Advertisement

Pediatric Nephrology

, Volume 34, Issue 11, pp 2279–2293 | Cite as

Treatment of steroid-resistant nephrotic syndrome in the genomic era

  • Adam R. Bensimhon
  • Anna E. Williams
  • Rasheed A. GbadegesinEmail author
Review

Abstract

The pathogenesis of steroid-resistant nephrotic syndrome (SRNS) is not completely known. Recent advances in genomics have elucidated some of the molecular mechanisms and pathophysiology of the disease. More than 50 monogenic causes of SRNS have been identified; however, these genes are responsible for only a small fraction of SRNS in outbred populations. There are currently no guidelines for genetic testing in SRNS, but evidence from the literature suggests that testing should be guided by the genetic architecture of the disease in the population. Notably, most genetic forms of SRNS do not respond to current immunosuppressive therapies; however, a small subset of patients with monogenic SRNS will achieve partial or complete remission with specific immunomodulatory agents, presumably due to non-immunosuppressive effects of these agents. We suggest a pragmatic approach to the therapy of genetic SRNS, as there is no evidence-based algorithm for the management of the disease.

Keywords

Nephrotic syndrome SRNS Genetic SRNS Treatment Genetic SRNS 

Notes

Funding

The National Institutes of Health (NIH) and National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) grants 5R01DK098135 and 5R01DK094987 to RAG, ARB, and AEW are supported by the Duke Pediatric Research Scholars (DPRS) program.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Supplementary material

467_2018_4093_MOESM1_ESM.docx (92 kb)
Supplementary Table 1 (DOCX 91 kb)

