Pediatric Nephrology

, Volume 33, Issue 6, pp 935–945 | Cite as

Amniotic fluid cells: current progress and emerging challenges in renal regeneration

  • Stefano Da Sacco
  • Laura Perin
  • Sargis SedrakyanEmail author


Amniotic fluid (AF) contains a heterogeneous population of cells that have been identified to possess pluripotent and progenitor-like characteristics. These cells have been applied in various regenerative medicine applications ranging from in vitro cell differentiation to tissue engineering to cellular therapies for different organs including the heart, the liver, the lung, and the kidneys. In this review, we examine the different methodologies used for the derivation of amniotic fluid stem cells and renal progenitors, and their application in renal repair and regeneration. Moreover, we discuss the recent achievements and newly emerging challenges in our understanding of their biology, their immunoregulatory characteristics, and their paracrine-mediated therapeutic potential for the treatment of acute and chronic kidney diseases.


Amniotic fluid stem cells Renotropic factors Kidney disease Stem cell therapy Renoprotection 


Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflicts of interest.


  1. 1.
    Chang-Panesso M, Humphreys BD (2017) Cellular plasticity in kidney injury and repair. Nat Rev Nephrol 13(1):39–46CrossRefPubMedGoogle Scholar
  2. 2.
    Li L, Black R, Ma Z, Yang Q, Wang A, Lin F (2012) Use of mouse hematopoietic stem and progenitor cells to treat acute kidney injury. Am J Physiol Renal Physiol 302(1):F9–F19CrossRefPubMedGoogle Scholar
  3. 3.
    Lin F, Cordes K, Li L, Hood L, Couser WG, Shankland SJ, Igarashi P (2003) Hematopoietic stem cells contribute to the regeneration of renal tubules after renal ischemia-reperfusion injury in mice. J Am Soc Nephrol 14(5):1188–1199CrossRefPubMedGoogle Scholar
  4. 4.
    Semedo P, Correa-Costa M, Antonio Cenedeze M, Maria Avancini Costa Malheiros D, Antonia dos Reis M, Shimizu MH, Seguro AC, Pacheco-Silva A, Saraiva Camara NO (2009) Mesenchymal stem cells attenuate renal fibrosis through immune modulation and remodeling properties in a rat remnant kidney model. Stem Cells 27(12):3063–3073PubMedGoogle Scholar
  5. 5.
    Lee SR, Lee SH, Moon JY, Park JY, Lee D, Lim SJ, Jeong KH, Park JK, Lee TW, Ihm CG (2010) Repeated administration of bone marrow-derived mesenchymal stem cells improved the protective effects on a remnant kidney model. Ren Fail 32(7):840–848CrossRefPubMedGoogle Scholar
  6. 6.
    Sheashaa H, Lotfy A, Elhusseini F, Aziz AA, Baiomy A, Awad S, Alsayed A, El-Gilany AH, Saad MA, Mahmoud K, Zahran F, Salem DA, Sarhan A, Ghaffar HA, Sobh M (2016) Protective effect of adipose-derived mesenchymal stem cells against acute kidney injury induced by ischemia-reperfusion in Sprague-Dawley rats. Exp Ther Med 11(5):1573–1580CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Liu T, Zhang Y, Shen Z, Zou X, Chen X, Chen L, Wang Y (2017) Immunomodulatory effects of OX40Ig gene-modified adipose tissue-derived mesenchymal stem cells on rat kidney transplantation. Int J Mol Med 39(1):144–152CrossRefPubMedGoogle Scholar
  8. 8.
    Chen B, Bo CJ, Jia RP, Liu H, Wu R, Wu J, Ge YZ, Teng GJ (2013) The renoprotective effect of bone marrow-derived endothelial progenitor cell transplantation on acute ischemia-reperfusion injury in rats. Transplant Proc 45(5):2034–2039CrossRefPubMedGoogle Scholar
  9. 9.
