aragón. DGA, SaragossaGoogle Scholar
  30. Feild TS, Brodribb T (2001) Stem water transport and freeze-thaw xylem embolism in conifers and angiosperms in a Tasmanian treeline heath. Oecologia 127:314–320CrossRefGoogle Scholar
  31. Floret C, Galán MJ, Lefloc'h E, Orshan E, Romane F (1990) Growth forms and phenomorphology traits along an environmental gradient: tools for studying vegetation? J Veg Sci 1:71–80Google Scholar
  32. Font Tullot I (1988) Historia del clima de España. Cambios climáticos y sus causas. INM, MadridGoogle Scholar
  33. Fritts HC (1976) Tree rings and climate. Academic Press, LondonGoogle Scholar
  34. Gratani L (1996) Leaf and shoot growth dynamics of Quercus ilex L. Acta Oecol 17:17–27Google Scholar
  35. Gulías J, Flexas J, Abadía A, Medrano H (2002) Photosynthetic response to water deficit in six Mediterranean sclerophyll species: possible factors explaining the declining distribution of Rhamnus ludovici-salvatoris, an endemic Balearic species. Tree Physiol 22:687–697PubMedGoogle Scholar
  36. Hacke UG, Sperry JS (2001) Functional and ecological xylem anatomy. Perspect Plant Ecol Evol Syst 4:97–115Google Scholar
  37. Hacke UG, Sperry JS, Pockman WT, Davis SD, McCulloh KA (2001) Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia 126:457–461CrossRefGoogle Scholar
  38. Herrera CM (1992) Historical effects and sorting processes as explanations for contemporary ecological patterns: Character syndromes in Mediterranean woody plants. Am Nat 140:421–446CrossRefGoogle Scholar
  39. Huber F (1993) Déterminisme de la surface des vaisseaux du bois des chênes indigènes (Quercus robur L., Quercus petraea Liebl.). Effet individuel, effet de l'appareil foliaire, des conditions climatiques et de l'âge de l'arbre. Ann Sci For 50:509–524Google Scholar
  40. IPCC (2001) Climate change 2001: the scientific basis. Cambridge University Press, CambridgeGoogle Scholar
  41. Jarbeau JA, Ewers FW, Davis SD (1995) The mechanism of water-stress-induced embolism in two species of chaparral shrubs. Plant Cell Environ 18:189–196Google Scholar
  42. Liphschitz N, Lev-Yadun S (1986) Cambial activity of evergreen and seasonal dimorphics around the Mediterranean. IAWA Bull 7:145−153Google Scholar
  43. Lloret F, Siscart D (1995) Los efectos demográficos de la sequía en poblaciones de encina. CSECF 2:77–81Google Scholar
  44. Lo Gullo MA, Salleo S (1993) Different vulnerabilities of Quercus ilex to freeze- and summer drought-induced xylem embolism: an ecological interpretation. Plant Cell Environ 16:511–519Google Scholar
  45. Lumaret R, Mir C, Michaud H, Raynal V (2002) Phytogeographical variation of chloroplast DNA in holm oak (Quercus ilex L.). Mol Ecol 11:2327–2336CrossRefPubMedGoogle Scholar
  46. Manos PS, Zhou ZK, Cannon CH (2001) Systematics of Fagaceae: phylogenetic tests of reproductive trait evolution. Int J Plant Sci 162:1361–1379CrossRefGoogle Scholar
  47. Martínez-Vilalta J, Piñol J (2002) Drought-induced mortality and hydraulic architecture in pine populations of the NE Iberian Peninsula. For Ecol Manage 161:247–256Google Scholar
  48. Martínez-Vilalta J, Prat E, Oliveras I, Piñol J (2002) Hydraulic properties of roots and stems of nine woody species from a holm oak forest in NE Spain. Oecologia 133:19–29CrossRefGoogle Scholar
  49. Mayor X, Rodà F (1993) Growth response of holm oak (Quercus ilex L.) to commercial thinning in the Montseny mountains (NE Spain). Ann Sci For 50:247–256Google Scholar
  50. Mayor X, Belmonte R, Rodrigo A, Rodà F, Piñol J (1994) Crecimiento diametral de la encina (Quercus ilex L.) en un año de abundante precipitación estival: efecto de la irrigación previa y de la fertilización. Orsis 9:13–23Google Scholar
  51. Mencuccini M, Grace J (1995) Climate influences the leaf area/sapwood area ratio in Scots pine. Tree Physiol 15:1−10Google Scholar
  52. Mitrakos KA (1980) A theory for Mediterranean plant life. Acta Oecol 1:245–252Google Scholar
  53. Montoya Moreno R (1995) Red de seguimiento de daños en los montes. Daños originados por la sequía en 1994. CSECF 2:83–97Google Scholar
