Pediatric Nephrology

, Volume 34, Issue 3, pp 379–388 | Cite as

Shiga toxin triggers endothelial and podocyte injury: the role of complement activation

  • Carlamaria ZojaEmail author
  • Simona Buelli
  • Marina Morigi


Shiga toxin (Stx)-producing Escherichia coli (STEC) is the offending agent in post-diarrhea-associated hemolytic uremic syndrome (HUS), a disorder characterized by thrombocytopenia, microangiopathic hemolytic anemia, and acute kidney failure, with thrombi occluding the renal microvasculature. Endothelial dysfunction has been recognized as the trigger event in the development of microangiopathic processes. Glomerular endothelial cells are susceptible to the toxic effects of Stxs that, via nuclear factor kappa B (NF-κB) activation, induce the expression of genes encoding for adhesion molecules and chemokines, culminating in leukocyte adhesion and platelet thrombus formation on the activated endothelium. Complement activation via the alternative pathway has been seen in patients during the acute phase of STEC-associated HUS. Experimental evidence has highlighted the role of complement proteins in driving glomerular endothelium toward a thrombogenic phenotype. At the glomerular level, podocytes are also an important target of Stx-induced complement activation. Glomerular injury as a consequence of podocyte dysfunction and loss is thus a mechanism that might affect long-term renal outcomes in the disease. New approaches to targeting the complement system may be useful therapeutic options for patients with STEC-HUS.


Shiga toxin Enterohemorrhagic Escherichia coli Hemolytic uremic syndrome Endothelial injury Microvascular thrombosis Podocytes Complement alternative pathway 



The authors thank Professor Giuseppe Remuzzi for reviewing the manuscript and Dr. Antonella Piccinelli for helping in figure preparation. Dr. Kerstin Mierke and Manuela Passera helped with preparing the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.


  1. 1.
    Tarr PI, Gordon CA, Chandler WL (2005) Shiga-toxin-producing Escherichia Coli and haemolytic uraemic syndrome. Lancet 365:1073–1086PubMedGoogle Scholar
  2. 2.
    Noris M, Remuzzi G (2005) Hemolytic uremic syndrome. J Am Soc Nephrol 16:1035–1050PubMedGoogle Scholar
  3. 3.
    Karmali MA, Gannon V, Sargeant JM (2010) Verocytotoxin-producing Escherichia Coli (VTEC). Vet Microbiol 140:360–370PubMedGoogle Scholar
  4. 4.
    Karpman D, Loos S, Tati R, Arvidsson I (2017) Haemolytic uraemic syndrome. J Intern Med 281:123–148PubMedGoogle Scholar
  5. 5.
    Ruggenenti P, Noris M, Remuzzi G (2001) Thrombotic microangiopathy, hemolytic uremic syndrome, and thrombotic thrombocytopenic purpura. Kidney Int 60:831–846PubMedGoogle Scholar
  6. 6.
    Rivas M, Chinen I, Miliwebsky E, Masana M (2014) Risk factors for Shiga toxin-producing Escherichia Coli-associated human diseases. Microbiol Spectr 2.
  7. 7.
    Spinale JM, Ruebner RL, Copelovitch L, Kaplan BS (2013) Long-term outcomes of Shiga toxin hemolytic uremic syndrome. Pediatr Nephrol 28:2097–2105PubMedGoogle Scholar
  8. 8.
    Mody RK, Gu W, Griffin PM, Jones TF, Rounds J, Shiferaw B, Tobin-D'Angelo M, Smith G, Spina N, Hurd S, Lathrop S, Palmer A, Boothe E, Luna-Gierke RE, Hoekstra RM (2015) Postdiarrheal hemolytic uremic syndrome in United States children: clinical spectrum and predictors of in-hospital death. J Pediatr 166:1022–1029PubMedGoogle Scholar
  9. 9.
    Garg AX, Suri RS, Barrowman N, Rehman F, Matsell D, Rosas-Arellano MP, Salvadori M, Haynes RB, Clark WF (2003) Long-term renal prognosis of diarrhea-associated hemolytic uremic syndrome: a systematic review, meta-analysis, and meta-regression. JAMA 290:1360–1370PubMedGoogle Scholar
  10. 10.