    Liang CJ, Shen WC, Chang FB, Wu VC, Wang SH, Young GH, Tsai JS, Tseng YC, Peng YS, Chen YL (2015) Endothelial progenitor cells derived from Wharton’s jelly of human umbilical cord attenuate ischemic acute kidney injury by increasing vascularization and decreasing apoptosis, inflammation, and fibrosis. Cell Transplant 24(7):1363–1377CrossRefPubMedGoogle Scholar
  10. 10.
    Sangidorj O, Yang SH, Jang HR, Lee JP, Cha RH, Kim SM, Lim CS, Kim YS (2010) Bone marrow-derived endothelial progenitor cells confer renal protection in a murine chronic renal failure model. Am J Physiol Renal Physiol 299(2):F325–F335CrossRefPubMedGoogle Scholar
  11. 11.
    Sedrakyan S, Da Sacco S, Milanesi A, Shiri L, Petrosyan A, Varimezova R, Warburton D, Lemley KV, De Filippo RE, Perin L (2012) Injection of amniotic fluid stem cells delays progression of renal fibrosis. J Am Soc Nephrol 23(4):661–673CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Rota C, Imberti B, Pozzobon M, Piccoli M, De Coppi P, Atala A, Gagliardini E, Xinaris C, Benedetti V, Fabricio AS, Squarcina E, Abbate M, Benigni A, Remuzzi G, Morigi M (2012) Human amniotic fluid stem cell preconditioning improves their regenerative potential. Stem Cells Dev 21(11):1911–1923CrossRefPubMedGoogle Scholar
  13. 13.
    Baulier E, Favreau F, Le Corf A, Jayle C, Schneider F, Goujon JM, Feraud O, Bennaceur-Griscelli A, Hauet T, Turhan AG (2014) Amniotic fluid-derived mesenchymal stem cells prevent fibrosis and preserve renal function in a preclinical porcine model of kidney transplantation. Stem Cells Transl Med 3(7):809–820CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Da Sacco S, Sedrakyan S, Boldrin F, Giuliani S, Parnigotto P, Habibian R, Warburton D, De Filippo RE, Perin L (2010) Human amniotic fluid as a potential new source of organ specific precursor cells for future regenerative medicine applications. J Urol 183(3):1193–1200CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Underwood MA, Gilbert WM, Sherman MP (2005) Amniotic fluid: not just fetal urine anymore. J Perinatol 25(5):341–348CrossRefPubMedGoogle Scholar
  16. 16.
    Hoehn H, Salk D (1982) Morphological and biochemical heterogeneity of amniotic fluid cells in culture. Methods Cell Biol 26:11–34CrossRefPubMedGoogle Scholar
  17. 17.
    Gosden CM (1983) Amniotic fluid cell types and culture. Br Med Bull 39(4):348–354CrossRefPubMedGoogle Scholar
  18. 18.
    Torricelli F, Brizzi L, Bernabei PA, Gheri G, Di Lollo S, Nutini L, Lisi E, Di Tommaso M, Cariati E (1993) Identification of hematopoietic progenitor cells in human amniotic fluid before the 12th week of gestation. Ital J Anat Embryol 98(2):119–126PubMedGoogle Scholar
  19. 19.
    Tsangaris RW, Pollak D, Lubec G, Fountoulakis M (2004) The amniotic fluid cells proteome. Electrophoresis 25:1168–1173Google Scholar
  20. 20.
    Bossolasco P, Montemurro T, Cova L, Zangrossi S, Calzarossa C, Buiatiotis S, Soligo D, Bosari S, Silani V, Deliliers GL, Rebulla P, Lazzari L (2006) Molecular and phenotypic characterization of human amniotic fluid cells and their differentiation potential. Cell Res 16(4):329–336CrossRefPubMedGoogle Scholar
  21. 21.
    McLaughlin D, Tsirimonaki E, Vallianatos G, Sakellaridis N, Chatzistamatiou T, Stavropoulos-Gioka C, Tsezou A, Messinis I, Mangoura D (2006) Stable expression of a neuronal dopaminergic progenitor phenotype in cell lines derived from human amniotic fluid cells. J Neurosci Res 83(7):1190–1200CrossRefPubMedGoogle Scholar
  22. 22.
