Advertisement

Pediatric Nephrology

, Volume 34, Issue 2, pp 329–339 | Cite as

Predictors of patency for arteriovenous fistulae and grafts in pediatric hemodialysis patients

  • Ali Mirza OnderEmail author
  • Joseph T. Flynn
  • Anthony A. Billings
  • Fang Deng
  • Marissa DeFreitas
  • Chryso Katsoufis
  • Matthew M. Grinsell
  • Larry T. Patterson
  • Jennifer Jetton
  • Sahar Fathallah-Shaykh
  • Daniel Ranch
  • Diego Aviles
  • Lawrence Copelovitch
  • Eileen Ellis
  • Vimal Chanda
  • Ayah Elmaghrabi
  • Jen-Jar Lin
  • Lavjay Butani
  • Maha Haddad
  • Olivera Marsenic Couloures
  • Paul Brakeman
  • Raymond Quigley
  • H. Stella Shin
  • Rouba Garro
  • Hui Liu
  • Javad Rahimikollu
  • Rupesh Raina
  • Craig B. Langman
  • Ellen G. Wood
  • on behalf of the Midwest Pediatric Nephrology Consortium
Original Article
Part of the following topical collections:
  1. What's New in Dialysis

Abstract

Background

Hemodialysis (HD) guidelines recommend permanent vascular access (PVA) in children unlikely to receive kidney transplant within 1 year of starting HD. We aimed to determine predictors of primary and secondary patency of PVA in pediatric HD patients.

Methods

Retrospective chart reviews were performed for first PVAs in 20 participating centers. Variables collected included patient demographics, complications, interventions, and final outcome.

Results

There were 103 arterio-venous fistulae (AVF) and 14 AV grafts (AVG). AVF demonstrated superior primary (p = 0.0391) and secondary patency (p = 0.0227) compared to AVG. Primary failure occurred in 16 PVA (13.6%) and secondary failure in 14 PVA (12.2%). AVF were more likely to have primary failure (odds ratio (OR) = 2.10) and AVG had more secondary failure (OR = 3.33). No demographic, clinical, or laboratory variable predicted primary failure of PVA. Anatomical location of PVA was predictive of secondary failure, with radial having the lowest risk compared to brachial (OR = 12.425) or femoral PVA (OR = 118.618). Intervention-free survival was predictive of secondary patency for all PVA (p = 0.0252) and directly correlated with overall survival of AVF (p = 0.0197) but not AVG. Study center demonstrated statistically significant effect only on intervention-free AVF survival (p = 0.0082), but not number of complications or interventions, or outcomes.

Conclusions

In this multi-center pediatric HD cohort, AVF demonstrated primary and secondary patency advantages over AVG. Radial PVA was least likely to develop secondary failure. Intervention-free survival was the only predictor of secondary patency for AVF and directly correlated with overall access survival. The study center effect on intervention-free survival of AVF deserves further investigation.

Keywords

Pediatric hemodialysis Arteriovenous fistula Arteriovenous graft Primary patency Secondary patency 

Notes

Compliance with ethical standards

Each participating center obtained approval for retrospective data collection from their local institutional review boards (IRB). None of the contributors from the respective dialysis centers had reported any conflict of interests.