    Rosales A, Hofer J, Zimmerhackl LB, Jungraithmayr TC, Riedl M, Giner T, Strasak A, Orth-Holler D, Wurzner R, Karch H (2012) Need for long-term follow-up in enterohemorrhagic Escherichia Coli-associated hemolytic uremic syndrome due to late-emerging sequelae. Clin Infect Dis 54:1413–1421PubMedGoogle Scholar
  11. 11.
    Bitzan M (2009) Treatment options for HUS secondary to Escherichia Coli O157:H7. Kidney Int Suppl:S62–S66Google Scholar
  12. 12.
    Petruzziello-Pellegrini TN, Marsden PA (2012) Shiga toxin-associated hemolytic uremic syndrome: advances in pathogenesis and therapeutics. Curr Opin Nephrol Hypertens 21:433–440PubMedPubMedCentralGoogle Scholar
  13. 13.
    Fakhouri F, Zuber J, Fremeaux-Bacchi V, Loirat C (2017) Haemolytic uraemic syndrome. Lancet 390:681–696PubMedGoogle Scholar
  14. 14.
    Buchholz U, Bernard H, Werber D, Bohmer MM, Remschmidt C, Wilking H, Delere Y, an der Heiden M, Adlhoch C, Dreesman J, Ehlers J, Ethelberg S, Faber M, Frank C, Fricke G, Greiner M, Hohle M, Ivarsson S, Jark U, Kirchner M, Koch J, Krause G, Luber P, Rosner B, Stark K, Kuhne M (2011) German outbreak of Escherichia Coli O104:H4 associated with sprouts. N Engl J Med 365:1763–1770PubMedGoogle Scholar
  15. 15.
    Frank C, Werber D, Cramer JP, Askar M, Faber M, an der Heiden M, Bernard H, Fruth A, Prager R, Spode A, Wadl M, Zoufaly A, Jordan S, Kemper MJ, Follin P, Muller L, King LA, Rosner B, Buchholz U, Stark K, Krause G (2011) Epidemic profile of Shiga-toxin-producing Escherichia Coli O104:H4 outbreak in Germany. N Engl J Med 365:1771–1780PubMedGoogle Scholar
  16. 16.
    Lapeyraque AL, Malina M, Fremeaux-Bacchi V, Boppel T, Kirschfink M, Oualha M, Proulx F, Clermont MJ, Le Deist F, Niaudet P, Schaefer F (2011) Eculizumab in severe Shiga-Toxin-Associated HUS. N Engl J Med 364:2561–2563PubMedGoogle Scholar
  17. 17.
    Menne J, Nitschke M, Stingele R, Abu-Tair M, Beneke J, Bramstedt J, Bremer JP, Brunkhorst R, Busch V, Dengler R, Deuschl G, Fellermann K, Fickenscher H, Gerigk C, Goettsche A, Greeve J, Hafer C, Hagenmuller F, Haller H, Herget-Rosenthal S, Hertenstein B, Hofmann C, Lang M, Kielstein JT, Klostermeier UC, Knobloch J, Kuehbacher M, Kunzendorf U, Lehnert H, Manns MP, Menne TF, Meyer TN, Michael C, Munte T, Neumann-Grutzeck C, Nuernberger J, Pavenstaedt H, Ramazan L, Renders L, Repenthin J, Ries W, Rohr A, Rump LC, Samuelsson O, Sayk F, Schmidt BM, Schnatter S, Schocklmann H, Schreiber S, von Seydewitz CU, Steinhoff J, Stracke S, Suerbaum S, van de Loo A, Vischedyk M, Weissenborn K, Wellhoner P, Wiesner M, Zeissig S, Buning J, Schiffer M, Kuehbacher T (2012) Validation of treatment strategies for enterohaemorrhagic Escherichia Coli O104:H4 induced haemolytic uraemic syndrome: case-control study. BMJ 345:e4565PubMedPubMedCentralGoogle Scholar
  18. 18.
    Kielstein JT, Beutel G, Fleig S, Steinhoff J, Meyer TN, Hafer C, Kuhlmann U, Bramstedt J, Panzer U, Vischedyk M, Busch V, Ries W, Mitzner S, Mees S, Stracke S, Nurnberger J, Gerke P, Wiesner M, Sucke B, Abu-Tair M, Kribben A, Klause N, Schindler R, Merkel F, Schnatter S, Dorresteijn EM, Samuelsson O, Brunkhorst R (2012) Best supportive care and therapeutic plasma exchange with or without eculizumab in Shiga-Toxin-Producing E. Coli O104:H4 induced haemolytic-uraemic syndrome: an analysis of the German STEC-HUS registry. Nephrol Dial Transplant 27:3807–3815PubMedGoogle Scholar
  19. 19.