    Kunisaki SM, Armant M, Kao GS, Stevenson K, Kim H, Fauza DO (2007) Tissue engineering from human mesenchymal amniocytes: a prelude to clinical trials. J Pediatr Surg 42(6):974–979 discussion 9-80CrossRefPubMedGoogle Scholar
  23. 23.
    Bertin E, Piccoli M, Franzin C, Spiro G, Donà S, Dedja A, Schiavi F, Taschin E, Bonaldo P, Braghetta P, De Coppi P, Pozzobon M (2016) First steps to define murine amniotic fluid stem cell microenvironment. Sci Rep 15(6):37080CrossRefGoogle Scholar
  24. 24.
    Perin L, Sedrakyan S, Da Sacco S, De Filippo R (2008) Characterization of human amniotic fluid stem cells and their pluripotential capability. Methods Cell Biol 86:85–99CrossRefPubMedGoogle Scholar
  25. 25.
    Pipino C, Pierdomenico L, Di Tomo P, Di Giuseppe F, Cianci E, D’Alimonte I, Morabito C, Centurione L, Antonucci I, Mariggiò MA, Di Pietro R, Ciccarelli R, Marchisio M, Romano M, Angelucci S, Pandolfi A (2015) Molecular and phenotypic characterization of human amniotic fluid-derived cells: a morphological and proteomic approach. Stem Cells Dev 24(12):1415–1428CrossRefPubMedGoogle Scholar
  26. 26.
    Xiao GY, Liu IH, Cheng CC, Chang CC, Lee YH, Cheng WT, Wu SC (2014) Amniotic fluid stem cells prevent follicle atresia and rescue fertility of mice with premature ovarian failure induced by chemotherapy. PLoS One 9(9):e106538CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Piccoli M, Franzin C, Bertin E, Urbani L, Blaauw B, Repele A, Taschin E, Cenedese A, Zanon GF, André-Schmutz I, Rosato A, Melki J, Cavazzana-Calvo M, Pozzobon M, De Coppi P (2012) Amniotic fluid stem cells restore the muscle cell niche in a HSA-Cre, Smn(F7/F7) mouse model. Stem Cells 30(8):1675–1684CrossRefPubMedGoogle Scholar
  28. 28.
    Park SB, Seo MS, Kang JG, Chae JS, Kang KS (2011) Isolation and characterization of equine amniotic fluid-derived multipotent stem cells. Cytotherapy 13(3):341–349CrossRefPubMedGoogle Scholar
  29. 29.
    Iacono E, Brunori L, Pirrone A, Pagliaro PP, Ricci F, Tazzari PL, Merlo B (2012) Isolation, characterization and differentiation of mesenchymal stem cells from amniotic fluid, umbilical cord blood and Wharton’s jelly in the horse. Reproduction 143(4):455–468CrossRefPubMedGoogle Scholar
  30. 30.
    Mauro A, Turriani M, Ioannoni A, Russo V, Martelli A, Di Giacinto O, Nardinocchi D, Berardinelli P (2010) Isolation, characterization, and in vitro differentiation of ovine amniotic stem cells. Vet Res Commun 34 [Suppl 1]:S25–S28CrossRefPubMedGoogle Scholar
  31. 31.
    Tian Y, Tao L, Zhao S, Tai D, Liu D, Liu P (2015) Isolation and morphological characterization of ovine amniotic fluid mesenchymal stem cells. Exp Anim 65(2):125–134CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Rossi B, Merlo B, Colleoni S, Iacono E, Tazzari PL, Ricci F, Lazzari G, Galli C (2014) Isolation and in vitro characterization of bovine amniotic fluid derived stem cells at different trimesters of pregnancy. Stem Cell Rev 10(5):712–724CrossRefPubMedGoogle Scholar
  33. 33.
    Dev K, Giri SK, Kumar A, Yadav A, Singh B, Gautam SK (2012) Derivation, characterization and differentiation of buffalo (Bubalus bubalis) amniotic fluid derived stem cells. Reprod Domest Anim 47(5):704–711CrossRefPubMedGoogle Scholar
  34. 34.
