Advertisement

Pediatric Nephrology

, Volume 34, Issue 2, pp 319–327 | Cite as

Skin microvascular dysfunction as an early cardiovascular marker in primary hyperoxaluria type I

  • Alexandra Bruel
  • Justine Bacchetta
  • Tiphanie Ginhoux
  • Christelle Rodier-Bonifas
  • Anne-Laure Sellier-Leclerc
  • Bérengère Fromy
  • Pierre Cochat
  • Dominique Sigaudo-Roussel
  • Laurence DubourgEmail author
Original Article

Abstract

Background

Primary hyperoxaluria type 1 (PH1) is an orphan inborn error of oxalate metabolism leading to hyperoxaluria, progressive renal failure, oxalate deposition, and increased cardiovascular complications. As endothelial dysfunction and arterial stiffness are early markers of cardiovascular risk, we investigated early endothelial and vascular dysfunction in young PH1 patients either under conservative treatment (PH1-Cons) or after combined kidney liver transplantation (PH1-T) in comparison to healthy controls (Cont-H) and patients with a past of renal transplantation (Cont-T).

Methods

Skin microvascular function was non-invasively assessed by laser Doppler flowmetry before and after stimulation by current, thermal, or pharmacological (nitroprussiate (SNP) or acetylcholine (Ach)) stimuli in young PH1 patients and controls.

Results

Seven PH1-Cons (6 F, median age 18.2) and 6 PH1-T (2 F, median age 13.3) were compared to 96 Cont-H (51 F, median age 14.2) and 6 Cont-T (4 F, median age 14.5). The endothelium-independent vasodilatation (SNP) was severely decreased in PH1-T compared to Cont-H. Ach, current-induced vasodilatation (CIV), and thermal response was increased in PH1-Cons and Cont-T compared to controls.

Conclusions

PH1-T patients displayed severely decreased smooth muscle capacity to vasodilate. An exacerbated endothelial-dependent vasodilation suggests a role for silent inflammation in the early dysfunction of microcirculation observed in PH1-Cons and Cont-T.

Keywords

Hyperoxaluria type I Microcirculation Cardiovascular risk Renal transplantation Endothelium 

Notes

Compliance with ethical standards

The Micro-Oxa study was approved by the local IRB (Comité de Protection des Personnes Lyon Sud-Est II, initial approval March 22, 2014, addendum approval April 29, 2015). Patients (PH1 and Cont-T) received oral and written information, and oral non-opposition consent of the patient (and parents for children) was collected.

Conflicts of interest

The authors declare no conflict of interest.

References

  1. 1.
    Harambat J, van Stralen KJ, Espinosa L, Groothoff JW, Hulton S-A, Cerkauskiene R, Schaefer F, Verrina E, Jager KJ, Cochat P, European Society for Pediatric Nephrology/European Renal Association-European Dialysis and Transplant Association (ESPN/ERA-EDTA) Registry (2012) Characteristics and outcomes of children with primary oxalosis requiring renal replacement therapy. Clin J Am Soc Nephrol 7:458–465CrossRefGoogle Scholar
  2. 2.
    Beck BB, Hoyer-Kuhn H, Göbel H, Habbig S, Hoppe B (2013) Hyperoxaluria and systemic oxalosis: an update on current therapy and future directions. Expert Opin Investig Drugs 22:117–129CrossRefGoogle Scholar
  3. 3.
    Cochat P, Hulton S-A, Acquaviva C, Danpure CJ, Daudon M, De Marchi M, Fargue S, Groothoff J, Harambat J, Hoppe B, Jamieson NV, Kemper MJ, Mandrile G, Marangella M, Picca S, Rumsby G, Salido E, Straub M, van Woerden CS, OxalEurope (2012) Primary hyperoxaluria type 1: indications for screening and guidance for diagnosis and treatment. Nephrol Dial Transplant 27:1729–1736CrossRefGoogle Scholar
  4. 4.
    Fargue S, Milliner DS, Knight J, Olson JB, Lowther WT, Holmes RP (2018) Hydroxyproline metabolism and oxalate synthesis in primary hyperoxaluria. J Am Soc Nephrol 29:1615–1623CrossRefGoogle Scholar
  5. 5.
    Zhao F, Bergstralh EJ, Mehta RA, Vaughan LE, Olson JB, Seide BM, Meek AM, Cogal AG, Lieske JC, Milliner DS, Investigators of Rare Kidney Stone Consortium (2016) Predictors of incident ESRD among patients with primary hyperoxaluria presenting prior to kidney failure. Clin J Am Soc Nephrol 11:119–126CrossRefGoogle Scholar
  6. 6.
    Harambat J, Fargue S, Bacchetta J, Acquaviva C, Cochat P (2011) Primary hyperoxaluria. Int J Nephrol 2011:864580CrossRefGoogle Scholar
  7. 7.
    van Woerden CS, Groothoff JW, Wijburg FA, Annink C, Wanders RJA, Waterham HR (2004) Clinical implications of mutation analysis in primary hyperoxaluria type 1. Kidney Int 66:746–752CrossRefGoogle Scholar
  8. 8.
    Fargue S, Harambat J, Gagnadoux M-F, Tsimaratos M, Janssen F, Llanas B, Berthélémé JP, Boudailliez B, Champion G, Guyot C, Macher MA, Nivet H, Ranchin B, Salomon R, Taque S, Rolland MO, Cochat P (2009) Effect of conservative treatment on the renal outcome of children with primary hyperoxaluria type 1. Kidney Int 76:767–773CrossRefGoogle Scholar
  9. 9.
    Hoppe B (2012) An update on primary hyperoxaluria. Nat Rev Nephrol 8:467–475CrossRefGoogle Scholar
  10. 10.
    Cochat P, Groothoff J (2013) Primary hyperoxaluria type 1: practical and ethical issues. Pediatr Nephrol 28:2273–2281CrossRefGoogle Scholar
  11. 11.
    van der Hoeven SM, van Woerden CS, Groothoff JW (2012) Primary hyperoxaluria type 1, a too often missed diagnosis and potentially treatable cause of end-stage renal disease in adults: results of the Dutch cohort. Nephrol Dial Transplant 27:3855–3862CrossRefGoogle Scholar
  12. 12.
    Mandrile G, van Woerden CS, Berchialla P, Beck BB, Acquaviva Bourdain C, Hulton S-A, Rumsby G, OxalEurope Consortium (2014) Data from a large European study indicate that the outcome of primary hyperoxaluria type 1 correlates with the AGXT mutation type. Kidney Int 86:1197–1204CrossRefGoogle Scholar
  13. 13.
    Hoyer-Kuhn H, Kohbrok S, Volland R, Franklin J, Hero B, Beck BB, Hoppe B (2014) Vitamin B6 in primary hyperoxaluria I: first prospective trial after 40 years of practice. Clin J Am Soc Nephrol 9:468–477CrossRefGoogle Scholar
  14. 14.
    Derveaux T, Delbeke P, Walraedt S, Raes A, Van Laecke S, Leroy BP, De Zaeytijd J (2016) Detailed clinical phenotyping of oxalate maculopathy in primary hyperoxaluria type 1 and review of the literature. Retina 36:2227–2235CrossRefGoogle Scholar
  15. 15.
    Mykytiv V, Campoy Garcia F (2018) Anemia in patient with primary hyperoxaluria and bone marrow involvement by oxalate crystals. Hematol Oncol Stem Cell Ther 11:118–121CrossRefGoogle Scholar
  16. 16.
    Grenda R, Kaliciński P (2018) Combined and sequential liver-kidney transplantation in children. Pediatr Nephrol.  https://doi.org/10.1007/s00467-017-3880-4
  17. 17.
    Compagnon P, Metzler P, Samuel D, Camus C, Niaudet P, Durrbach A, Lang P, Azoulay D, Duvoux C, Bayle F, Rivalan J, Merville P, Pascal G, Thervet E, Bensman A, Rostaing L, Deschenes G, Morcet J, Feray C, Boudjema K (2014) Long-term results of combined liver-kidney transplantation for primary hyperoxaluria type 1: the French experience. Liver Transpl 20:1475–1485PubMedGoogle Scholar
  18. 18.
    Khorsandi SE, Samyn M, Hassan A, Vilca-Melendez H, Waller S, Shroff R, Koffman G, Van't Hoff W, Baker A, Dhawan A, Heaton N (2016) An institutional experience of pre-emptive liver transplantation for pediatric primary hyperoxaluria type 1. Pediatr Transplant 20:523–529CrossRefGoogle Scholar
  19. 19.
    London GM, Blacher J, Pannier B, Guérin AP, Marchais SJ, Safar ME (2001) Arterial wave reflections and survival in end-stage renal failure. Hypertension 38:434–438CrossRefGoogle Scholar
  20. 20.
    Blacher J, Guerin AP, Pannier B, Marchais SJ, Safar ME, London GM (1999) Impact of aortic stiffness on survival in end-stage renal disease. Circulation 99:2434–2439CrossRefGoogle Scholar
  21. 21.
    Schiffrin EL, Lipman ML, Mann JFE (2007) Chronic kidney disease: effects on the cardiovascular system. Circulation 116:85–97CrossRefGoogle Scholar
  22. 22.
    Levey AS, Atkins R, Coresh J, Cohen EP, Collins AJ, Eckardt KU, Nahas ME, Jaber BL, Jadoul M, Levin A, Powe NR, Rossert J, Wheeler DC, Lameire N, Eknoyan G (2007) Chronic kidney disease as a global public health problem: approaches and initiatives―a position statement from Kidney Disease Improving Global Outcomes. Kidney Int 72:247–259CrossRefGoogle Scholar
  23. 23.
    Luksha L, Stenvinkel P, Hammarqvist F, Carrero JJ, Davidge ST, Kublickiene K (2012) Mechanisms of endothelial dysfunction in resistance arteries from patients with end-stage renal disease. PLoS One 7:e36056CrossRefGoogle Scholar
  24. 24.
    Ruebner RL, Ng D, Mitsnefes M, Foster BJ, Meyers K, Warady B, Furth SL (2016) Cardiovascular disease risk factors and left ventricular hypertrophy in girls and boys with CKD. Clin J Am Soc Nephrol 11:1962–1968CrossRefGoogle Scholar
  25. 25.
    Groothoff JW, Offringa M, Grootenhuis M, Jager KJ (2017) Long-term consequences of renal insufficiency in children: lessons learned from the Dutch LERIC study. Nephrol Dial Transplant 33:552–560  https://doi.org/10.1093/ndt/gfx190
  26. 26.
    Tian J, Niu L, An X (2017) Cardiovascular risks in chronic kidney disease pediatric patients. Exp Ther Med 14:4615–4619PubMedPubMedCentralGoogle Scholar
  27. 27.
    Vita JA, Keaney JF (2002) Endothelial function: a barometer for cardiovascular risk? Circulation 106:640–642CrossRefGoogle Scholar
  28. 28.
    Kawano N, Emoto M, Mori K, Yamazaki Y, Urata H, Tsuchikura S, Motoyama K, Morioka T, Fukumoto S, Shoji T, Koyama H, Okuno Y, Nishizawa Y, Inaba M (2012) Association of endothelial and vascular smooth muscle dysfunction with cardiovascular risk factors, vascular complications, and subclinical carotid atherosclerosis in type 2 diabetic patients. J Atheroscler Thromb 19:276–284CrossRefGoogle Scholar
  29. 29.
    Widlansky ME, Gokce N, Keaney JF, Vita JA (2003) The clinical implications of endothelial dysfunction. J Am Coll Cardiol 42:1149–1160CrossRefGoogle Scholar
  30. 30.
    Baylis C (2008) Nitric oxide deficiency in chronic kidney disease. Am J Physiol Ren Physiol 294:F1–F9CrossRefGoogle Scholar
  31. 31.
    Tomiyama H, Yamashina A (2010) Non-invasive vascular function tests: their pathophysiological background and clinical application. Circ J 74:24–33CrossRefGoogle Scholar
  32. 32.
    Deanfield J, Donald A, Ferri C, Giannattasio C, Halcox J, Halligan S, Lerman A, Mancia G, Oliver JJ, Pessina AC, Rizzoni D, Rossi GP, Salvetti A, Schiffrin EL, Taddei S, Webb DJ, Working Group on Endothelin and Endothelial Factors of the European Society of Hypertension (2005) Endothelial function and dysfunction. Part I: methodological issues for assessment in the different vascular beds: a statement by the Working Group on Endothelin and Endothelial Factors of the European Society of Hypertension. J Hypertens 23:7–17CrossRefGoogle Scholar
  33. 33.
    Leslie SJ, Affolter J, Denvir MA, Webb DJ (2003) Validation of laser Doppler flowmetry coupled with intra-dermal injection for investigating effects of vasoactive agents on the skin microcirculation in man. Eur J Clin Pharmacol 59:99–102CrossRefGoogle Scholar
  34. 34.
    Roustit M, Cracowski J-L (2013) Assessment of endothelial and neurovascular function in human skin microcirculation. Trends Pharmacol Sci 34:373–384CrossRefGoogle Scholar
  35. 35.
    Fromy B, Sigaudo-Roussel D, Gaubert-Dahan M-L, Rousseau P, Abraham P, Benzoni D, Berrut G, Saumet JL (2010) Aging-associated sensory neuropathy alters pressure-induced vasodilation in humans. J Invest Dermatol 130:849–855CrossRefGoogle Scholar
  36. 36.
    Koïtka A, Abraham P, Bouhanick B, Sigaudo-Roussel D, Demiot C, Saumet JL (2004) Impaired pressure-induced vasodilation at the foot in young adults with type 1 diabetes. Diabetes 53:721–725CrossRefGoogle Scholar
  37. 37.
    Khan F, Green FC, Forsyth JS, Greene SA, Morris AD, Belch JJF (2003) Impaired microvascular function in normal children: effects of adiposity and poor glucose handling. J Physiol 551:705–711CrossRefGoogle Scholar
  38. 38.
    Thurn D, Doyon A, Sözeri B, Bayazit AK, Canpolat N, Duzova A, Querfeld U, Schmidt BM, Schaefer F, Wühl E, Melk A, 4C Study Consortium (2015) Aortic pulse wave velocity in healthy children and adolescents: reference values for the Vicorder device and modifying factors. Am J Hypertens 28:1480–1488CrossRefGoogle Scholar
  39. 39.
    Martin H, Hu J, Gennser G, Norman M (2000) Impaired endothelial function and increased carotid stiffness in 9-year-old children with low birthweight. Circulation 102:2739–2744CrossRefGoogle Scholar
  40. 40.
    Levy BI, Schiffrin EL, Mourad J-J, Agostini D, Vicaut E, Safar ME, Struijker-Boudier HA (2008) Impaired tissue perfusion: a pathology common to hypertension, obesity, and diabetes mellitus. Circulation 118:968–976CrossRefGoogle Scholar
  41. 41.
    Koïtka A, Legrand-Fernandez MS, Abraham P, Fizanne L, Fromy B, Sigaudo-Roussel D, Saumet JL (2004) Low skin temperature impairs the cutaneous vasodilator response to local progressive pressure strain. Microvasc Res 67:203–206CrossRefGoogle Scholar
  42. 42.
    Fromy B, Sigaudo-Roussel D, Saumet JL (2008) Cutaneous neurovascular interaction involved in tactile sensation. Cardiovasc Hematol Agents Med Chem 6:337–342CrossRefGoogle Scholar
  43. 43.
    Khan F, Green FC, Forsyth JS, Greene SA, Newton DJ, Belch JJ (2009) The beneficial effects of breastfeeding on microvascular function in 11- to 14-year-old children. Vasc Med 14:137–142CrossRefGoogle Scholar
  44. 44.
    Duclaux-Loras R, Bacchetta J, Berthiller J, Rivet C, Demède D, Javouhey E, Dubois R, Dijoud F, Lachaux A, Badet L, Boillot O, Cochat P (2016) Pediatric combined liver-kidney transplantation: a single-center experience of 18 cases. Pediatr Nephrol 31:1517–1529CrossRefGoogle Scholar

Copyright information

© IPNA 2018

Authors and Affiliations

  • Alexandra Bruel
    • 1
    • 2
  • Justine Bacchetta
    • 1
    • 3
  • Tiphanie Ginhoux
    • 4
  • Christelle Rodier-Bonifas
    • 5
  • Anne-Laure Sellier-Leclerc
    • 1
  • Bérengère Fromy
    • 6
  • Pierre Cochat
    • 1
    • 3
    • 6
  • Dominique Sigaudo-Roussel
    • 6
  • Laurence Dubourg
    • 1
    • 3
    • 6
    • 7
    Email author
  1. 1.Centre de Référence des Maladies Rénales Rares, Service de Néphrologie et Rhumatologie PédiatriquesHospices Civils de LyonLyonFrance
  2. 2.Service de Pédiatrie, Hôpital Mère et EnfantsCentre hospitalo-universitaire de NantesNantesFrance
  3. 3.Université Claude Bernard Lyon 1LyonFrance
  4. 4.EPICIME-CIC 1407 de Lyon, Inserm, Service de Pharmacologie Clinique, CHU-LyonLyonFrance
  5. 5.Service d’ophtalmologie, Groupement Hospitalier Edouard HerriotHospices Civils de LyonLyonFrance
  6. 6.Laboratory of Tissue Biology and Therapeutic Engineering, UMR 5305 CNRSUniversity Claude Bernard Lyon 1VilleurbanneFrance
  7. 7.Néphrologie, Dialyse, Hypertension et Exploration Fonctionnelle Rénale, Groupement Hospitalier Edouard HerriotHospices Civils de LyonLyonFrance

Personalised recommendations