Skip to main content

Advertisement

Log in

Plasma oxalate levels in primary hyperoxaluria type I show significant intra-individual variation and do not correlate with kidney function

  • Original Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Background

Primary hyperoxalurias are rare diseases with endogenous overproduction of oxalate, thus leading to hyperoxaluria, hyperoxalemia, urolithiasis, and/or nephrocalcinosis and eventually early kidney failure. Plasma oxalate (POx) is an important diagnostic parameter in clinical studies on primary hyperoxaluria (PH). This is especially the case in kidney failure, where urinary parameters are no longer suitable. We aimed to evaluate whether POx would be an adequate endpoint for clinical studies in PH patients with stable kidney function. In addition, the correlation of POx to serum creatinine (SCr) and calculated glomerular filtration rate (eGFR) was examined.

Methods

We retrospectively analyzed follow-up of individual POx values over time, as well as POx correlation to SCr, eGFR, and vitamin B6 (VB6), a common therapeutic in PH1. Results from 187 blood samples taken between 2009 and 2017, during routine laboratory evaluations from 41 patients with PH1 who had neither undergone dialysis nor transplantation, were evaluated.

Results

Negligibly low correlation coefficients (CCs) between POx vs. SCr (CC = -0.0950), POx vs. eGFR (CC = −0.1237), and POx vs. VB6 (CC = 0.1879) were found, with the exception of CKD stage 3a patients, who showed a positive correlation (CC of − 0.7329, POx vs eGFR). The intra-individual analysis of POx over time showed a high fluctuation of POx values.

Conclusion

We conclude that POx has a limited validity as a primary endpoint for clinical studies in PH1 patients with stable kidney function. In addition, it does not correlate to SCr and eGFR in this group of patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hoppe B (2012) An update on primary hyperoxaluria. Nat Rev Nephrol 8(8):467–475. https://doi.org/10.1038/nrneph.2012.113

    Article  CAS  PubMed  Google Scholar 

  2. Hoppe B, Beck BB, Milliner DS (2009) The primary hyperoxalurias. Kidney Int 75(12):1264–1271. https://doi.org/10.1038/ki.2009.32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cochat P, Deloraine A, Rotily M et al (1995) Epidemiology of primary hyperoxaluria type 1. Nephrol Dial Transplant 10(Suppl 8):3–7

    Article  Google Scholar 

  4. van Woerden CS, Groothoff JW, Wanders RJA et al (2003) Primary hyperoxaluria type 1 in The Netherlands: prevalence and outcome. Nephrol Dial Transplant 18(2):273–279

    Article  Google Scholar 

  5. Hopp K, Cogal AG, Bergstralh EJ et al (2015) Phenotype-genotype correlations and estimated carrier frequencies of primary hyperoxaluria. J Am Soc Nephrol 26(10):2559–2570. https://doi.org/10.1681/ASN.2014070698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Danpure CJ, Jennings PR, Watts RW (1987) Enzymological diagnosis of primary hyperoxaluria type 1 by measurement of hepatic alanine: glyoxylate aminotransferase activity. Lancet 1(8528):289–291

    Article  CAS  Google Scholar 

  7. van Woerden CS, Groothof JW, Wanders RJA et al (2006) Van gen naar ziekte; primaire hyperoxalurie type I door mutaties in het AGXT-gen (from gene to disease; primary hyperoxaluria type I caused by mutations in the AGXT gene). Ned Tijdschr Geneeskd 150(30):1669–1672

    PubMed  Google Scholar 

  8. Zhao F, Bergstralh EJ, Mehta RA et al (2016) Predictors of incident ESRD among patients with primary hyperoxaluria presenting prior to kidney failure. Clin J Am Soc Nephrol 11(1):119–126. https://doi.org/10.2215/CJN.02810315

    Article  CAS  PubMed  Google Scholar 

  9. Lieske JC, Monico CG, Holmes WS et al (2005) International registry for primary hyperoxaluria. Am J Nephrol 25(3):290–296. https://doi.org/10.1159/000086360

    Article  PubMed  Google Scholar 

  10. Barratt TM, Kasidas GP, Murdoch I et al (1991) Urinary oxalate and glycolate excretion and plasma oxalate concentration. Arch Dis Child 66(4):501–503