    Pratheesh MD, Gade NE, Katiyar AN, Dubey PK, Sharma B, Saikumar G, Amarpal, Sharma GT (2013) Isolation, culture and characterization of caprine mesenchymal stem cells derived from amniotic fluid. Res Vet Sci 94(2):313–319CrossRefPubMedGoogle Scholar
  35. 35.
    Fernandes RA, Wenceslau CV, Reginato AL, Kerkis I, Miglino MA (2012) Derivation and characterization of progenitor stem cells from canine allantois and amniotic fluids at the third trimester of gestation. Placenta 33(8):640–644CrossRefPubMedGoogle Scholar
  36. 36.
    Filioli Uranio M, Valentini L, Lange-Consiglio A, Caira M, Guaricci AC, L’Abbate A, Catacchio CR, Ventura M, Cremonesi F, Dell’Aquila ME (2011) Isolation, proliferation, cytogenetic, and molecular characterization and in vitro differentiation potency of canine stem cells from foetal adnexa: a comparative study of amniotic fluid, amnion, and umbilical cord matrix. Mol Reprod Dev 78(5):361–373CrossRefPubMedGoogle Scholar
  37. 37.
    Chen J, Lu Z, Cheng D, Peng S, Wang H (2011) Isolation and characterization of porcine amniotic fluid-derived multipotent stem cells. PLoS One 6(5):e19964CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    De Coppi P, Bartsch G Jr, Siddiqui MM, Xu T, Santos CC, Perin L, Mostoslavsky G, Serre AC, Snyder EY, Yoo JJ, Furth ME, Soker S, Atala A (2007) Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol 25(1):100–106CrossRefPubMedGoogle Scholar
  39. 39.
    Wang D, Chen R, Zhong X, Fan Y, Lai W, Sun X (2014) Levels of CD105 cells increase and cell proliferation decreases during S-phase arrest of amniotic fluid cells in long-term culture. Exp Ther Med 8(5):1604–1610CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Phermthai T, Odglun Y, Julavijitphong S, Titapant V, Chuenwattana P, Vantanasiri C, Pattanapanyasat K (2010) A novel method to derive amniotic fluid stem cells for therapeutic purposes. BMC Cell Biol 11:79CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Mareschi K, Rustichelli D, Comunanza V, De Fazio R, Cravero C, Morterra G, Martinoglio B, Medico E, Carbone E, Benedetto C, Fagioli F (2009) Multipotent mesenchymal stem cells from amniotic fluid originate neural precursors with functional voltage-gated sodium channels. Cytotherapy 11(5):534–547CrossRefPubMedGoogle Scholar
  42. 42.
    Thangnipon W, Puangmalai N, Suwanna N, Soi-Ampornkul R, Phonchai R, Kotchabhakdi N, Mukda S, Phermthai T, Julavijitphong S, Tuchinda P, Nobsathian S (2015) Potential role of N-benzylcinnamide in inducing neuronal differentiation from human amniotic fluid mesenchymal stem cells. Neurosci Lett 610:6–12CrossRefPubMedGoogle Scholar
  43. 43.
    Gao L, Zhao M, Ye W, Huang J, Chu J, Yan S, Wang C, Zeng R (2016) Inhibition of glycogen synthase kinase-3 (GSK3) promotes the neural differentiation of full-term amniotic fluid-derived stem cells towards neural progenitor cells. Tissue Cell 48(4):312–320CrossRefPubMedGoogle Scholar
  44. 44.
    Connell JP, Augustini E, Moise KJ Jr, Johnson A, Jacot JG (2013) Formation of functional gap junctions in amniotic fluid-derived stem cells induced by transmembrane co-culture with neonatal rat cardiomyocytes. J Cell Mol Med 17(6):774–781CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Peng SY, Yang YS, Chou CJ, Lin KY, Wu SC (2015) Differentiation of enhanced green fluorescent protein-labeled mouse amniotic fluid-derived stem cells into cardiomyocyte-like beating cells. Acta Cardiol Sin 31(3):209–214PubMedPubMedCentralGoogle Scholar
  46. 46.