    Ruggenenti P, Remuzzi G (2012) Thrombotic microangiopathy: E. Coli O104:H4 German outbreak: a missed opportunity. Nat Rev Nephrol 8:558–560PubMedGoogle Scholar
  20. 20.
    Saini A, Emke AR, Silva MC, Perlman SJ (2015) Response to Eculizumab in Escherichia Coli O157: H7-induced hemolytic uremic syndrome with severe neurological manifestations. Clin Pediatr (Phila) 54:387–389Google Scholar
  21. 21.
    Pape L, Hartmann H, Bange FC, Suerbaum S, Bueltmann E, Ahlenstiel-Grunow T (2015) Eculizumab in typical Hemolytic uremic syndrome (HUS) with neurological involvement. Medicine (Baltimore) 94:e1000PubMedGoogle Scholar
  22. 22.
    Delmas Y, Vendrely B, Clouzeau B, Bachir H, Bui HN, Lacraz A, Helou S, Bordes C, Reffet A, Llanas B, Skopinski S, Rolland P, Gruson D, Combe C (2014) Outbreak of Escherichia Coli O104:H4 haemolytic uraemic syndrome in France: outcome with eculizumab. Nephrol Dial Transplant 29:565–572PubMedGoogle Scholar
  23. 23.
    Bielaszewska M, Mellmann A, Zhang W, Kock R, Fruth A, Bauwens A, Peters G, Karch H (2011) Characterisation of the Escherichia Coli strain associated with an outbreak of haemolytic uraemic syndrome in Germany, 2011: a microbiological study. Lancet Infect Dis 11:671–676PubMedGoogle Scholar
  24. 24.
    Ruggenenti P, Remuzzi G (2011) A German outbreak of haemolytic uraemic syndrome. Lancet 378:1057–1058PubMedGoogle Scholar
  25. 25.
    Hauswaldt S, Nitschke M, Sayk F, Solbach W, Knobloch JK (2013) Lessons learned from outbreaks of Shiga toxin producing Escherichia Coli. Curr Infect Dis Rep 15:4–9PubMedGoogle Scholar
  26. 26.
    Karmali MA (2009) Host and pathogen determinants of verocytotoxin-producing Escherichia Coli-associated hemolytic uremic syndrome. Kidney Int Suppl:S4–S7Google Scholar
  27. 27.
    Karmali MA (2017) Emerging public health challenges of Shiga toxin-producing Escherichia Coli related to changes in the pathogen, the population, and the environment. Clin Infect Dis 64:371–376PubMedGoogle Scholar
  28. 28.
    Frankel G, Phillips AD (2008) Attaching effacing Escherichia Coli and paradigms of Tir-triggered actin polymerization: getting off the pedestal. Cell Microbiol 10:549–556PubMedGoogle Scholar
  29. 29.
    Zoja C, Buelli S, Morigi M (2010) Shiga toxin-associated hemolytic uremic syndrome: pathophysiology of endothelial dysfunction. Pediatr Nephrol 25:2231–2240PubMedGoogle Scholar
  30. 30.
    Campellone KG (2010) Cytoskeleton-modulating effectors of enteropathogenic and enterohaemorrhagic Escherichia Coli: Tir, EspFU and actin pedestal assembly. FEBS J 277:2390–2402PubMedGoogle Scholar
  31. 31.
    Bauwens A, Betz J, Meisen I, Kemper B, Karch H, Muthing J (2013) Facing glycosphingolipid-Shiga toxin interaction: dire straits for endothelial cells of the human vasculature. Cell Mol Life Sci 70:425–457PubMedGoogle Scholar
  32. 32.
    Rutjes NW, Binnington BA, Smith CR, Maloney MD, Lingwood CA (2002) Differential tissue targeting and pathogenesis of verotoxins 1 and 2 in the mouse animal model. Kidney Int 62:832–845PubMedGoogle Scholar
  33. 33.
    Stahl AL, Svensson M, Morgelin M, Svanborg C, Tarr PI, Mooney JC, Watkins SL, Johnson R, Karpman D (2006) Lipopolysaccharide from enterohemorrhagic Escherichia Coli binds to platelets through TLR4 and CD62 and is detected on circulating platelets in patients with hemolytic uremic syndrome. Blood 108:167–176PubMedPubMedCentralGoogle Scholar
  34. 34.