References

  1. 1.
    Eddy AA, Symons JM (2003) Nephrotic syndrome in childhood. Lancet 362:629–639CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    McKinney PA, Feltbower RG, Brocklebank JT, Fitzpatrick MM (2001) Time trends and ethnic patterns of childhood nephrotic syndrome in Yorkshire, UK. Pediatr Nephrol 16:1040–1044CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Cattran DC, Feehally J, Cook T, Liu ZH, Fervenza FC, Mezzano SA, Floege J, Nachman PH, Gipson DS, Praga M, Glassock RJ, Radhakrishnan J, Hodson EM, Rovin BH, Jha V, Troyanov S, Li PKT, Wetzels JFM (2012) Kidney disease: improving global outcomes (KDIGO) glomerulonephritis work group. KDIGO clinical practice guideline for glomerulonephritis. Kidney Intl Suppl 2:139–274CrossRefGoogle Scholar
  4. 4.
    Ehrich JH, Brodehl J (1993) Long versus standard prednisone therapy for initial treatment of idiopathic nephrotic syndrome in children. Arbeitsgemeinschaft fur Padiatrische Nephrologie. Eur J Pediatr 152:357–361CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Children ISoKDi (1981) The primary nephrotic syndrome in children. Identification of patients with minimal change nephrotic syndrome from initial response to prednisone. A report of the International Study of Kidney Disease in Children. J Pediatr 98:561–564CrossRefGoogle Scholar
  6. 6.
    Smith JM, Stablein DM, Munoz R, Hebert D, McDonald RA (2007) Contributions of the transplant registry: the 2006 annual report of the North American Pediatric Renal Trials and Collaborative Studies (NAPRTCS). Pediatr Transplant 11:366–373CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Hildebrandt F (2010) Genetic kidney diseases. Lancet 375:1287–1295CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Wiggins RC (2007) The spectrum of podocytopathies: a unifying view of glomerular diseases. Kidney Int 71:1205–1214CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Sadowski CE, Lovric S, Ashraf S, Pabst WL, Gee HY, Kohl S, Engelmann S, Vega-Warner V, Fang H, Halbritter J, Somers MJ, Tan W, Shril S, Fessi I, Lifton RP, Bockenhauer D, El-Desoky S, Kari JA, Zenker M, Kemper MJ, Mueller D, Fathy HM, Soliman NA, Group SS, Hildebrandt F (2015) A single-gene cause in 29.5% of cases of steroid-resistant nephrotic syndrome. J Am Soc Nephrol 26:1279–1289CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Lovric S, Fang H, Vega-Warner V, Sadowski CE, Gee HY, Halbritter J, Ashraf S, Saisawat P, Soliman NA, Kari JA, Otto EA, Hildebrandt F, Nephrotic Syndrome Study Group (2014) Rapid detection of monogenic causes of childhood-onset steroid-resistant nephrotic syndrome. Clin J Am Soc Nephrol 9:1109–1116CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Trautmann A, Bodria M, Ozaltin F, Gheisari A, Melk A, Azocar M, Anarat A, Caliskan S, Emma F, Gellermann J, Oh J, Baskin E, Ksiazek J, Remuzzi G, Erdogan O, Akman S, Dusek J, Davitaia T, Ozkaya O, Papachristou F, Firszt-Adamczyk A, Urasinski T, Testa S, Krmar RT, Hyla-Klekot L, Pasini A, Ozcakar ZB, Sallay P, Cakar N, Galanti M, Terzic J, Aoun B, Caldas Afonso A, Szymanik-Grzelak H, Lipska BS, Schnaidt S, Schaefer F, PodoNet Consortium (2015) Spectrum of steroid-resistant and congenital nephrotic syndrome in children: the PodoNet registry cohort. Clin J Am Soc Nephrol 10:592–600CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Bierzynska A, McCarthy HJ, Soderquest K, Sen ES, Colby E, Ding WY, Nabhan MM, Kerecuk L, Hegde S, Hughes D, Marks S, Feather S, Jones C, Webb NJ, Ognjanovic M, Christian M, Gilbert RD, Sinha MD, Lord GM, Simpson M, Koziell AB, Welsh GI, Saleem MA (2017) Genomic and clinical profiling of a national nephrotic syndrome cohort advocates a precision medicine approach to disease management. Kidney Int 91:937–947CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Sampson MG, Gillies CE, Robertson CC, Crawford B, Vega-Warner V, Otto EA, Kretzler M, Kang HM (2016) Using population genetics to interrogate the monogenic nephrotic syndrome diagnosis in a case cohort. J Am Soc Nephrol 27:1970–1983CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Buscher AK, Beck BB, Melk A, Hoefele J, Kranz B, Bamborschke D, Baig S, Lange-Sperandio B, Jungraithmayr T, Weber LT, Kemper MJ, Tonshoff B, Hoyer PF, Konrad M, Weber S, German Pediatric Nephrology Association (GPN) (2016) Rapid response to cyclosporin A and favorable renal outcome in nongenetic versus genetic steroid-resistant nephrotic syndrome. Clin J Am Soc Nephrol 11:245–253CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Trautmann A, Schnaidt S, Lipska-Zietkiewicz BS, Bodria M, Ozaltin F, Emma F, Anarat A, Melk A, Azocar M, Oh J, Saeed B, Gheisari A, Caliskan S, Gellermann J, Higuita LMS, Jankauskiene A, Drozdz D, Mir S, Balat A, Szczepanska M, Paripovic D, Zurowska A, Bogdanovic R, Yilmaz A, Ranchin B, Baskin E, Erdogan O, Remuzzi G, Firszt-Adamczyk A, Kuzma-Mroczkowska E, Litwin M, Murer L, Tkaczyk M, Jardim H, Wasilewska A, Printza N, Fidan K, Simkova E, Borzecka H, Staude H, Hees K, Schaefer F, PodoNet Consortium (2017) Long-term outcome of steroid-resistant nephrotic syndrome in children. J Am Soc Nephrol 28:3055–3065CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Ding WY, Saleem MA (2012) Current concepts of the podocyte in nephrotic syndrome. Kidney Res Clin Pract 31:87–93CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Faul C, Donnelly M, Merscher-Gomez S, Chang YH, Franz S, Delfgaauw J, Chang JM, Choi HY, Campbell KN, Kim K, Reiser J, Mundel P (2008) The actin cytoskeleton of kidney podocytes is a direct target of the antiproteinuric effect of cyclosporine