    Ginsberg M, Schachterle W, Shido K, Rafii S (2015) Direct conversion of human amniotic cells into endothelial cells without transitioning through a pluripotent state. Nat Protoc 10(12):1975–1985CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Zhang R, Lu Y, Li J, Wang J, Liu C, Gao F, Sun D (2016) Glial cell line-derived neurotrophic factor induced the differentiation of amniotic fluid-derived stem cells into vascular endothelial-like cells in vitro. J Mol Histol 47(1):9–19CrossRefPubMedGoogle Scholar
  48. 48.
    Gage BK, Riedel MJ, Karanu F, Rezania A, Fujita Y, Webber TD, Baker RK, Wideman RD, Kieffer TJ (2010) Cellular reprogramming of human amniotic fluid cells to express insulin. Differentiation 80(2–3):130–139CrossRefPubMedGoogle Scholar
  49. 49.
    Mu XP, Ren LQ, Yan HW, Zhang XM, Xu TM, Wei AH, Jiang JL (2016) Enhanced differentiation of human amniotic fluid-derived stem cells into insulin-producing cells in vitro. J Diabetes Investig 8(1):34–43CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Saulnier N, Lattanzi W, Puglisi MA, Pani G, Barba M, Piscaglia AC, Giachelia M, Alfieri S, Neri G, Gasbarrini G, Gasbarrini A (2009) Mesenchymal stromal cells multipotency and plasticity: induction toward the hepatic lineage. Eur Rev Med Pharmacol Sci 13 [Suppl 1)]:71–78PubMedGoogle Scholar
  51. 51.
    Vadasz S, Jensen T, Moncada C, Girard E, Zhang F, Blanchette A, Finck C (2014) Second and third trimester amniotic fluid mesenchymal stem cells can repopulate a de-cellularized lung scaffold and express lung markers. J Pediatr Surg 49(11):1554–1563CrossRefPubMedGoogle Scholar
  52. 52.
    Liang H, Sun Q, Zhen Y, Li F, Xu Y, Liu Y, Zhang X, Qin M (2016) The differentiation of amniotic fluid stem cells into sweat glandlike cells is enhanced by the presence of sonic hedgehog in the conditioned medium. Exp Dermatol 25(9):714–720CrossRefPubMedGoogle Scholar
  53. 53.
    Perin L, Giuliani S, Jin D, Sedrakyan S, Carraro G, Habibian R, Warburton D, Atala A, De Filippo RE (2007) Renal differentiation of amniotic fluid stem cells. Cell Prolif 40(6):936–948CrossRefPubMedGoogle Scholar
  54. 54.
    Siegel N, Valli A, Fuchs C, Rosner M, Hengstschlager M (2009) Induction of mesenchymal/epithelial marker expression in human amniotic fluid stem cells. Reprod Biomed Online 19(6):838–846CrossRefPubMedGoogle Scholar
  55. 55.
    Siegel N, Rosner M, Unbekandt M, Fuchs C, Slabina N, Dolznig H, Davies JA, Lubec G, Hengstschläger M (2010) Contribution of human amniotic fluid stem cells to renal tissue formation depends on mTOR. Hum Mol Genet 19(17):3320–3331CrossRefPubMedGoogle Scholar
  56. 56.
    Xinaris C, Benedetti V, Novelli R, Abbate M, Rizzo P, Conti S, Tomasoni S, Corna D, Pozzobon M, Cavallotti D, Yokoo T, Morigi M, Benigni A, Remuzzi G (2016) Functional human podocytes generated in organoids from amniotic fluid stem cells. J Am Soc Nephrol 27(5):1400–1411CrossRefPubMedGoogle Scholar
  57. 57.