    Louise CB, Obrig TG (1992) Shiga toxin-associated hemolytic uremic syndrome: combined cytotoxic effects of shiga toxin and lipopolysaccharide (endotoxin) on human vascular endothelial cells in vitro. Infect Immun 60:1536–1543PubMedPubMedCentralGoogle Scholar
  35. 35.
    Clayton F, Pysher TJ, Lou R, Kohan DE, Denkers ND, Tesh VL, Taylor FB Jr, Siegler RL (2005) Lipopolysaccharide upregulates renal shiga toxin receptors in a primate model of hemolytic uremic syndrome. Am J Nephrol 25:536–540PubMedGoogle Scholar
  36. 36.
    Ikeda M, Ito S, Honda M (2004) Hemolytic uremic syndrome induced by lipopolysaccharide and Shiga-like toxin. Pediatr Nephrol 19:485–489PubMedGoogle Scholar
  37. 37.
    Keepers TR, Psotka MA, Gross LK, Obrig TG (2006) A murine model of HUS: Shiga toxin with lipopolysaccharide mimics the renal damage and physiologic response of human disease. J Am Soc Nephrol 17:3404–3414PubMedGoogle Scholar
  38. 38.
    Zanchi C, Zoja C, Morigi M, Valsecchi F, Liu XY, Rottoli D, Locatelli M, Buelli S, Pezzotta A, Mapelli P, Geelen J, Remuzzi G, Hawiger J (2008) Fractalkine and CX3CR1 mediate leukocyte capture by endothelium in response to Shiga toxin. J Immunol 181:1460–1469PubMedGoogle Scholar
  39. 39.
    Brigotti M, Tazzari PL, Ravanelli E, Carnicelli D, Rocchi L, Arfilli V, Scavia G, Minelli F, Ricci F, Pagliaro P, Ferretti AV, Pecoraro C, Paglialonga F, Edefonti A, Procaccino MA, Tozzi AE, Caprioli A (2011) Clinical relevance of shiga toxin concentrations in the blood of patients with hemolytic uremic syndrome. Pediatr Infect Dis J 30:486–490PubMedGoogle Scholar
  40. 40.
    Obrig TG, Karpman D (2012) Shiga toxin pathogenesis: kidney complications and renal failure. Curr Top Microbiol Immunol 357:105–136PubMedPubMedCentralGoogle Scholar
  41. 41.
    Brigotti M, Carnicelli D, Arfilli V, Tamassia N, Borsetti F, Fabbri E, Tazzari PL, Ricci F, Pagliaro P, Spisni E, Cassatella MA (2013) Identification of TLR4 as the receptor that recognizes Shiga toxins in human neutrophils. J Immunol 191:4748–4758PubMedGoogle Scholar
  42. 42.
    Stahl AL, Arvidsson I, Johansson KE, Chromek M, Rebetz J, Loos S, Kristoffersson AC, Bekassy ZD, Morgelin M, Karpman D (2015) A novel mechanism of bacterial toxin transfer within host blood cell-derived microvesicles. PLoS Pathog 11:e1004619PubMedPubMedCentralGoogle Scholar
  43. 43.
    Muthing J, Schweppe CH, Karch H, Friedrich AW (2009) Shiga toxins, glycosphingolipid diversity, and endothelial cell injury. Thromb Haemost 101:252–264PubMedGoogle Scholar
  44. 44.
    O'Brien AD, Tesh VL, Donohue-Rolfe A, Jackson MP, Olsnes S, Sandvig K, Lindberg AA, Keusch GT (1992) Shiga toxin: biochemistry, genetics, mode of action, and role in pathogenesis. Curr Top Microbiol Immunol 180:65–94PubMedGoogle Scholar
  45. 45.
    Lingwood CA (1996) Role of verotoxin receptors in pathogenesis. Trends Microbiol 4:147–153PubMedGoogle Scholar
  46. 46.
    Sandvig K, Garred O, Prydz K, Kozlov JV, Hansen SH, van Deurs B (1992) Retrograde transport of endocytosed Shiga toxin to the endoplasmic reticulum. Nature 358:510–512PubMedGoogle Scholar
  47. 47.
    Endo Y, Tsurugi K, Yutsudo T, Takeda Y, Ogasawara T, Igarashi K (1988) Site of action of a Vero toxin (VT2) from Escherichia Coli O157:H7 and of Shiga toxin on eukaryotic ribosomes. RNA N-glycosidase activity of the toxins. Eur J Biochem 171:45–50PubMedGoogle Scholar
  48. 48.