A. Nat Med 14:931–938CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Zhao X, Khurana S, Charkraborty S, Tian Y, Sedor JR, Bruggman LA, Kao HY (2017) Alpha actinin 4 (ACTN4) regulates glucocorticoid receptor-mediated transactivation and transrepression in podocytes. J Biol Chem 292:1637–1647CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Gbadegesin RA, Hall G, Adeyemo A, Hanke N, Tossidou I, Burchette J, Wu G, Homstad A, Sparks MA, Gomez J, Jiang R, Alonso A, Lavin P, Conlon P, Korstanje R, Stander MC, Shamsan G, Barua M, Spurney R, Singhal PC, Kopp JB, Haller H, Howell D, Pollak MR, Shaw AS, Schiffer M, Winn MP (2014) Mutations in the gene that encodes the F-actin binding protein anillin cause FSGS. J Am Soc Nephrol 25:1991–2002CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    D’Agati VD, Fogo AB, Bruijn JA, Jennette JC (2004) Pathologic classification of focal segmental glomerulosclerosis: a working proposal. Am J Kidney Dis 43:368–382CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    D’Agati VD, Kaskel FJ, Falk RJ (2011) Focal segmental glomerulosclerosis. N Engl J Med 365:2398–2411CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Fogo AB (2015) Causes and pathogenesis of focal segmental glomerulosclerosis. Nat Rev Nephrol 11:76–87CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Buscher AK, Weber S (2012) Educational paper: the podocytopathies. Eur J Pediatr 171:1151–1160CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Tryggvason K, Patrakka J, Wartiovaara J (2006) Hereditary proteinuria syndromes and mechanisms of proteinuria. N Engl J Med 354:1387–1401CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Karp AM, Gbadegesin RA (2017) Genetics of childhood steroid-sensitive nephrotic syndrome. Pediatr Nephrol 32:1481–1488CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Shalhoub RJ (1974) Pathogenesis of lipoid nephrosis: a disorder of T-cell function. Lancet 2:556–560CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Coward RJ, Foster RR, Patton D, Ni L, Lennon R, Bates DO, Harper SJ, Mathieson PW, Saleem MA (2005) Nephrotic plasma alters slit diaphragm-dependent signaling and translocates nephrin, podocin, and CD2 associated protein in cultured human podocytes. J Am Soc Nephrol 16:629–637CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Zimmerman SW (1984) Increased urinary protein excretion in the rat produced by serum from a patient with recurrent focal glomerular sclerosis after renal transplantation. Clin Nephrol 22:32–38PubMedPubMedCentralGoogle Scholar
  29. 29.
    Davin JC (2016) The glomerular permeability factors in idiopathic nephrotic syndrome. Pediatr Nephrol 31:207–215CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Weisinger JR, Kempson RL, Eldridge FL, Swenson RS (1974) The nephrotic syndrome: a complication of massive obesity. Ann Intern Med 81:440–447CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Kambham N, Markowitz GS, Valeri AM, Lin J, D’Agati VD (2001) Obesity-related glomerulopathy: an emerging epidemic. Kidney Int 59:1498–1509CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Bhathena DB, Julian BA, McMorrow RG, Baehler RW (1985) Focal sclerosis of hypertrophied glomeruli in solitary functioning kidneys of humans. Am J Kidney Dis 5:226–232CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Schreuder MF, Langemeijer ME, Bokenkamp A, Delemarre-Van de Waal HA, Van Wijk JA (2008) Hypertension and microalbuminuria in children with congenital solitary kidneys. J Paediatr Child Health 44:363–368CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Gbadegesin RA, Winn MP, Smoyer WE (2013) Genetic testing in nephrotic syndrome—challenges and opportunities. Nat Rev Nephrol 9:179–184CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Bierzynska A, Soderquest K, Koziell A (2014) Genes and podocytes—new insights into mechanisms of podocytopathy. Front Endocrinol (Lausanne) 5:226Google Scholar
  36. 36.
    Ebarasi L, Ashraf S, Bierzynska A, Gee HY, McCarthy HJ, Lovric S, Sadowski CE, Pabst W, Vega-Warner V, Fang H, Koziell A, Simpson MA, Dursun I, Serdaroglu E, Levy S, Saleem MA, Hildebrandt F, Majumdar A (2015) Defects of CRB2 cause steroid-resistant nephrotic syndrome. Am J Hum Genet 96:153–161CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Miyake N, Tsukaguchi H, Koshimizu E, Shono A, Matsunaga S, Shiina M, Mimura Y, Imamura S, Hirose T, Okudela K, Nozu K, Akioka Y, Hattori M, Yoshikawa N, Kitamura A, Cheong HI, Kagami S, Yamashita M, Fujita A, Miyatake S, Tsurusaki Y, Nakashima M, Saitsu H, Ohashi K, Imamoto N, Ryo A, Ogata K, Iijima K, Matsumoto N (2015) Biallelic mutations in nuclear pore complex subunit NUP107 cause early-childhood-onset steroid-resistant nephrotic syndrome. Am J Hum Genet 97:555–566CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Braun DA, Sadowski CE, Kohl S, Lovric S, Astrinidis SA, Pabst WL, Gee HY, Ashraf S, Lawson JA, Shril S, Airik M, Tan W, Schapiro D, Rao J, Choi WI, Hermle T, Kemper MJ, Pohl M, Ozaltin F, Konrad M, Bogdanovic R, Buscher R, Helmchen U, Serdaroglu E, Lifton RP, Antonin W, Hildebrandt F (2016) Mutations in nuclear pore genes NUP93, NUP205 and XPO5 cause steroid-resistant nephrotic syndrome. Nat Genet 48:457–465CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Gee HY, Zhang F, Ashraf S, Kohl S, Sadowski CE, Vega-Warner V, Zhou W, Lovric S, Fang H, Nettleton M, Zhu JY, Hoefele J, Weber LT, Podracka L, Boor A, Fehrenbach H, Innis JW, Washburn J, Levy S, Lifton RP, Otto EA, Han Z, Hildebrandt F (2015) KANK deficiency leads to podocyte dysfunction and nephrotic