    Article  CAS  Google Scholar 

  11. Belostotsky R, Seboun E, Idelson GH et al (2010) Mutations in DHDPSL are responsible for primary hyperoxaluria type III. Am J Hum Genet 87(3):392–399. https://doi.org/10.1016/j.ajhg.2010.07.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cregeen DP, Williams EL, Hulton S et al (2003) Molecular analysis of the glyoxylate reductase (GRHPR) gene and description of mutations underlying primary hyperoxaluria type 2. Hum Mutat 22(6):497. https://doi.org/10.1002/humu.9200

    Article  CAS  PubMed  Google Scholar 

  13. Ventzke A, Feldkötter M, Wei A et al (2017) Systematic assessment of urinary hydroxy-oxo-glutarate for diagnosis and follow-up of primary hyperoxaluria type III. Pediatr Nephrol 32(12):2263–2271. https://doi.org/10.1007/s00467-017-3731-3

    Article  PubMed  Google Scholar 

  14. Brooks ER, Hoppe B, Milliner DS et al (2016) Assessment of urine proteomics in type 1 primary hyperoxaluria. Am J Nephrol 43(4):293–303. https://doi.org/10.1159/000445448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ogawa Y, Miyazato T, Hatano T (2000) Oxalate and urinary stones. World J Surg 24(10):1154–1159

    Article  CAS  Google Scholar 

  16. Mulay SR, Kulkarni OP, Rupanagudi KV et al (2013) Calcium oxalate crystals induce renal inflammation by NLRP3-mediated IL-1β secretion. J Clin Invest 123(1):236–246. https://doi.org/10.1172/JCI63679

    Article  CAS  PubMed  Google Scholar 

  17. Knauf F, Asplin JR, Granja I et al (2013) NALP3-mediated inflammation is a principal cause of progressive renal failure in oxalate nephropathy. Kidney Int 84(5):895–901. https://doi.org/10.1038/ki.2013.207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Milliner DS (2005) The primary hyperoxalurias: an algorithm for diagnosis. Am J Nephrol 25(2):154–160. https://doi.org/10.1159/000085407

    Article  PubMed  Google Scholar 

  19. Tang X, Bergstralh EJ, Mehta RA et al (2015) Nephrocalcinosis is a risk factor for kidney failure in primary hyperoxaluria. Kidney Int 87(3):623–631. https://doi.org/10.1038/ki.2014.298

    Article  CAS  PubMed  Google Scholar 

  20. Cochat P, Hulton S-A, Acquaviva C et al (2012) Primary hyperoxaluria type 1: indications for screening and guidance for diagnosis and treatment. Nephrol Dial Transplant 27(5):1729–1736. https://doi.org/10.1093/ndt/gfs078

    Article  CAS  PubMed  Google Scholar 

  21. Hoppe B, Danpure CJ, Rumsby G et al (1997) A vertical (pseudodominant) pattern of inheritance in the autosomal recessive disease primary hyperoxaluria type 1: lack of relationship between genotype, enzymic phenotype, and disease severity. Am J Kidney Dis 29(1):36–44

    Article  CAS  Google Scholar 

  22. Raju DL, Cantarovich M, Brisson M-L et al (2008) Primary hyperoxaluria: clinical course, diagnosis, and treatment after kidney failure. Am J Kidney Dis 51(1):e1–e5. https://doi.org/10.1053/j.ajkd.2007.08.027

    Article  PubMed  Google Scholar 

  23. Beck BB, Habbig S, Dittrich K et al (2012) Liver cell transplantation in severe infantile oxalosis--a potential bridging procedure to orthotopic liver transplantation? Nephrol Dial Transplant 27(7):2984–2989. https://doi.org/10.1093/ndt/gfr776

    Article  CAS  PubMed  Google Scholar 

  24. Milliner D, Hoppe B, Groothoff J (2018) A randomised phase II/III study to evaluate the efficacy and safety of orally administered Oxalobacter formigenes to treat primary hyperoxaluria. Urolithiasis 46(4):313–323. https://doi.org/10.1007/s00240-017-0998-6

    Article  CAS  PubMed  Google Scholar 

  25. Tang X, Voskoboev NV, Wannarka SL et al (2014) Oxalate quantification in hemodialysate to assess dialysis adequacy for primary hyperoxaluria. Am J Nephrol 39(5):376–382. https://doi.org/10.1159/000360624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Martin-Higueras C, Luis-Lima S, Salido E (2016) Glycolate oxidase is a safe and efficient target for substrate reduction therapy in a mouse model of primary Hyperoxaluria type I. Mol Ther 24(4):719–725. https://doi.org/10.1038/mt.2015.224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hoppe B, Kemper MJ, Hvizd MG et al (1998) Simultaneous determination of oxalate, citrate and sulfate in children's plasma with ion chromatography. Kidney Int 53(5):1348–1352. https://doi.org/10.1046/j.1523-1755.1998.00891.x

    Article  CAS  PubMed  Google Scholar 

  28. Schwartz GJ, Muñoz A, Schneider MF et al (2009) New equations to estimate GFR in children with CKD. J Am Soc Nephrol 20(3):629–637. https://doi.org/10.1681/ASN.2008030287

    Article  PubMed  PubMed Central  Google Scholar 

  29. Levey AS, Bosch JP, Lewis JB et al (1999) A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of diet in renal disease study group. Ann Intern Med 130(6):461–470

    Article  CAS  Google Scholar 

  30. Hoyer-Kuhn H, Kohbrok S, Volland R et al (2014) Vitamin B6 in primary hyperoxaluria I: first prospective trial after 40 years of practice. Clin J Am Soc Nephrol 9(3):468–477. https://doi.org/10.2215/CJN.06820613

    Article  PubMed  PubMed Central  Google Scholar 

  31. Webster AC, Nagler EV, Morton RL et al (2017) Chronic kidney disease. Lancet 389(10075):1238–1252. https://doi.org/10.1016/S0140-6736(16)32064-5

    Article  PubMed  Google Scholar 

  32. Mukaka MM (2012) Statistics corner: a guide to appropriate use of correlation coefficient in medical research. Malawi Med J 24(3):69–71

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Siener R, Hoppe B, Löhr P et al (2018) Metabolic profile and impact of diet in patients with primary hyperoxaluria. Int Urol Nephrol 50(9):1583–1589. https://doi.org/10.1007/s11255-018-1939-1

    Article  CAS  PubMed  Google Scholar 

  34. Berini SE, Tracy JA, Engelstad JK et al (2015) Progressive polyradiculoneuropathy due to intraneural oxalate deposition in type 1 primary hyperoxaluria. Muscle Nerve 51(3):449–454. https://doi.org/10.1002/mus.24495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Falk N, Castillo B, Gupta A et al (2013) Primary hyperoxaluria type 1 with systemic calcium oxalate deposition: case report and literature review. Ann Clin Lab Sci 43(3):328–331

    PubMed  Google Scholar 

  36. Scheinman JI, Voziyan PA, Belmont JM et al (2005) Pyridoxamine lowers oxalate excretion and kidney crystals in experimental hyperoxaluria: a potential therapy for primary hyperoxaluria. Urol Res 33(5):368–371. https://doi.org/10.1007/s00240-005-0493-3

    Article  CAS  PubMed  Google Scholar 

  37. Watts RW, Veall N, Purkiss P et al (1985) The effect of pyridoxine on oxalate dynamics in three cases of primary hyperoxaluria (with glycollic aciduria). Clin Sci 69(1):87–90

    Article  CAS  Google Scholar 

  38. Oppici E, Fargue S, Reid ES et al (2015) Pyridoxamine and pyridoxal are more effective than pyridoxine in rescuing folding-defective variants of human alanine:glyoxylate aminotransferase causing primary hyperoxaluria type I. Hum Mol Genet 24(19):5500–5511. https://doi.org/10.1093/hmg/ddv276

    Article  CAS  PubMed  Google Scholar 

  39. Marangella M, Petrarulo M, Bianco O et al (1991) Glycolate determination detects type I primary hyperoxaluria in dialysis patients. Kidney Int 39(1):149–154

    Article  CAS  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Hoppe.

Ethics declarations

Conflict of interest

BH now also is an employee of Dicerna Pharmaceuticals, Cambridge, USA. PH declares that there is no conflict of interest.

Ethical approval

This retrospective study was performed in accordance with the ethical standards of the ethical committees in Cologne (06-231) and Bonn (113/14), and the 1964 Helsinki Declaration and its later amendments.

Informed consent

Informed consent was obtained from all individual participants included in this study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hillebrand, P., Hoppe, B. Plasma oxalate levels in primary hyperoxaluria type I show significant intra-individual variation and do not correlate with kidney function. Pediatr Nephrol 35, 1227–1233 (2020). https://doi.org/10.1007/s00467-020-04531-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-020-04531-5

Keywords

Navigation