    Petruzziello-Pellegrini TN, Moslemi-Naeini M, Marsden PA (2013) New insights into Shiga toxin-mediated endothelial dysfunction in hemolytic uremic syndrome. Virulence 4:556–563PubMedPubMedCentralGoogle Scholar
  49. 49.
    Tesh VL (2012) The induction of apoptosis by Shiga toxins and ricin. Curr Top Microbiol Immunol 357:137–178PubMedGoogle Scholar
  50. 50.
    Morigi M, Micheletti G, Figliuzzi M, Imberti B, Karmali MA, Remuzzi A, Remuzzi G, Zoja C (1995) Verotoxin-1 promotes leukocyte adhesion to cultured endothelial cells under physiologic flow conditions. Blood 86:4553–4558PubMedGoogle Scholar
  51. 51.
    Zoja C, Angioletti S, Donadelli R, Zanchi C, Tomasoni S, Binda E, Imberti B, te Loo M, Monnens L, Remuzzi G, Morigi M (2002) Shiga toxin-2 triggers endothelial leukocyte adhesion and transmigration via NF-kappaB dependent up-regulation of IL-8 and MCP-1. Kidney Int 62:846–856PubMedGoogle Scholar
  52. 52.
    Matussek A, Lauber J, Bergau A, Hansen W, Rohde M, Dittmar KE, Gunzer M, Mengel M, Gatzlaff P, Hartmann M, Buer J, Gunzer F (2003) Molecular and functional analysis of Shiga toxin-induced response patterns in human vascular endothelial cells. Blood 102:1323–1332PubMedGoogle Scholar
  53. 53.
    Morigi M, Galbusera M, Binda E, Imberti B, Gastoldi S, Remuzzi A, Zoja C, Remuzzi G (2001) Verotoxin-1-induced up-regulation of adhesive molecules renders microvascular endothelial cells thrombogenic at high shear stress. Blood 98:1828–1835PubMedGoogle Scholar
  54. 54.
    Petruzziello-Pellegrini TN, Yuen DA, Page AV, Patel S, Soltyk AM, Matouk CC, Wong DK, Turgeon PJ, Fish JE, Ho JJ, Steer BM, Khajoee V, Tigdi J, Lee WL, Motto DG, Advani A, Gilbert RE, Karumanchi SA, Robinson LA, Tarr PI, Liles WC, Brunton JL, Marsden PA (2012) The CXCR4/CXCR7/SDF-1 pathway contributes to the pathogenesis of Shiga toxin-associated hemolytic uremic syndrome in humans and mice. J Clin Invest 122:759–776PubMedPubMedCentralGoogle Scholar
  55. 55.
    Walport MJ (2001) Complement. First of two parts. N Engl J Med 344:1058–1066PubMedGoogle Scholar
  56. 56.
    Zipfel PF, Skerka C (2009) Complement regulators and inhibitory proteins. Nat Rev Immunol 9:729–740PubMedGoogle Scholar
  57. 57.
    Monnens L, Molenaar J, Lambert PH, Proesmans W, van Munster P (1980) The complement system in hemolytic-uremic syndrome in childhood. Clin Nephrol 13:168–171PubMedGoogle Scholar
  58. 58.
    Koster FT, Boonpucknavig V, Sujaho S, Gilman RH, Rahaman MM (1984) Renal histopathology in the hemolytic-uremic syndrome following shigellosis. Clin Nephrol 21:126–133PubMedGoogle Scholar
  59. 59.
    Robson WL, Leung AK, Fick GH, McKenna AI (1992) Hypocomplementemia and leukocytosis in diarrhea-associated hemolytic uremic syndrome. Nephron 62:296–299PubMedGoogle Scholar
  60. 60.
    Thurman JM, Marians R, Emlen W, Wood S, Smith C, Akana H, Holers VM, Lesser M, Kline M, Hoffman C, Christen E, Trachtman H (2009) Alternative pathway of complement in children with diarrhea-associated hemolytic uremic syndrome. Clin J Am Soc Nephrol 4:1920–1924PubMedPubMedCentralGoogle Scholar
  61. 61.