References

  1. 1.
    US Renal Data System (2012) USRDS 2012 Annual Data Report. The National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Disease, Bethesda, MDGoogle Scholar
  2. 2.
    Lumsden AB, MacDonald MJ, Allen RC, Dodson TF (1994) Hemodialysis access in the pediatric patient population. Am J Surg 168:197–201CrossRefGoogle Scholar
  3. 3.
    Ramage IJ, Bailie A, Tyerman KS, McColl JH, Pollard SG, Fitzpatrick MM (2005) Vascular access survival in children and young adults receiving long-term hemodialysis. Am J Kidney Dis 45:708–715CrossRefGoogle Scholar
  4. 4.
    Hayes WN, Watson AR, Callaghan N, Wright E, Stefanidis CJ, European Pediatric Dialysis Working Group (2012) Vascular access: choice and complications in European pediatric haemodialysis units. Pediatr Nephrol 27:999–1004CrossRefGoogle Scholar
  5. 5.
    Ma A, Shroff R, Hothi D, Lopez MM, Veligratli F, Calder F, Rees L (2013) A comparison of arteriovenous fistulas and central venous lines for long-term chronic haemodialysis. Pediatr Nephrol 28:321–326CrossRefGoogle Scholar
  6. 6.
    Zaritsky JJ, Salusky IB, Gales B, Ramos G, Atkinson J, Allsteadt A, Brant ML, Goldstein SL (2008) Vascular access complications in long-term pediatric hemodialysis patients. Pediatr Nephrol 23:2061–2065CrossRefGoogle Scholar
  7. 7.
    Goldstein SL, Ikizler TA, Zapitelli M, Silverstein DM, Ayus JC (2009) Non-infected hemodialysis catheters are associated with increased inflammation compared to arteriovenous fistulas. Kidney Int 76:1063–1069CrossRefGoogle Scholar
  8. 8.
    Vascular Access Work Group (2006) NKF-DOQI Clinical practice guidelines for vascular access. Am J Kidney Dis 48(Suppl 1):S248–S273Google Scholar
  9. 9.
    Chand DH, Valentini R (2008) International pediatric fistula first initiative: a call to action. Am J Kidney Dis 51:1016–1024CrossRefGoogle Scholar
  10. 10.
    Bourquelot P, Raynaud F, Pirozzi N (2003) Microsurgery in children for creation of arteriovenous fistulas in renal and non-renal diseases. Ther Apher Dial 7:498–503CrossRefGoogle Scholar
  11. 11.
    Gradman WS, Lerner G, Mentser M, Rodriguez H, Kamil ES (2005) Experience with autogenous arteriovenous access for hemodialysis in children and adolescents. Ann Vasc Surg 19:609–612CrossRefGoogle Scholar
  12. 12.
    Sharma A, Zilleruelo G, Abitbol C, Montane B, Strauss J (1999) Survival and complications of cuffed central venous catheters in children and young adults on chronic hemodialysis. Pediatr Nephrol 13:245–248CrossRefGoogle Scholar
  13. 13.
    Onder AM, Chandar J, Saint-Vil M, Lopez-Mitnik G, Abitbol CL, Zilleruelo G (2007) Catheter survival and comparison of catheter exchange methods in children on hemodialysis. Pediatr Nephrol 22:1355–1361CrossRefGoogle Scholar
  14. 14.
    Sheth RD, Brandt ML, Brewer ED, Nuchtern JG, Kale AS, Goldstein SL (2002) Permanent hemodialysis vascular access survival in children and adolescents with end-stage renal disease. Kidney Int 62:1864–1869CrossRefGoogle Scholar
  15. 15.
    Woods JD, Turenne MN, Strawderman RL, Young EW, Hirth RA, Port FK, Held PJ (1997) Vascular access survival among incident hemodialysis patients in the United States. Am J Kidney Dis 30:50–55CrossRefGoogle Scholar
  16. 16.
    Chand DH, Geary D, Patel H, Greenbaum LA, Nailescu C, Brier ME, Valentini RP (2015) Barriers, biases, and beliefs about arteriovenous fistula placement in children: a survey of the International Pediatric Fistula First Initiative (IPFFI) within the Midwest Pediatric Nephrology Consortium (MWPNC). Hemodial Int 19:100–107CrossRefGoogle Scholar
  17. 17.
    Mitsnefes MM, Barletta GM, Dresner IG, Chand DH, Geary D, Lin JJ, Patel H (2006) Severe cardiac hypertrophy and long-term dialysis: the Midwest Pediatric nephrology Consortium study. Pediatr Nephrol 21:1167–1170CrossRefGoogle Scholar
  18. 18.
    Baracco R, Mattoo T, Jain A, Kapur G, Valentini RP (2014) Reducing central venous catheters in chronic hemodialysis- a commitment to arteriovenous fistula creation in children. Pediatr Nephrol 29:2013–2020CrossRefGoogle Scholar
  19. 19.
    Bagolan P, Spagnoli A, Ciprandi G, Picca S, Leozappa G, Nahom A, Trucchi A, Rizzoni G, Fabbrini G (1998) A ten-year experience of Brescia-Cimino arteriovenous fistula in children: technical evolution and refinements. J Vasc Surg 27:640–644CrossRefGoogle Scholar
  20. 20.
    Matoussevitch V, Taylan C, Konner K, Gawenda M, Kuhr K, Hoppe B, Brunkwall J (2015) AV fistula creation in pediatric patients: outcome is independent of demographics and fistula type reducing usage of venous catheters. J Vasc Access 61:382–387CrossRefGoogle Scholar
  21. 21.
    Jennings WC, Turman MA, Taubman KE (2009) Arteriovenous fistulas for hemodialysis access in children and adolescents using the proximal radial artery inflow site. J Pediatr Surg 44:1377–1381CrossRefGoogle Scholar
  22. 22.
    Rooijens PPGM, Tordoir JHM, Stijnen T, Burgmans JPJ, Smet de AAEA, Yo TI (2004) Radiocephalic wrist arteriovenous fistula for hemodialysis: meta-analysis indicates a high primary failure rate. Eur J Vasc Endovasc Surg 28:583–589CrossRefGoogle Scholar
  23. 23.
    Monroy-Cuadros M, Yilmaz S, Salazar-Banuelos A, Doig C (2010) Risk factors associated with patency loss of hemodialysis vascular access within six months. Clin J Am Soc Nephrol 5:1787–1792CrossRefGoogle Scholar
  24. 24.
    Bourquelot P, Cussenot O, Corbi P, Pillion G, Gagnadoux MF, Bensman A, Loirat C, Broyer M (1990) Microsurgical creation and follow-up of arteriovenous fistulae for chronic hemodialysis in children. Pediatr Nephrol 4:156–159CrossRefGoogle Scholar
  25. 25.
    Al-Jaishi AA, Oliver MJ, Thomas SM, Lok CE, Zhang JC, Garg AX, Kosa SD, Quinn RR, Moist LM (2014) Patency rates of the arteriovenous fistula for hemodialysis: a systemic review and meta-analysis. Am J Kidney Dis 63:464–478CrossRefGoogle Scholar
  26. 26.
    Wartman SM, Rosen D, Woo K, Gradman WS, Weaver FA, Rowe V (2014) Outcomes with arteriovenous fistulas in a pediatric population. J Vasc Surg 60:170–175CrossRefGoogle Scholar
  27. 27.
    De Souza RA, Oliveira EA, Silva JMP, Lima EM (2011) Hemodialysis vascular access in children and adolescents: a ten-year retrospective cohort study. J Bras Nefrol 33:422–430CrossRefGoogle Scholar
  28. 28.
    Schillinger F, Schillinger D, Montagnac R, Milcent T (1991) Post catheterization vein stenosis in hemodialysis: comparative angiographic study of 50 subclavian and 50 internal jugular accesses. Nephrol Dial Transplant 6:722–724CrossRefGoogle Scholar
  29. 29.
    MacRae JM, Ahmed A, Johnson N, Lewin A, Kiaii M (2005) Central vein stenosis: a common problem in patients on haemodialysis. ASAIO J 51:77–81CrossRefGoogle Scholar
  30. 30.
    Knops NBB, Marien N, Lilien MR, Tordoir JHM, Oosterveld MJS (2013) Success rate and survival of arteriovenous fistula surgery in children: a retrospective multi-center study. Pediatr Nephrol 28:1371–1372Google Scholar
  31. 31.
    Onder AM, Chandar J, Billings AA, Simon N, Gonzalez J, Francoeur D, Abitbol CL, Zilleruelo G (2009) Prophylaxis of catheter related bacteremia using tissue plasminogen activator tobramycin locks. Pediatr Nephrol 24:2233–2243CrossRefGoogle Scholar
  32. 32.
    Rus RR, Novljan G, Buturovic-Ponikvar J, Kovac J, Premru V, Ponikvar R (2011) Vascular access in children on chronic hemodialysis: a Slovenian experience. Ther Apher Dial 15:292–297CrossRefGoogle Scholar
  33. 33.
    Wang K, Wang P, Liang XH, Yuan FF, Liu ZS (2015) Cuffed-tunneled hemodialysis catheter survival and complications in pediatric patients: a single center data analysis in China. Int J Clin Exp Med 8:9765–9771PubMedPubMedCentralGoogle Scholar
  34. 34.
    Merouani A, Lallier M, Paquet J, Gagnon J, Lapeyreque AL (2014) Vascular access for chronic hemodialysis in children: arteriovenous fistula or central venous catheter? Pediatr Nephrol 29:2395–2401CrossRefGoogle Scholar
  35. 35.
    Korsheed S, Eldehni MT, John SG, Fluck RJ, McIntyre CW (2011) Effects of arteriovenous fistula formation on arterial stiffness and cardiovascular performance and function. Nephrol Dial Transplant 26:3296–3302CrossRefGoogle Scholar
  36. 36.
    Dundon BK, Torpey K, Nelson AJ, Wong DTL, Duncan RF, Meredith IT, Faull RJ, Worthley SG, Worthley MI (2014) The deleterious effects of arteriovenous fistula creation on the cardiovascular system: a longitudinal magnetic resonance imaging study. Int J Nephrol Renovas Dis 7:337–345Google Scholar
  37. 37.
    Fadrowski JJ, Hwang W, Neu AM, Fivush BA, Furth SL (2009) Patterns of use of vascular catheters for hemodialysis in children in the United States. Am J Kidney Dis 53:91–98CrossRefGoogle Scholar
  38. 38.
    Briones L, Moreno AD, Sierre S, Lopez L, Lipsich J, Adragna M (2010) Permanent vascular access survival in children on long-term chronic hemodialysis. Pediatr Nephrol 25:1731–1738CrossRefGoogle Scholar