syndrome. J Clin Invest 125:2375–2384CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    McCarthy HJ, Bierzynska A, Wherlock M, Ognjanovic M, Kerecuk L, Hegde S, Feather S, Gilbert RD, Krischock L, Jones C, Sinha MD, Webb NJ, Christian M, Williams MM, Marks S, Koziell A, Welsh GI, Saleem MA, RADAR the UK SRNS Study Group (2013) Simultaneous sequencing of 24 genes associated with steroid-resistant nephrotic syndrome. Clin J Am Soc Nephrol 8:637–648CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Warejko JK, Tan W, Daga A, Schapiro D, Lawson JA, Shril S, Lovric S, Ashraf S, Rao J, Hermle T, Jobst-Schwan T, Widmeier E, Majmundar AJ, Schneider R, Gee HY, Schmidt JM, Vivante A, van der Ven AT, Ityel H, Chen J, Sadowski CE, Kohl S, Pabst WL, Nakayama M, Somers MJG, Rodig NM, Daouk G, Baum M, Stein DR, Ferguson MA, Traum AZ, Soliman NA, Kari JA, El Desoky S, Fathy H, Zenker M, Bakkaloglu SA, Muller D, Noyan A, Ozaltin F, Cadnapaphornchai MA, Hashmi S, Hopcian J, Kopp JB, Benador N, Bockenhauer D, Bogdanovic R, Stajic N, Chernin G, Ettenger R, Fehrenbach H, Kemper M, Munarriz RL, Podracka L, Buscher R, Serdaroglu E, Tasic V, Mane S, Lifton RP, Braun DA, Hildebrandt F (2018) Whole exome sequencing of patients with steroid-resistant nephrotic syndrome. Clin J Am Soc Nephrol 13:53–62CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Gbadegesin RA, Lavin PJ, Hall G, Bartkowiak B, Homstad A, Jiang R, Wu G, Byrd A, Lynn K, Wolfish N, Ottati C, Stevens P, Howell D, Conlon P, Winn MP (2012) Inverted formin 2 mutations with variable expression in patients with sporadic and hereditary focal and segmental glomerulosclerosis. Kidney Int 81:94–99CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Brown EJ, Schlondorff JS, Becker DJ, Tsukaguchi H, Tonna SJ, Uscinski AL, Higgs HN, Henderson JM, Pollak MR (2010) Mutations in the formin gene INF2 cause focal segmental glomerulosclerosis. Nat Genet 42:72–76CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Barua M, Brown EJ, Charoonratana VT, Genovese G, Sun H, Pollak MR (2013) Mutations in the INF2 gene account for a significant proportion of familial but not sporadic focal and segmental glomerulosclerosis. Kidney Int 83:316–322CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Boyer O, Benoit G, Gribouval O, Nevo F, Tete MJ, Dantal J, Gilbert-Dussardier B, Touchard G, Karras A, Presne C, Grunfeld JP, Legendre C, Joly D, Rieu P, Mohsin N, Hannedouche T, Moal V, Gubler MC, Broutin I, Mollet G, Antignac C (2011) Mutations in INF2 are a major cause of autosomal dominant focal segmental glomerulosclerosis. J Am Soc Nephrol 22:239–245CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Malone AF, Phelan PJ, Hall G, Cetincelik U, Homstad A, Alonso AS, Jiang R, Lindsey TB, Wu G, Sparks MA, Smith SR, Webb NJ, Kalra PA, Adeyemo AA, Shaw AS, Conlon PJ, Jennette JC, Howell DN, Winn MP, Gbadegesin RA (2014) Rare hereditary COL4A3/COL4A4 variants may be mistaken for familial focal segmental glomerulosclerosis. Kidney Int 86:1253–1259CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Lipska BS, Iatropoulos P, Maranta R, Caridi G, Ozaltin F, Anarat A, Balat A, Gellermann J, Trautmann A, Erdogan O, Saeed B, Emre S, Bogdanovic R, Azocar M, Balasz-Chmielewska I, Benetti E, Caliskan S, Mir S, Melk A, Ertan P, Baskin E, Jardim H, Davitaia T, Wasilewska A, Drozdz D, Szczepanska M, Jankauskiene A, Higuita LM, Ardissino G, Ozkaya O, Kuzma-Mroczkowska E, Soylemezoglu O, Ranchin B, Medynska A, Tkaczyk M, Peco-Antic A, Akil I, Jarmolinski T, Firszt-Adamczyk A, Dusek J, Simonetti GD, Gok F, Gheissari A, Emma F, Krmar RT, Fischbach M, Printza N, Simkova E, Mele C, Ghiggeri GM, Schaefer F, PodoNet Consortium (2013) Genetic screening in adolescents with steroid-resistant nephrotic syndrome. Kidney Int 84:206–213CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Hinkes BG, Mucha B, Vlangos CN, Gbadegesin R, Liu J, Hasselbacher K, Hangan D, Ozaltin F, Zenker M, Hildebrandt F, Arbeitsgemeinschaft fur Paediatrische Nephrologie Study Group (2007) Nephrotic syndrome in the first year of life: two thirds of cases are caused by mutations in 4 genes (NPHS1, NPHS2, WT1, and LAMB2). Pediatrics 119:e907–e919CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Hinkes B, Vlangos C, Heeringa S, Mucha B, Gbadegesin R, Liu J, Hasselbacher K, Ozaltin F, Hildebrandt F, APN Study Group (2008) Specific podocin mutations correlate with age of onset in steroid-resistant nephrotic syndrome. J Am Soc Nephrol 19:365–371CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Gbadegesin R, Hinkes BG, Hoskins BE, Vlangos CN, Heeringa SF, Liu J, Loirat C, Ozaltin F, Hashmi S, Ulmer F, Cleper R, Ettenger R, Antignac C, Wiggins RC, Zenker M, Hildebrandt F (2008) Mutations in PLCE1 are a major cause of isolated diffuse mesangial sclerosis (IDMS). Nephrol Dial Transplant 23:1291–1297CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Niaudet P (2004) Podocin and nephrotic syndrome: implications for the clinician. J Am Soc Nephrol 15:832–834CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Ding WY, Koziell A, McCarthy HJ, Bierzynska A, Bhagavatula MK, Dudley JA, Inward CD, Coward RJ, Tizard J, Reid C, Antignac C, Boyer O, Saleem MA (2014) Initial steroid sensitivity in children with steroid-resistant nephrotic syndrome predicts post-transplant recurrence. J Am Soc Nephrol 25:1342–1348CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Genovese G, Friedman DJ, Ross MD, Lecordier L, Uzureau P, Freedman BI, Bowden DW, Langefeld CD, Oleksyk TK, Uscinski Knob AL, Bernhardy AJ, Hicks PJ, Nelson GW, Vanhollebeke B, Winkler