  54. Nabais C, Freitas H, Hagemeyer J (1998–1999) Tree-rings to climate relationships of Quercus ilex L. in NE-Portugal. Dendrochronologia 16–17:37–44Google Scholar
  55. Nardini A, Ghirardelli L, Salleo S (1998) Vulnerability to freeze stress of seedlings of Quercus ilex L.: an ecological interpretation. Ann Sci For 55:553–565Google Scholar
  56. Nardini A, Salleo S, Lo Gullo MA, Pitt F (2000) Different responses to drought and freeze stress of Quercus ilex L. growing along a latitudinal gradient. Plant Ecol 148:139–147CrossRefGoogle Scholar
  57. Oppenheimer HR (1957) Further observations on roots penetrating into rocks and their structure. Bull Res Counc Isr 6D:18–31Google Scholar
  58. Orshan G (1989) Plant pheno-morphological studies in Mediterranean type ecosystems. Kluwer, DordrechtGoogle Scholar
  59. Osborne CP, Mitchell PL, Sheehy JE, Woodward FI (2000) Modelling the recent historical impacts of atmospheric CO2 and climate change on Mediterranean vegetation. Global Change Biol 6:445–458CrossRefGoogle Scholar
  60. Palamarev E (1989) Paleobotanical evidences of the Tertiary history and origin of the Mediterranean sclerophyll dendroflora. Plant Syst Evol 162:93–107Google Scholar
  61. Pammenter NW, Vander Willigen C (1998) A mathematical and statistical analysis of the curves illustrating vulnerability of xylem to cavitation. Tree Physiol 18:589–593PubMedGoogle Scholar
  62. Peñuelas J, Lloret F, Montoya R (2001) Severe drought effects on Mediterranean woody flora. For Sci 47:214–218Google Scholar
  63. Piervitali E, Colacino M, Conte M (1997) Signals of climatic change in the Central-Western Mediterranean Basin. Theor Appl Climatol 58:211–219Google Scholar
  64. Pignatti S (1978) Evolutionary trends in Mediterranean flora and vegetation. Vegetatio 37:175–185Google Scholar
  65. Piñol J, Terradas J, Lloret F (1998) Climate warming, wildfire hazard, and wildfire occurrence in coastal eastern Spain. Clim Change 38:345–357CrossRefGoogle Scholar
  66. Poole DK, Miller PC (1975) Water relations of selected species of chaparral and coastal sage communities. Ecology 56:1118–1128Google Scholar
  67. Rivas-Martínez S, Sáenz C (1991) Enumeración de los Quercus de la Península Ibérica. Rivasgodaya 6:101–110Google Scholar
  68. Rodà F, Retana J, Gracia CA, Bellot J (1999) Ecology of Mediterranean evergreen oak forests. Springer, Berlin Heidelberg New YorkGoogle Scholar
  69. Sáenz de Rivas C (1967) Estudios sobre Quercus ilex L. y Quercus rotundifolia Lamk. Ana Inst Bot Cavanilles 2:243–262Google Scholar
  70. Salleo S, Lo Gullo MA (1990) Sclerophylly and plant water relations in three Mediterranean Quercus species. Ann Bot 65:259–270Google Scholar
  71. Sass U, Eckstein D (1995) The variability of vessel size in beech (Fagus sylvatica L.) and its ecophysiological interpretation. Trees 9:247–252Google Scholar
  72. Serrada R, Allué M, San Miguel A (1992) The coppice system in Spain. Current situation, state of art and major areas to be investigated. Ann Ist Sper Selv 23:266–275Google Scholar
  73. Simonin G, Cochard H, Delatour C, Granier A, Dreyer E (1994) Vulnerability of young oak seedlings (Quercus robur L.) to embolism: responses to drought and to an inoculation with Ophiostoma querci (Georgevitch) Nannf. Ann Sci For 51:493–504Google Scholar
  74. Sokal RR, Rohlf FJ (1995) Biometry: the principles and practice of statistics in biological research. Freeman, New YorkGoogle Scholar
  75. Sperry JS, Sullivan JE (1992) Xylem embolism in response to freeze-thaw cycles and water stress in ring porous, diffuse porous and conifer species. Plant Physiol 100:605–613Google Scholar
  76. Sperry JS, Nichols KL, Sullivan JE, Eastlack SE (1994) Xylem embolism in ring-porous, diffuse-porous and coniferous trees in northern Utah and interior Alaska. Ecology 75:1736–1752Google Scholar
  77. Stokes MA, Smiley TL (1968) An introduction to tree-ring dating. University of Chicago Press, ChicagoGoogle Scholar
  78. Tainter FH, Retzlaff WA, Starkey DA, Oak SW (1990) Decline of radial growth in red oaks is associated with short-term changes in climate. Eur J For Pathol 20:95–105Google Scholar