Copyright information

© IPNA 2018

Authors and Affiliations

  • Ali Mirza Onder
    • 1
    Email author return OK on get
  • Joseph T. Flynn
    • 2
  • Anthony A. Billings
    • 3
  • Fang Deng
    • 4
  • Marissa DeFreitas
    • 5
  • Chryso Katsoufis
    • 5
  • Matthew M. Grinsell
    • 6
  • Larry T. Patterson
    • 7
  • Jennifer Jetton
    • 8
  • Sahar Fathallah-Shaykh
    • 9
  • Daniel Ranch
    • 10
  • Diego Aviles
    • 11
  • Lawrence Copelovitch
    • 12
  • Eileen Ellis
    • 13
  • Vimal Chanda
    • 14
  • Ayah Elmaghrabi
    • 15
  • Jen-Jar Lin
    • 16
  • Lavjay Butani
    • 17
  • Maha Haddad
    • 17
  • Olivera Marsenic Couloures
    • 18
  • Paul Brakeman
    • 19
  • Raymond Quigley
    • 15
  • H. Stella Shin
    • 20
  • Rouba Garro
    • 20
  • Hui Liu
    • 21
  • Javad Rahimikollu
    • 3
  • Rupesh Raina
    • 22
  • Craig B. Langman
    • 4
  • Ellen G. Wood
    • 23
  • on behalf of the Midwest Pediatric Nephrology Consortium
  1. 1.Division of Pediatric Nephrology, Le Bonheur Children’s HospitalUniversity of Tennessee, School of MedicineMemphisUSA
  2. 2.Division of Nephrology, Seattle Children’s Hospital, Department of PediatricsUniversity of Washington School of MedicineSeattleUSA
  3. 3.Department of StatisticsWest Virginia UniversityMorgantownUSA
  4. 4.Kidney Diseases Division, Feinberg School of MedicineNorthwestern University and the Ann and Robert H Lurie Children’s Hospital of ChicagoChicagoUSA
  5. 5.Department of Pediatrics, Division of Pediatric Nephrology, Holtz Children’s HospitalUniversity of Miami Leonard M Miller School of MedicineMiamiUSA
  6. 6.Division of Pediatric Nephrology, Primary Children’s HospitalUniversity of UtahSalt Lake CityUSA
  7. 7.Division of Pediatric NephrologyChildren’s National Health SystemWashington, DCUSA
  8. 8.Division of Nephrology, Dialysis and TransplantationUniversity of Iowa Stead Family Children’s HospitalIowa CityUSA
  9. 9.Division of Pediatric Nephrology, Children’s of AlabamaUniversity of AlabamaBirminghamUSA
  10. 10.Division of Pediatric NephrologyUniversity of Texas Health Science CenterSan AntonioUSA
  11. 11.Division of Pediatric Nephrology, Children’s Hospital New OrleansLSU Heath School of MedicineNew OrleansUSA
  12. 12.Division of NephrologyChildren’s Hospital of PhiladelphiaPhiladelphiaUSA
  13. 13.Division of Pediatric NephrologyArkansas Children’s HospitalLittle RockUSA
  14. 14.Division of Pediatric NephrologyChildren’s Mercy HospitalKansas CityUSA
  15. 15.Division of Pediatric NephrologyChildren’s Medical Center DallasDallasUSA
  16. 16.Division of Pediatric Nephrology, Brenner Children’s HospitalWake Forest UniversityWinston SalemUSA
  17. 17.Division of Pediatric NephrologyUC Davis Children’s HospitalSacramentoUSA
  18. 18.Division of Pediatric Nephrology, Yale New Haven Children’s HospitalYale University School of MedicineNew HavenUSA
  19. 19.Division of Pediatric NephrologyUCSF Benioff Children’s HospitalSan FranciscoUSA
  20. 20.Division of Pediatric NephrologyChildren’s Healthcare of AtlantaAtlantaUSA
  21. 21.Department of UrologyUCLA School of MedicineLos AngelesUSA
  22. 22.Division of Pediatric NephrologyAkron Children’s HospitalAkronUSA
  23. 23.Department of Pediatrics, Division of Pediatric Nephrology, SSM Cardinal Glennon Children’s HospitalSaint Louis UniversitySt. LouisUSA

Personalised recommendations