CA, Kopp JB, Pays E, Pollak MR (2010) Association of trypanolytic ApoL1 variants with kidney disease in African Americans. Science 329:841–845CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Freedman BI, Kopp JB, Langefeld CD, Genovese G, Friedman DJ, Nelson GW, Winkler CA, Bowden DW, Pollak MR (2010) The apolipoprotein L1 (APOL1) gene and nondiabetic nephropathy in African Americans. J Am Soc Nephrol 21:1422–1426CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Okamoto K, Tokunaga K, Doi K, Fujita T, Suzuki H, Katoh T, Watanabe T, Nishida N, Mabuchi A, Takahashi A, Kubo M, Maeda S, Nakamura Y, Noiri E (2011) Common variation in GPC5 is associated with acquired nephrotic syndrome. Nat Genet 43:459–463CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Ruf RG, Lichtenberger A, Karle SM, Haas JP, Anacleto FE, Schultheiss M, Zalewski I, Imm A, Ruf EM, Mucha B, Bagga A, Neuhaus T, Fuchshuber A, Bakkaloglu A, Hildebrandt F, Arbeitsgemeinschaft Fur Padiatrische Nephrologie Study Group (2004) Patients with mutations in NPHS2 (podocin) do not respond to standard steroid treatment of nephrotic syndrome. J Am Soc Nephrol 15:722–732CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Heeringa SF, Chernin G, Chaki M, Zhou W, Sloan AJ, Ji Z, Xie LX, Salviati L, Hurd TW, Vega-Warner V, Killen PD, Raphael Y, Ashraf S, Ovunc B, Schoeb DS, McLaughlin HM, Airik R, Vlangos CN, Gbadegesin R, Hinkes B, Saisawat P, Trevisson E, Doimo M, Casarin A, Pertegato V, Giorgi G, Prokisch H, Rotig A, Nurnberg G, Becker C, Wang S, Ozaltin F, Topaloglu R, Bakkaloglu A, Bakkaloglu SA, Muller D, Beissert A, Mir S, Berdeli A, Varpizen S, Zenker M, Matejas V, Santos-Ocana C, Navas P, Kusakabe T, Kispert A, Akman S, Soliman NA, Krick S, Mundel P, Reiser J, Nurnberg P, Clarke CF, Wiggins RC, Faul C, Hildebrandt F (2011) COQ6 mutations in human patients produce nephrotic syndrome with sensorineural deafness. J Clin Invest 121:2013–2024CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Weber S, Gribouval O, Esquivel EL, Moriniere V, Tete MJ, Legendre C, Niaudet P, Antignac C (2004) NPHS2 mutation analysis shows genetic heterogeneity of steroid-resistant nephrotic syndrome and low post-transplant recurrence. Kidney Int 66:571–579CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Gigante M, Greco P, Defazio V, Lucci M, Margaglione M, Gesualdo L, Iolascon A (2005) Congenital nephrotic syndrome of Finnish type: detection of new nephrin mutations and prenatal diagnosis in an Italian family. Prenat Diagn 25:407–410CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    (1981) Primary nephrotic syndrome in children: clinical significance of histopathologic variants of minimal change and of diffuse mesangial hypercellularity. A report of the International Study of Kidney Disease in Children. Kidney Int 20:765–771Google Scholar
  61. 61.
    Black DA, Rose G, Brewer DB (1970) Controlled trial of prednisone in adult patients with the nephrotic syndrome. Br Med J 3:421–426CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Rydel JJ, Korbet SM, Borok RZ, Schwartz MM (1995) Focal segmental glomerular sclerosis in adults: presentation, course, and response to treatment. Am J Kidney Dis 25:534–542CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Banfi G, Moriggi M, Sabadini E, Fellin G, D’Amico G, Ponticelli C (1991) The impact of prolonged immunosuppression on the outcome of idiopathic focal-segmental glomerulosclerosis with nephrotic syndrome in adults. A collaborative retrospective study. Clin Nephrol 36:53–59PubMedPubMedCentralGoogle Scholar
  64. 64.
    Korbet SM, Schwartz MM, Lewis EJ (1994) Primary focal segmental glomerulosclerosis: clinical course and response to therapy. Am J Kidney Dis 23:773–783CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Xing CY, Saleem MA, Coward RJ, Ni L, Witherden IR, Mathieson PW (2006) Direct effects of dexamethasone on human podocytes. Kidney Int 70:1038–1045CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Ransom RF, Lam NG, Hallett MA, Atkinson SJ, Smoyer WE (2005) Glucocorticoids protect and enhance recovery of cultured murine podocytes via actin filament stabilization. Kidney Int 68:2473–2483CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Wada T, Pippin JW, Marshall CB, Griffin SV, Shankland SJ (2005) Dexamethasone prevents podocyte apoptosis induced by puromycin aminonucleoside: role of p53 and Bcl-2-related family proteins. J Am Soc Nephrol 16:2615–2625CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Mallipattu SK, Guo Y, Revelo MP, Roa-Pena L, Miller T, Ling J, Shankland SJ, Bialkowska AB, Ly V, Estrada C, Jain MK, Lu Y, Ma’ayan A, Mehrotra A, Yacoub R, Nord EP, Woroniecki RP, Yang VW, He JC (2017) Kruppel-like factor 15 mediates glucocorticoid-induced restoration of podocyte differentiation markers. J Am Soc Nephrol 28:166–184CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Mallipattu SK, Liu R, Zheng F, Narla G, Ma’ayan A, Dikman S, Jain MK, Saleem M, D’Agati V, Klotman P, Chuang PY, He JC (2012) Kruppel-like factor 15 (KLF15) is a key regulator of podocyte differentiation. J Biol Chem 287:19122–19135CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Hinkes B, Wiggins RC, Gbadegesin R, Vlangos CN, Seelow D, Nurnberg G, Garg P, Verma R, Chaib H, Hoskins BE, Ashraf S, Becker C, Hennies HC, Goyal M, Wharram BL, Schachter AD, Mudumana S, Drummond I, Kerjaschki D, Waldherr R, Dietrich A, Ozaltin F, Bakkaloglu A, Cleper R, Basel-Vanagaite L, Pohl M, Griebel M, Tsygin AN, Soylu A, Muller D, Sorli CS, Bunney TD, Katan M, Liu J, Attanasio M, O’Toole JF, Hasselbacher K, Mucha