    Ferraris JR, Ferraris V, Acquier AB, Sorroche PB, Saez MS, Ginaca A, Mendez CF (2015) Activation of the alternative pathway of complement during the acute phase of typical haemolytic uraemic syndrome. Clin Exp Immunol 181:118–125PubMedPubMedCentralGoogle Scholar
  62. 62.
    Stahl AL, Sartz L, Karpman D (2011) Complement activation on platelet-leukocyte complexes and microparticles in enterohemorrhagic Escherichia Coli-induced hemolytic uremic syndrome. Blood 117:5503–5513PubMedGoogle Scholar
  63. 63.
    Arvidsson I, Stahl AL, Hedstrom MM, Kristoffersson AC, Rylander C, Westman JS, Storry JR, Olsson ML, Karpman D (2015) Shiga toxin-induced complement-mediated hemolysis and release of complement-coated red blood cell-derived microvesicles in hemolytic uremic syndrome. J Immunol 194:2309–2318PubMedGoogle Scholar
  64. 64.
    Arvidsson I, Rebetz J, Loos S, Herthelius M, Kristoffersson AC, Englund E, Chromek M, Karpman D (2016) Early terminal complement blockade and C6 deficiency are protective in Enterohemorrhagic Escherichia Coli-infected mice. J Immunol 197:1276–1286PubMedGoogle Scholar
  65. 65.
    Alberti M, Valoti E, Piras R, Bresin E, Galbusera M, Tripodo C, Thaiss F, Remuzzi G, Noris M (2013) Two patients with history of STEC-HUS, posttransplant recurrence and complement gene mutations. Am J Transplant 13:2201–2206PubMedGoogle Scholar
  66. 66.
    Orth D, Khan AB, Naim A, Grif K, Brockmeyer J, Karch H, Joannidis M, Clark SJ, Day AJ, Fidanzi S, Stoiber H, Dierich MP, Zimmerhackl LB, Wurzner R (2009) Shiga toxin activates complement and binds factor H: evidence for an active role of complement in hemolytic uremic syndrome. J Immunol 182:6394–6400PubMedGoogle Scholar
  67. 67.
    Poolpol K, Orth-Holler D, Speth C, Zipfel PF, Skerka C, de Cordoba SR, Brockmeyer J, Bielaszewska M, Wurzner R (2014) Interaction of Shiga toxin 2 with complement regulators of the factor H protein family. Mol Immunol 58:77–84PubMedGoogle Scholar
  68. 68.
    Ehrlenbach S, Rosales A, Posch W, Wilflingseder D, Hermann M, Brockmeyer J, Karch H, Satchell SC, Wurzner R, Orth-Holler D (2013) Shiga toxin 2 reduces complement inhibitor CD59 expression on human renal tubular epithelial and glomerular endothelial cells. Infect Immun 81:2678–2685PubMedPubMedCentralGoogle Scholar
  69. 69.
    Dammermann W, Schipper P, Ullrich S, Fraedrich K, Schulze Zur Wiesch J, Frundt T, Tiegs G, Lohse A, Luth S (2013) Increased expression of complement regulators CD55 and CD59 on peripheral blood cells in patients with EAHEC O104:H4 infection. PLoS One 8:e74880PubMedPubMedCentralGoogle Scholar
  70. 70.
    Morigi M, Galbusera M, Gastoldi S, Locatelli M, Buelli S, Pezzotta A, Pagani C, Noris M, Gobbi M, Stravalaci M, Rottoli D, Tedesco F, Remuzzi G, Zoja C (2011) Alternative pathway activation of complement by Shiga toxin promotes exuberant C3a formation that triggers microvascular thrombosis. J Immunol 187:172–180PubMedGoogle Scholar
  71. 71.
    Locatelli M, Buelli S, Pezzotta A, Corna D, Perico L, Tomasoni S, Rottoli D, Rizzo P, Conti D, Thurman JM, Remuzzi G, Zoja C, Morigi M (2014) Shiga toxin promotes podocyte injury in experimental Hemolytic uremic syndrome via activation of the alternative pathway of complement. J Am Soc Nephrol 25:1786–1798PubMedPubMedCentralGoogle Scholar
  72. 72.
    Iwaki D, Kanno K, Takahashi M, Endo Y, Matsushita M, Fujita T (2011) The role of mannose-binding lectin-associated serine protease-3 in activation of the alternative complement pathway. J Immunol 187:3751–3758PubMedGoogle Scholar
  73. 73.