    Monteiro Carvalho Mori da Cunha MG, Zia S, Oliveira Arcolino F, Carlon MS, Beckmann DV, Pippi NL, Luhers Graça D, Levtchenko E, Deprest J, Toelen J (2015) Amniotic fluid derived stem cells with a renal progenitor phenotype inhibit interstitial fibrosis in renal ischemia and reperfusion injury in rats. PLoS One 10(8):e0136145CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Da Sacco S, Lemley KV, Sedrakyan S, Zanusso I, Petrosyan A, Peti-Peterdi J, Burford J, De Filippo RE, Perin L (2013) A novel source of cultured podocytes. PLoS One 8(12):e81812CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Da Sacco S, Thornton ME, Petrosyan A, Lavarreda-Pearce M, Sedrakyan S, Grubbs BH, De Filippo RE, Perin L (2017) Direct isolation and characterization of human nephron progenitors. Stem Cells Transl Med 6(2):419–433CrossRefPubMedGoogle Scholar
  60. 60.
    Perin L, Sedrakyan S, Giuliani S, Da Sacco S, Carraro G, Shiri L, Lemley KV, Rosol M, Wu S, Atala A, Warburton D, De Filippo RE (2010) Protective effect of human amniotic fluid stem cells in an immunodeficient mouse model of acute tubular necrosis. PLoS One 5(2):e9357CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Hauser PV, De Fazio R, Bruno S, Sdei S, Grange C, Bussolati B, Benedetto C, Camussi G (2010) Stem cells derived from human amniotic fluid contribute to acute kidney injury recovery. Am J Pathol 177(4):2011–2021CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Al-Husseiny F, Sobh MA, Ashour RH, Foud S, Medhat T, El-Gilany AH, Elghannam D, Abdel-Ghaffar H, Saad MA, Sobh M (2016) Amniotic fluid-derived mesenchymal stem cells cut short the acuteness of cisplatin-induced nephrotoxicity in Sprague-Dawley rats. Int J Stem Cells 9(1):70–78CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Ashour RH, Saad MA, Sobh MA, Al-Husseiny F, Abouelkheir M, Awad A, Elghannam D, Abdel-Ghaffar H, Sobh M (2016) Comparative study of allogenic and xenogeneic mesenchymal stem cells on cisplatin-induced acute kidney injury in Sprague-Dawley rats. Stem Cell Res Ther 7(1):126CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Dragun D, Hoff U, Park JK, Qun Y, Schneider W, Luft FC, Haller H (2000) Ischemia-reperfusion injury in renal transplantation is independent of the immunologic background. Kidney Int 58(5):2166–2177CrossRefPubMedGoogle Scholar
  65. 65.
    Liaño F, Pascual J (1996) Epidemiology of acute renal failure: a prospective, multicenter, community-based study. Madrid acute renal failure study group. Kidney Int 50(3):811–818CrossRefPubMedGoogle Scholar
  66. 66.
    Mori da Cunha MG, Zia S, Beckmann DV, Carlon MS, Arcolino FO, Albersen M, Pippi NL, Graça DL, Gysemans C, Carmeliet P, Levtchenko E, Deprest J, Toelen J (2017) Vascular endothelial growth factor up-regulation in human amniotic fluid stem cell enhances Nephroprotection after ischemia-reperfusion injury in the rat. Crit Care Med 45(1):e86–e96CrossRefPubMedGoogle Scholar
  67. 67.
    Liu P, Feng Y, Dong D, Liu X, Chen Y, Wang Y, Zhou Y (2016) Enhanced renoprotective effect of IGF-1 modified human umbilical cord-derived mesenchymal stem cells on gentamicin-induced acute kidney injury. Sci Rep 6:20287CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Chen Y, Qian H, Zhu W, Zhang X, Yan Y, Ye S, Peng X, Li W, Xu W (2011) Hepatocyte growth factor modification promotes the amelioration effects of human umbilical cord mesenchymal stem cells on rat acute kidney injury. Stem Cells Dev 20(1):103–113CrossRefPubMedGoogle Scholar
  69. 69.
    Zhen-Qiang F, Bing-Wei Y, Yong-Liang L, Xiang-Wei W, Shan-Hong Y, Yuan-Ning Z, Wei-Sheng J, Wei C, Ye G (2012) Localized expression of human BMP-7 by BM-MSCs enhances renal repair in an in vivo model of ischemia-reperfusion injury. Genes Cells 17(1):53–64CrossRefPubMedGoogle Scholar
  70. 70.