B, Otto EA, Airik R, Kispert A, Kelley GG, Smrcka AV, Gudermann T, Holzman LB, Nurnberg P, Hildebrandt F (2006) Positional cloning uncovers mutations in PLCE1 responsible for a nephrotic syndrome variant that may be reversible. Nat Genet 38:1397–1405CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Gee HY, Ashraf S, Wan X, Vega-Warner V, Esteve-Rudd J, Lovric S, Fang H, Hurd TW, Sadowski CE, Allen SJ, Otto EA, Korkmaz E, Washburn J, Levy S, Williams DS, Bakkaloglu SA, Zolotnitskaya A, Ozaltin F, Zhou W, Hildebrandt F (2014) Mutations in EMP2 cause childhood-onset nephrotic syndrome. Am J Hum Genet 94:884–890CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Ashraf S, Kudo H, Rao J, Kikuchi A, Widmeier E, Lawson JA, Tan W, Hermle T, Warejko JK, Shril S, Airik M, Jobst-Schwan T, Lovric S, Braun DA, Gee HY, Schapiro D, Majmundar AJ, Sadowski CE, Pabst WL, Daga A, van der Ven AT, Schmidt JM, Low BC, Gupta AB, Tripathi BK, Wong J, Campbell K, Metcalfe K, Schanze D, Niihori T, Kaito H, Nozu K, Tsukaguchi H, Tanaka R, Hamahira K, Kobayashi Y, Takizawa T, Funayama R, Nakayama K, Aoki Y, Kumagai N, Iijima K, Fehrenbach H, Kari JA, El Desoky S, Jalalah S, Bogdanovic R, Stajic N, Zappel H, Rakhmetova A, Wassmer SR, Jungraithmayr T, Strehlau J, Kumar AS, Bagga A, Soliman NA, Mane SM, Kaufman L, Lowy DR, Jairajpuri MA, Lifton RP, Pei Y, Zenker M, Kure S, Hildebrandt F (2018) Mutations in six nephrosis genes delineate a pathogenic pathway amenable to treatment. Nat Commun 9:1960CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Flanagan WM, Corthesy B, Bram RJ, Crabtree GR (1991) Nuclear association of a T-cell transcription factor blocked by FK-506 and cyclosporin A. Nature 352:803–807CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Bram RJ, Hung DT, Martin PK, Schreiber SL, Crabtree GR (1993) Identification of the immunophilins capable of mediating inhibition of signal transduction by cyclosporin A and FK506: roles of calcineurin binding and cellular location. Mol Cell Biol 13:4760–4769CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    O’Keefe SJ, Tamura J, Kincaid RL, Tocci MJ, O’Neill EA (1992) FK-506- and CsA-sensitive activation of the interleukin-2 promoter by calcineurin. Nature 357:692–694CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Clipstone NA, Crabtree GR (1992) Identification of calcineurin as a key signalling enzyme in T-lymphocyte activation. Nature 357:695–697CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Gipson DS, Trachtman H, Kaskel FJ, Greene TH, Radeva MK, Gassman JJ, Moxey-Mims MM, Hogg RJ, Watkins SL, Fine RN, Hogan SL, Middleton JP, Vehaskari VM, Flynn PA, Powell LM, Vento SM, McMahan JL, Siegel N, D’Agati VD, Friedman AL (2011) Clinical trial of focal segmental glomerulosclerosis in children and young adults. Kidney Int 80:868–878CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Li X, Zhang X, Li X, Wang X, Wang S, Ding J (2014) Cyclosporine A protects podocytes via stabilization of cofilin-1 expression in the unphosphorylated state. Exp Biol Med (Maywood) 239:922–936CrossRefGoogle Scholar
  79. 79.
    Buscher AK, Kranz B, Buscher R, Hildebrandt F, Dworniczak B, Pennekamp P, Kuwertz-Broking E, Wingen AM, John U, Kemper M, Monnens L, Hoyer PF, Weber S, Konrad M (2010) Immunosuppression and renal outcome in congenital and pediatric steroid-resistant nephrotic syndrome. Clin J Am Soc Nephrol 5:2075–2084CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Giglio S, Provenzano A, Mazzinghi B, Becherucci F, Giunti L, Sansavini G, Ravaglia F, Roperto RM, Farsetti S, Benetti E, Rotondi M, Murer L, Lazzeri E, Lasagni L, Materassi M, Romagnani P (2015) Heterogeneous genetic alterations in sporadic nephrotic syndrome associate with resistance to immunosuppression. J Am Soc Nephrol 26:230–236CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Klaassen I, Ozgoren B, Sadowski CE, Moller K, van Husen M, Lehnhardt A, Timmermann K, Freudenberg F, Helmchen U, Oh J, Kemper MJ (2015) Response to cyclosporine in steroid-resistant nephrotic syndrome: discontinuation is possible. Pediatr Nephrol 30:1477–1483CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Stefanidis CJ, Querfeld U (2011) The podocyte as a target: cyclosporin A in the management of the nephrotic syndrome caused by WT1 mutations. Eur J Pediatr 170:1377–1383CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Gellermann J, Stefanidis CJ, Mitsioni A, Querfeld U (2010) Successful treatment of steroid-resistant nephrotic syndrome associated with WT1 mutations. Pediatr Nephrol 25:1285–1289CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Wasilewska AM, Kuroczycka-Saniutycz E, Zoch-Zwierz W (2011) Effect of cyclosporin A on proteinuria in the course of glomerulopathy associated with WT1 mutations. Eur J Pediatr 170:389–391CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Megremis S, Mitsioni A, Mitsioni AG, Fylaktou I, Kitsiou-Tzelli S, Stefanidis CJ, Kanavakis E, Traeger-Synodinos J (2009) Nucleotide variations in the NPHS2 gene in Greek children with steroid-resistant nephrotic syndrome. Genet Test Mol Biomarkers 13:249–256CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Malina M, Cinek O, Janda J, Seeman T (2009) Partial remission with cyclosporine A in a patient with nephrotic syndrome due to NPHS2 mutation. Pediatr Nephrol 24:2051–2053CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Gargah TT, Lakhoua MR (2011) Mycophenolate mofetil in treatment of childhood steroid-resistant nephrotic syndrome. J Nephrol 24:203–207CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    de Mello VR, Rodrigues MT, Mastrocinque TH, Martins SP, de Andrade OV, Guidoni EB, Scheffer DK, Martini Filho D, Toporovski J, Benini V (2010) Mycophenolate mofetil in children with steroid/cyclophosphamide-resistant nephrotic syndrome. Pediatr Nephrol 25:453–460CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Ziswiler R, Steinmann-Niggli K, Kappeler A, Daniel C, Marti HP (1998) Mycophenolic acid: a new approach to the therapy of experimental mesangial proliferative glomerulonephritis. J Am Soc Nephrol 9:2055–2066PubMedPubMedCentralGoogle Scholar
  90. 90.
    Hauser IA, Renders L, Radeke HH, Sterzel RB, Goppelt-Struebe M (1999) Mycophenolate mofetil inhibits rat and human mesangial cell proliferation by guanosine depletion. Nephrol Dial Transplant 14:58–63CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Penny MJ, Boyd RA, Hall BM (1998) Mycophenolate mofetil prevents the induction of active Heymann nephritis: association with Th2 cytokine inhibition. J Am Soc Nephrol 9:2272–2282PubMedPubMedCentralGoogle Scholar
  92. 92.
    Allison AC, Kowalski WJ, Muller CJ, Waters RV, Eugui EM (1993) Mycophenolic acid and brequinar, inhibitors of purine and pyrimidine synthesis, block the glycosylation of adhesion molecules. Transplant Proc 25:67–70PubMedPubMedCentralGoogle Scholar
  93. 93.
    Cattran DC, Wang MM, Appel G, Matalon A, Briggs W (2004) Mycophenolate mofetil in the treatment of focal segmental glomerulosclerosis. Clin Nephrol 62:405–411CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Montane B, Abitbol C, Chandar J, Strauss J, Zilleruelo G (2003) Novel therapy of focal glomerulosclerosis with mycophenolate and angiotensin blockade. Pediatr Nephrol 18:772–777CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Salama AD, Pusey CD (2006) Drug insight: rituximab in renal disease and transplantation. Nat Clin Pract Nephrol 2:221–230CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Gulati A, Sinha A, Jordan SC, Hari P, Dinda AK, Sharma S, Srivastava RN, Moudgil A, Bagga A (2010) Efficacy and safety of treatment with rituximab for difficult steroid-resistant and -dependent nephrotic syndrome: multicentric report. Clin J Am Soc Nephrol 5:2207–2212CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Prytula A, Iijima K, Kamei K, Geary D, Gottlich E, Majeed A, Taylor M, Marks SD, Tuchman S, Camilla R, Ognjanovic M, Filler G, Smith G, Tullus K (2010) Rituximab in refractory nephrotic syndrome. Pediatr Nephrol 25:461–468CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Ito S, Kamei K, Ogura M, Udagawa T, Fujinaga S, Saito M, Sako M, Iijima K (2013) Survey of rituximab treatment for childhood-onset refractory nephrotic syndrome. Pediatr Nephrol 28:257–264CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Bagga A, Sinha A, Moudgil A (2007) Rituximab in patients with the steroid-resistant nephrotic syndrome. N Engl J Med 356:2751–2752CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Magnasco A, Ravani P, Edefonti A, Murer L, Ghio L, Belingheri M, Benetti E, Murtas C, Messina G, Massella L, Porcellini MG, Montagna M, Regazzi M, Scolari F, Ghiggeri GM (2012) Rituximab in children with resistant idiopathic nephrotic syndrome. J Am Soc Nephrol 23:1117–1124CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Kamei K, Okada M, Sato M, Fujimaru T, Ogura M, Nakayama M, Kaito H, Iijima K, Ito S (2014) Rituximab treatment combined with methylprednisolone pulse therapy and immunosuppressants for childhood steroid-resistant nephrotic syndrome. Pediatr Nephrol 29:1181–1187CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Fornoni A, Sageshima J, Wei C, Merscher-Gomez S, Aguillon-Prada R, Jauregui AN, Li J, Mattiazzi A, Ciancio G, Chen L, Zilleruelo G, Abitbol C, Chandar J, Seeherunvong W, Ricordi C, Ikehata M, Rastaldi MP, Reiser J, Burke GW 3rd (2011) Rituximab targets podocytes in recurrent focal segmental glomerulosclerosis. Sci Transl Med 3:85ra46CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Hall G, Gbadegesin RA (2015) Translating genetic findings in hereditary nephrotic syndrome: the missing loops. Am J Physiol Renal Physiol 309:F24–F28CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Turunen M, Olsson J, Dallner G (2004) Metabolism and function of coenzyme Q. Biochim Biophys Acta 1660:171–199CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Tran UC, Clarke CF (2007) Endogenous synthesis of coenzyme Q in eukaryotes. Mitochondrion (7 Suppl):S62–S71Google Scholar
  106. 106.
    Crane FL (2007) Discovery of ubiquinone (coenzyme Q) and an overview of function. Mitochondrion (7 Suppl):S2–S7Google Scholar
  107. 107.
    Bentinger M, Brismar K, Dallner G (2007) The antioxidant role of coenzyme Q. Mitochondrion (7 Suppl):S41–S50Google Scholar
  108. 108.
    Doimo M, Desbats MA, Cerqua C, Cassina M, Trevisson E, Salviati L (2014) Genetics of coenzyme q10 deficiency. Mol Syndromol 5:156–162CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Desbats MA, Vetro A, Limongelli I, Lunardi G, Casarin A, Doimo M, Spinazzi M, Angelini C, Cenacchi G, Burlina A, Rodriguez Hernandez MA, Chiandetti L, Clementi M, Trevisson E, Navas P, Zuffardi O, Salviati L (2015) Primary coenzyme Q10 deficiency presenting as fatal neonatal multiorgan failure. Eur J Hum Genet 23:1254–1258CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Payet LA, Leroux M, Willison JC, Kihara A, Pelosi L, Pierrel F (2016) Mechanistic details of early steps in coenzyme Q biosynthesis pathway in yeast. Cell Chem Biol 23:1241–1250CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Acosta MJ, Vazquez Fonseca L, Desbats MA, Cerqua C, Zordan R, Trevisson E, Salviati L (2016) Coenzyme Q biosynthesis in health and disease. Biochim Biophys Acta 1857:1079–1085CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Montini G, Malaventura C, Salviati L (2008) Early coenzyme Q10 supplementation in primary coenzyme Q10 deficiency. N Engl J Med 358:2849–2850CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Diomedi-Camassei F, Di Giandomenico S, Santorelli FM, Caridi G, Piemonte F, Montini G, Ghiggeri GM, Murer L, Barisoni L, Pastore A, Muda AO, Valente ML, Bertini E, Emma F (2007) COQ2 nephropathy: a newly described inherited mitochondriopathy with primary renal involvement. J Am Soc Nephrol 18:2773–2780CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Ozaltin F (2014) Primary coenzyme Q10 (CoQ 10) deficiencies and related nephropathies. Pediatr Nephrol 29:961–969CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Starr MC, Chang IJ, Finn LS, Sun A, Larson AA, Goebel J, Hanevold C, Thies J, Van Hove JLK, Hingorani SR, Lam C (2018) COQ2 nephropathy: a treatable cause of nephrotic syndrome in children. Pediatr Nephrol.  https://doi.org/10.1007/s00467-018-3937-z
  116. 116.
    Ashraf S, Gee HY, Woerner S, Xie LX, Vega-Warner V, Lovric S, Fang H, Song X, Cattran DC, Avila-Casado C, Paterson AD, Nitschke P, Bole-Feysot C, Cochat P, Esteve-Rudd J, Haberberger B, Allen SJ, Zhou W, Airik R, Otto EA, Barua M, Al-Hamed MH, Kari JA, Evans J, Bierzynska A, Saleem MA, Bockenhauer D, Kleta R, El Desoky S, Hacihamdioglu DO, Gok F, Washburn J, Wiggins RC, Choi M, Lifton RP, Levy S, Han Z, Salviati L, Prokisch H, Williams DS, Pollak M, Clarke CF, Pei Y, Antignac C, Hildebrandt F (2013) ADCK4 mutations promote steroid-resistant nephrotic syndrome through CoQ10 biosynthesis disruption. J Clin Invest 123:5179–5189CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Ovunc B, Otto EA, Vega-Warner V, Saisawat P, Ashraf S, Ramaswami G, Fathy HM, Schoeb D, Chernin G, Lyons RH, Yilmaz E, Hildebrandt F (2011) Exome sequencing reveals cubilin mutation as a single-gene cause of proteinuria. J Am Soc Nephrol 22:1815–1820CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Amsellem S, Gburek J, Hamard G, Nielsen R, Willnow TE, Devuyst O, Nexo E, Verroust PJ, Christensen EI, Kozyraki R (2010) Cubilin is essential for albumin reabsorption in the renal proximal tubule. J Am Soc Nephrol 21:1859–1867CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Winn MP, Conlon PJ, Lynn KL, Farrington MK, Creazzo T, Hawkins AF, Daskalakis N, Kwan SY, Ebersviller S, Burchette JL, Pericak-Vance MA, Howell DN, Vance JM, Rosenberg PB (2005) A mutation in the TRPC6 cation channel causes familial focal segmental glomerulosclerosis. Science 308:1801–1804CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    Urban N, Hill K, Wang L, Kuebler WM, Schaefer M (2012) Novel pharmacological TRPC inhibitors block hypoxia-induced vasoconstriction. Cell Calcium 51:194–206CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Zhou Y, Castonguay P, Sidhom EH, Clark AR, Dvela-Levitt M, Kim S, Sieber J, Wieder N, Jung JY, Andreeva S, Reichardt J, Dubois F, Hoffmann SC, Basgen JM, Montesinos MS, Weins A, Johnson AC, Lander ES, Garrett MR, Hopkins CR, Greka A (2017) A small-molecule inhibitor of TRPC5 ion channels suppresses progressive kidney disease in animal models. Science 358:1332–1336CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Hall GLB, Khan K, Pediaditakis I, Xiao J, Wu G, Wang L, Kovalik ME, Chryst-Stangl M, Davis EE, Spurney RF, Gbadegesin RA (2018) The human FSGS-causing ANLN R431C mutation induces dysregulated PI3K/AKT/mTOR/Rac1 signaling in podocytes. J Am Soc Nephrol 29:2011–2122Google Scholar
  123. 123.
    Bagga A, Mudigoudar BD, Hari P, Vasudev V (2004) Enalapril dosage in steroid-resistant nephrotic syndrome. Pediatr Nephrol 19:45–50CrossRefPubMedPubMedCentralGoogle Scholar
  124. 124.
    Li Z, Duan C, He J, Wu T, Xun M, Zhang Y, Yin Y (2010) Mycophenolate mofetil therapy for children with steroid-resistant nephrotic syndrome. Pediatr Nephrol 25:883–888CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    Wada T, Nangaku M (2015) A circulating permeability factor in focal segmental glomerulosclerosis: the hunt continues. Clin Kidney J 8:708–715CrossRefPubMedPubMedCentralGoogle Scholar
  126. 126.
    Konigshausen E, Sellin L (2016) Circulating permeability factors in primary focal segmental glomerulosclerosis: a review of proposed candidates. Biomed Res Int 2016:3765608CrossRefPubMedPubMedCentralGoogle Scholar
  127. 127.
    Pelletier JHKK, Engen R, Bensimhon A, Varner J, Rheault M, Srivastava T, Straatmann C, Silva C, Davis TK, Wenderfer S, Gibson K, Selewski D, Barcia J, Weng P, Licht C, Jawa N, Kallash M, Foreman JW, Wigfall DR, Chua AN, Chambers E, Hornik CP, Brewer ED, Nagaraj SK, Greenbaum LA, Gbadegesin RA (2018) Recurrence of nephrotic syndrome following kidney transplantation is associated with initial native kidney biopsy findings. Pediatr Nephrol 33:1773–1780CrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    Winn MP, Alkhunaizi AM, Bennett WM, Garber RL, Howell DN, Butterly DW, Conlon PJ (1999) Focal segmental glomerulosclerosis: a need for caution in live-related renal transplantation. Am J Kidney Dis 33:970–974CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© IPNA 2018

Authors and Affiliations

  1. 1.Department of Pediatrics, Division of NephrologyDuke University Medical CenterDurhamUSA
  2. 2.Department of Medicine, Division of NephrologyDuke University Medical CenterDurhamUSA
  3. 3.Duke Molecular Physiology InstituteDurhamUSA

Personalised recommendations