    Ozaki M, Kang Y, Tan YS, Pavlov VI, Liu B, Boyle DC, Kushak RI, Skjoedt MO, Grabowski EF, Taira Y, Stahl GL (2016) Human mannose-binding lectin inhibitor prevents Shiga toxin-induced renal injury. Kidney Int 90:774–782PubMedPubMedCentralGoogle Scholar
  74. 74.
    Zoja C, Locatelli M, Pagani C, Corna D, Zanchi C, Isermann B, Remuzzi G, Conway EM, Noris M (2012) Lack of the lectin-like domain of thrombomodulin worsens Shiga toxin-associated hemolytic uremic syndrome in mice. J Immunol 189:3661–3668PubMedGoogle Scholar
  75. 75.
    Esmon CT (1995) Thrombomodulin as a model of molecular mechanisms that modulate protease specificity and function at the vessel surface. FASEB J 9:946–955PubMedGoogle Scholar
  76. 76.
    Delvaeye M, Noris M, De Vriese A, Esmon CT, Esmon NL, Ferrell G, Del-Favero J, Plaisance S, Claes B, Lambrechts D, Zoja C, Remuzzi G, Conway EM (2009) Thrombomodulin mutations in atypical hemolytic-uremic syndrome. N Engl J Med 361:345–357PubMedPubMedCentralGoogle Scholar
  77. 77.
    Fernandez GC, Te Loo MW, van der Velden TJ, van der Heuvel LP, Palermo MS, Monnens LL (2003) Decrease of thrombomodulin contributes to the procoagulant state of endothelium in hemolytic uremic syndrome. Pediatr Nephrol 18:1066–1068PubMedGoogle Scholar
  78. 78.
    Del Conde I, Cruz MA, Zhang H, Lopez JA, Afshar-Kharghan V (2005) Platelet activation leads to activation and propagation of the complement system. J Exp Med 201:871–879PubMedPubMedCentralGoogle Scholar
  79. 79.
    Ikeda K, Nagasawa K, Horiuchi T, Tsuru T, Nishizaka H, Niho Y (1997) C5a induces tissue factor activity on endothelial cells. Thromb Haemost 77:394–398PubMedGoogle Scholar
  80. 80.
    Tedesco F, Pausa M, Nardon E, Introna M, Mantovani A, Dobrina A (1997) The cytolytically inactive terminal complement complex activates endothelial cells to express adhesion molecules and tissue factor procoagulant activity. J Exp Med 185:1619–1627PubMedPubMedCentralGoogle Scholar
  81. 81.
    Monsinjon T, Gasque P, Chan P, Ischenko A, Brady JJ, Fontaine MC (2003) Regulation by complement C3a and C5a anaphylatoxins of cytokine production in human umbilical vein endothelial cells. FASEB J 17:1003–1014PubMedGoogle Scholar
  82. 82.
    Schraufstatter IU, Trieu K, Sikora L, Sriramarao P, DiScipio R (2002) Complement c3a and c5a induce different signal transduction cascades in endothelial cells. J Immunol 169:2102–2110PubMedGoogle Scholar
  83. 83.
    Kim YH, Goyal M, Kurnit D, Wharram B, Wiggins J, Holzman L, Kershaw D, Wiggins R (2001) Podocyte depletion and glomerulosclerosis have a direct relationship in the PAN-treated rat. Kidney Int 60:957–968PubMedGoogle Scholar
  84. 84.
    Macconi D, Bonomelli M, Benigni A, Plati T, Sangalli F, Longaretti L, Conti S, Kawachi H, Hill P, Remuzzi G, Remuzzi A (2006) Pathophysiologic implications of reduced podocyte number in a rat model of progressive glomerular injury. Am J Pathol 168:42–54PubMedPubMedCentralGoogle Scholar
  85. 85.
    Wiggins RC (2007) The spectrum of podocytopathies: a unifying view of glomerular diseases. Kidney Int 71:1205–1214PubMedGoogle Scholar
  86. 86.
    Hodgin JB, Bitzer M, Wickman L, Afshinnia F, Wang SQ, O'Connor C, Yang Y, Meadowbrooke C, Chowdhury M, Kikuchi M, Wiggins JE, Wiggins RC (2015) Glomerular aging and focal global glomerulosclerosis: a podometric perspective. J Am Soc Nephrol 26:3162–3178PubMedPubMedCentralGoogle Scholar
  87. 87.
    Marshall CB, Shankland SJ (2007) Cell cycle regulatory proteins in podocyte health and disease. Nephron Exp Nephrol 106:e51–e59PubMedGoogle Scholar
  88. 88.