    Si X, Liu X, Li J, Wu X (2015) Transforming growth factor-β1 promotes homing of bone marrow mesenchymal stem cells in renal ischemia-reperfusion injury. Int J Clin Exp Pathol 8(10):12368–12378PubMedPubMedCentralGoogle Scholar
  71. 71.
    Bartlett CS, Jeansson M, Quaggin SE (2016) Vascular growth factors and glomerular disease. Annu Rev Physiol 78:437–461CrossRefPubMedGoogle Scholar
  72. 72.
    Tossidou I, Schiffer M (2012) TGF-β/BMP pathways and the podocyte. Semin Nephrol 32(4):368–376CrossRefPubMedGoogle Scholar
  73. 73.
    Urushihara M, Kagami S (2016) Role of the intrarenal renin-angiotensin system in the progression of renal disease. Pediatr Nephrol. doi: 10.1007/s00467-016-3449-7
  74. 74.
    Sun D, Bu L, Liu C, Yin Z, Zhou X, Li X, Xiao A (2013) Therapeutic effects of human amniotic fluid-derived stem cells on renal interstitial fibrosis in a murine model of unilateral ureteral obstruction. PLoS One 8(5):e65042CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Yoon BS, Moon JH, Jun EK, Kim J, Maeng I, Kim JS, Lee JH, Baik CS, Kim A, Cho KS, Lee JH, Lee HH, Whang KY, You S (2010) Secretory profiles and wound healing effects of human amniotic fluid-derived mesenchymal stem cells. Stem Cells Dev 19(6):887–902CrossRefPubMedGoogle Scholar
  76. 76.
    Petrosyan A, Orlando G, Peloso A, Wang Z, Farney AC, Rogers G, Katari R, Da Sacco S, Sedrakyan S, De Filippo RE, Stratta RJ, Soker S, Perin L (2015) Understanding the bioactivity of stem cells seeded on extracellular matrix scaffolds produced from discarded human kidneys: a critical step towards a new generation bio-artificial kidney. CellR4 3(1):e1401Google Scholar
  77. 77.
    Homsi E, Ribeiro-Alves MA, Lopes de Faria JB, Dias EP (2002) Interleukin-6 stimulates tubular regeneration in rats with glycerol-induced acute renal failure. Nephron 92(1):192–199CrossRefPubMedGoogle Scholar
  78. 78.
    Feng J, Zhao L, Deng H, Wei M, Li J, Xu K (2013) Immune tolerance of amniotic fluid stem cell-induced rat kidney graft and influences on oxidative stress. Transplant Proc 45(9):3394–3401CrossRefPubMedGoogle Scholar
  79. 79.
    Swijnenburg RJ, Schrepfer S, Cao F, Pearl JI, Xie X, Connolly AJ, Robbins RC, Wu JC (2008) In vivo imaging of embryonic stem cells reveals patterns of survival and immune rejection following transplantation. Stem Cells Dev 17(6):1023–1029CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Bobbert M (2006) Ethical questions concerning research on human embryos, embryonic stem cells and chimeras. Biotechnol J 1(12):1352–1369CrossRefPubMedGoogle Scholar
  81. 81.
    Fu X, Xu Y (2012) Challenges to the clinical application of pluripotent stem cells: towards genomic and functional stability. Genome Med 4(6):55CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Shtrichman R, Germanguz I, Itskovitz-Eldor J (2013) Induced pluripotent stem cells (iPSCs) derived from different cell sources and their potential for regenerative and personalized medicine. Curr Mol Med 13(5):792–805CrossRefPubMedGoogle Scholar
  83. 83.
    Moorefield EC, McKee EE, Solchaga L, Orlando G, Yoo JJ, Walker S, Furth ME, Bishop CE (2011) Cloned, CD117 selected human amniotic fluid stem cells are capable of modulating the immune response. PLoS One 6(10):e26535CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Mareschi K, Castiglia S, Sanavio F, Rustichelli D, Muraro M, Defedele D, Bergallo M, Fagioli F (2016) Immunoregulatory effects on T lymphocytes by human mesenchymal stromal cells isolated from bone marrow, amniotic fluid, and placenta. Exp Hematol 44(2):138–150CrossRefPubMedGoogle Scholar
  85. 85.