  79. Terradas J, Savé R (1992) The influence of summer and winter stress and water relationships on the distribution of Quercus ilex L. Vegetatio 99–100:137–145Google Scholar
  80. Tognetti R, Longobucco A, Raschi A (1998) Vulnerability of xylem to embolism in relation to plant hydraulic resistance in Quercus pubescens and Quercus ilex co-occurring in a Mediterranean coppice stand in central Italy. New Phytol 139:437–447CrossRefGoogle Scholar
  81. Tretiach M (1993) Photosynthesis and transpiration of evergreen Mediterranean and deciduous trees in an ecotone during a growing season. Acta Oecol 14:341–360Google Scholar
  82. Tretiach M, Rondi A (1994) Variazione stagionales dell'attività fotosintetica e maturazione fogliare in sei arboree nella costiera Triestina (NE Italia). Stud Trent Sci Nat 69:1−16Google Scholar
  83. Tryon EH, True RP (1958). Recent reductions in annual radial increments in dying scarlet oaks related to rainfall deficiencies. For Sci 4:219–230Google Scholar
  84. Tutin TG, Heywood VH, Burges NA, Moore DM, Valentine DH, Walters SM, Webb DA (1993) Flora Europaea, vol. 1. Cambridge University Press, LondonGoogle Scholar
  85. Tyree MT, Cochard H (1996) Summer and winter embolism in oak: impact on water relations. Ann Sci For 53:173–180Google Scholar
  86. Tyree MT, Ewers FW (1991) The hydraulic architecture of trees and other woody plants. New Phytol 119:345–360Google Scholar
  87. Tyree MT, Sperry JS (1989) Vulnerability of xylem to cavitation and embolism. Annu Rev Plant Physiol 40:19–38CrossRefGoogle Scholar
  88. Tyree MT, Alexander JL, Machado JL (1992) Loss of hydraulic conductivity due to water stress in intact juveniles of Quercus rubra and Populus deltoides. Tree Physiol 10:411–415Google Scholar
  89. Tyree MT, Davis SD, Cochard H (1994) Biophysical perspectives of xylem evolution: is there a tradeoff of hydraulic efficiency for vulnerability to dysfunction? IAWA J 15:335–360Google Scholar
  90. Valladares F, Balaguer L, Martínez-Ferri E, Pérez-Corona E, Manrique E (2002) Plasticity, instability and canalization: is the phenotypic variation in seedlings of sclerophyll oaks consistent with the environmental unpredictability of Mediterranean ecosystems? New Phytol 156:457–467Google Scholar
  91. Villar-Salvador P, Castro Díez P, Pérez Rontomé C, Montserrat Martí G (1997) Stem xylem features in three Quercus (Fagaceae) species along a climatic gradient in NE Spain. Trees 12:90–96CrossRefGoogle Scholar
  92. Woodcock DW (1989) Climate sensitivity of wood-anatomical features in a ring-porous oak (Quercus macrocarpa). Can J For Res 19:639–644Google Scholar
  93. Woodcock DW, Ignas CM (1994) Prevalence of wood characters in Eastern North America: what characters are most promising for interpreting climates from fossil wood? Am J Bot 81:1243–1251Google Scholar
  94. Zavala MA, Espelta JM, Lloret F (2000) Constraints and trade-offs in Mediterranean plant communities: The case of holm oak-Aleppo pine forests. Bot Rev 66:119–149Google Scholar
  95. Zhang SH, Romane F (1991) Variations de la croissance radiale de Quercus ilex L. en fonction du climat. Ann Sci For 48:225–234Google Scholar
  96. Zhang SY, Baas P, Zandee M (1992) Wood structure of the Rosaceae in relation to ecology, habit and phenology. IAWA J 13:307–349Google Scholar
  97. Zhou Z, Wilkinson H, Zheng-Yi W (1995) Taxonomical and evolutionary implications of the leaf anatomy and architecture of Quercus L. subgenus Quercus from China. Cathaya 7:1-34Google Scholar
  98. Zimmermann MH (1983) Xylem structure and the ascent of sap. Springer, Berlin Heidelberg New YorkGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • Leyre Corcuera
    • 1
  • Jesús Julio Camarero
    • 1
    • 2
  • Eustaquio Gil-Pelegrín
    • 1
    Email author
  1. 1.Unidad de Recursos ForestalesServicio de Investigación Agroalimentaria SaragossaSpain
  2. 2.Departament d'Ecologia, Facultat de BiologiaUniversitat de BarcelonaBarcelonaSpain

Personalised recommendations