    Liapis H, Romagnani P, Anders HJ (2013) New insights into the pathology of podocyte loss: mitotic catastrophe. Am J Pathol 183:1364–1374PubMedPubMedCentralGoogle Scholar
  89. 89.
    Habib R (1992) Pathology of the Hemolytic uremic syndrome. In: Kaplan BS, Trompeter RS, Moake JL (eds) Hemolytic uremic syndrome and thrombotic thrombocytopenic Purpura. Marcel Dekker, Inc., New York, pp 315–353Google Scholar
  90. 90.
    De Petris L, Patrick J, Christen E, Trachtman H (2006) Urinary podocyte mRNA excretion in children with D+HUS: a potential marker of long-term outcome. Ren Fail 28:475–482PubMedGoogle Scholar
  91. 91.
    Taylor FB Jr, Tesh VL, DeBault L, Li A, Chang AC, Kosanke SD, Pysher TJ, Siegler RL (1999) Characterization of the baboon responses to Shiga-like toxin: descriptive study of a new primate model of toxic responses to Stx-1. Am J Pathol 154:1285–1299PubMedPubMedCentralGoogle Scholar
  92. 92.
    Ochoa F, Oltra G, Gerhardt E, Hermes R, Cohen L, Damiano AE, Ibarra C, Lago NR, Zotta E (2012) Microalbuminuria and early renal response to lethal dose Shiga toxin type 2 in rats. Int J Nephrol Renov Dis 5:29–36Google Scholar
  93. 93.
    Morigi M, Buelli S, Zanchi C, Longaretti L, Macconi D, Benigni A, Moioli D, Remuzzi G, Zoja C (2006) Shigatoxin-induced endothelin-1 expression in cultured podocytes autocrinally mediates actin remodeling. Am J Pathol 169:1965–1975PubMedPubMedCentralGoogle Scholar
  94. 94.
    Hughes AK, Stricklett PK, Schmid D, Kohan DE (2000) Cytotoxic effect of Shiga toxin-1 on human glomerular epithelial cells. Kidney Int 57:2350–2359PubMedGoogle Scholar
  95. 95.
    Ergonul Z, Clayton F, Fogo AB, Kohan DE (2003) Shigatoxin-1 binding and receptor expression in human kidneys do not change with age. Pediatr Nephrol 18:246–253PubMedGoogle Scholar
  96. 96.
    Dettmar AK, Binder E, Greiner FR, Liebau MC, Kurschat CE, Jungraithmayr TC, Saleem MA, Schmitt CP, Feifel E, Orth-Holler D, Kemper MJ, Pepys M, Wurzner R, Oh J (2014) Protection of human podocytes from shiga toxin 2-induced phosphorylation of mitogen-activated protein kinases and apoptosis by human serum amyloid P component. Infect Immun 82:1872–1879PubMedPubMedCentralGoogle Scholar
  97. 97.
    Hughes AK, Stricklett PK, Kohan DE (2001) Shiga toxin-1 regulation of cytokine production by human glomerular epithelial cells. Nephron 88:14–23PubMedGoogle Scholar
  98. 98.
    Morigi M, Locatelli M, Rota C, Buelli S, Corna D, Rizzo P, Abbate M, Conti D, Perico L, Longaretti L, Benigni A, Zoja C, Remuzzi G (2016) A previously unrecognized role of C3a in proteinuric progressive nephropathy. Sci Rep 6:28445PubMedPubMedCentralGoogle Scholar
  99. 99.
    Li L, Chen L, Zang J, Tang X, Liu Y, Zhang J, Bai L, Yin Q, Lu Y, Cheng J, Fu P, Liu F (2015) C3a and C5a receptor antagonists ameliorate endothelial-myofibroblast transition via the Wnt/beta-catenin signaling pathway in diabetic kidney disease. Metabolism 64:597–610PubMedGoogle Scholar
  100. 100.
    Morgan BP, Harris CL (2015) Complement, a target for therapy in inflammatory and degenerative diseases. Nat Rev Drug Discov 14:857–877PubMedGoogle Scholar

Copyright information

© IPNA 2017

Authors and Affiliations

  1. 1.Centro Anna Maria Astori, Science and Technology Park Kilometro RossoIRCCS - Istituto di Ricerche Farmacologiche “Mario Negri”BergamoItaly

Personalised recommendations