    Di Trapani M, Bassi G, Fontana E, Giacomello L, Pozzobon M, Guillot PV, De Coppi P, Krampera M (2015) Immune regulatory properties of CD117(pos) amniotic fluid stem cells vary according to gestational age. Stem Cells Dev 24(1):132–143CrossRefPubMedGoogle Scholar
  86. 86.
    de Fijter JW (2005) The impact of age on rejection in kidney transplantation. Drugs Aging 22(5):433–449CrossRefPubMedGoogle Scholar
  87. 87.
    Höcker B, Tönshoff B (2009) Treatment strategies to minimize or prevent chronic allograft dysfunction in pediatric renal transplant recipients: an overview. Paediatr Drugs 11(6):3813–3896CrossRefGoogle Scholar
  88. 88.
    Collino F, Bruno S, Incarnato D, Dettori D, Neri F, Provero P, Pomatto M, Oliviero S, Tetta C, Quesenberry PJ, Camussi G (2015) AKI recovery induced by mesenchymal stromal cell-derived extracellular vesicles carrying MicroRNAs. J Am Soc Nephrol 26(10):2349–2360CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Charron D (2013) Allogenicity & immunogenicity in regenerative stem cell therapy. Indian J Med Res 138(5):749–754PubMedPubMedCentralGoogle Scholar
  90. 90.
    Nawaz M, Fatima F, Vallabhaneni KC, Penfornis P, Valadi H, Ekström K, Kholia S, Whitt JD, Fernandes JD, Pochampally R, Squire JA, Camussi G (2016) Extracellular vesicles: evolving factors in stem cell biology. Stem Cells Int 2016:1073140CrossRefPubMedGoogle Scholar
  91. 91.
    Ross EA, Abrahamson DR, St John P, Clapp WL, Williams MJ, Terada N, Hamazaki T, Ellison GW, Batich CD (2012) Mouse stem cells seeded into decellularized rat kidney scaffolds endothelialize and remodel basement membranes. Organ 8(2):49–55Google Scholar
  92. 92.
    Ross EA, Williams MJ, Hamazaki T, Terada N, Clapp WL, Adin C, Ellison GW, Jorgensen M, Batich CD (2009) Embryonic stem cells proliferate and differentiate when seeded into kidney scaffolds. J Am Soc Nephrol 20(11):2338–2347CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Bonandrini B, Figliuzzi M, Papadimou E, Morigi M, Perico N, Casiraghi F, Dipl C, Sangalli F, Conti S, Benigni A, Remuzzi A, Remuzzi G (2014) Recellularization of well-preserved acellular kidney scaffold using embryonic stem cells. Tissue Eng Part A 20(9–10):1486–9148CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Song JJ, Guyette JP, Gilpin SE, Gonzalez G, Vacanti JP, Ott HC (2013) Regeneration and experimental orthotopic transplantation of a bioengineered kidney. Nat Med 9(5):646–651CrossRefGoogle Scholar
  95. 95.
    Guan Y, Liu S, Sun C, Cheng G, Kong F, Luan Y, Xie X, Zhao S, Zhang D, Wang J, Li K, Liu Y (2015) The effective bioengineering method of implantation decellularized renal extracellular matrix scaffolds. Oncotarget 6(34):36126–36138PubMedPubMedCentralGoogle Scholar
  96. 96.
    Petrosyan A, Zanusso I, Lavarreda-Pearce M, Leslie S, Sedrakyan S, De Filippo RE, Orlando G, Da Sacco S, Perin L (2016) Decellularized renal matrix and regenerative medicine of the kidney: a different point of view. Tissue Eng Part B Rev 22(3):183–192CrossRefPubMedGoogle Scholar

Copyright information

© IPNA 2017

Authors and Affiliations

  1. 1.GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics, Children’s Hospital Los Angeles, Division of Urology, Saban Research InstituteUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations