Skip to main content

Advertisement

Log in

Amniotic fluid cells: current progress and emerging challenges in renal regeneration

  • Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Amniotic fluid (AF) contains a heterogeneous population of cells that have been identified to possess pluripotent and progenitor-like characteristics. These cells have been applied in various regenerative medicine applications ranging from in vitro cell differentiation to tissue engineering to cellular therapies for different organs including the heart, the liver, the lung, and the kidneys. In this review, we examine the different methodologies used for the derivation of amniotic fluid stem cells and renal progenitors, and their application in renal repair and regeneration. Moreover, we discuss the recent achievements and newly emerging challenges in our understanding of their biology, their immunoregulatory characteristics, and their paracrine-mediated therapeutic potential for the treatment of acute and chronic kidney diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1

Similar content being viewed by others

References

  1. Chang-Panesso M, Humphreys BD (2017) Cellular plasticity in kidney injury and repair. Nat Rev Nephrol 13(1):39–46

    Article  CAS  PubMed  Google Scholar 

  2. Li L, Black R, Ma Z, Yang Q, Wang A, Lin F (2012) Use of mouse hematopoietic stem and progenitor cells to treat acute kidney injury. Am J Physiol Renal Physiol 302(1):F9–F19

    Article  CAS  PubMed  Google Scholar 

  3. Lin F, Cordes K, Li L, Hood L, Couser WG, Shankland SJ, Igarashi P (2003) Hematopoietic stem cells contribute to the regeneration of renal tubules after renal ischemia-reperfusion injury in mice. J Am Soc Nephrol 14(5):1188–1199

    Article  PubMed  Google Scholar 

  4. Semedo P, Correa-Costa M, Antonio Cenedeze M, Maria Avancini Costa Malheiros D, Antonia dos Reis M, Shimizu MH, Seguro AC, Pacheco-Silva A, Saraiva Camara NO (2009) Mesenchymal stem cells attenuate renal fibrosis through immune modulation and remodeling properties in a rat remnant kidney model. Stem Cells 27(12):3063–3073

    CAS  PubMed  Google Scholar 

  5. Lee SR, Lee SH, Moon JY, Park JY, Lee D, Lim SJ, Jeong KH, Park JK, Lee TW, Ihm CG (2010) Repeated administration of bone marrow-derived mesenchymal stem cells improved the protective effects on a remnant kidney model. Ren Fail 32(7):840–848

    Article  CAS  PubMed  Google Scholar 

  6. Sheashaa H, Lotfy A, Elhusseini F, Aziz AA, Baiomy A, Awad S, Alsayed A, El-Gilany AH, Saad MA, Mahmoud K, Zahran F, Salem DA, Sarhan A, Ghaffar HA, Sobh M (2016) Protective effect of adipose-derived mesenchymal stem cells against acute kidney injury induced by ischemia-reperfusion in Sprague-Dawley rats. Exp Ther Med 11(5):1573–1580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Liu T, Zhang Y, Shen Z, Zou X, Chen X, Chen L, Wang Y (2017) Immunomodulatory effects of OX40Ig gene-modified adipose tissue-derived mesenchymal stem cells on rat kidney transplantation. Int J Mol Med 39(1):144–152

    Article  CAS  PubMed  Google Scholar 

  8. Chen B, Bo CJ, Jia RP, Liu H, Wu R, Wu J, Ge YZ, Teng GJ (2013) The renoprotective effect of bone marrow-derived endothelial progenitor cell transplantation on acute ischemia-reperfusion injury in rats. Transplant Proc 45(5):2034–2039

    Article  CAS  PubMed  Google Scholar 

  9. Liang CJ, Shen WC, Chang FB, Wu VC, Wang SH, Young GH, Tsai JS, Tseng YC, Peng YS, Chen YL (2015) Endothelial progenitor cells derived from Wharton’s jelly of human umbilical cord attenuate ischemic acute kidney injury by increasing vascularization and decreasing apoptosis, inflammation, and fibrosis. Cell Transplant 24(7):1363–1377

    Article  PubMed  Google Scholar 

  10. Sangidorj O, Yang SH, Jang HR, Lee JP, Cha RH, Kim SM, Lim CS, Kim YS (2010) Bone marrow-derived endothelial progenitor cells confer renal protection in a murine chronic renal failure model. Am J Physiol Renal Physiol 299(2):F325–F335

    Article  CAS  PubMed  Google Scholar 

  11. Sedrakyan S, Da Sacco S, Milanesi A, Shiri L, Petrosyan A, Varimezova R, Warburton D, Lemley KV, De Filippo RE, Perin L (2012) Injection of amniotic fluid stem cells delays progression of renal fibrosis. J Am Soc Nephrol 23(4):661–673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rota C, Imberti B, Pozzobon M, Piccoli M, De Coppi P, Atala A, Gagliardini E, Xinaris C, Benedetti V, Fabricio AS, Squarcina E, Abbate M, Benigni A, Remuzzi G, Morigi M (2012) Human amniotic fluid stem cell preconditioning improves their regenerative potential. Stem Cells Dev 21(11):1911–1923

    Article  CAS  PubMed  Google Scholar 

  13. Baulier E, Favreau F, Le Corf A, Jayle C, Schneider F, Goujon JM, Feraud O, Bennaceur-Griscelli A, Hauet T, Turhan AG (2014) Amniotic fluid-derived mesenchymal stem cells prevent fibrosis and preserve renal function in a preclinical porcine model of kidney transplantation. Stem Cells Transl Med 3(7):809–820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Da Sacco S, Sedrakyan S, Boldrin F, Giuliani S, Parnigotto P, Habibian R, Warburton D, De Filippo RE, Perin L (2010) Human amniotic fluid as a potential new source of organ specific precursor cells for future regenerative medicine applications. J Urol 183(3):1193–1200

    Article  PubMed  PubMed Central  Google Scholar 

  15. Underwood MA, Gilbert WM, Sherman MP (2005) Amniotic fluid: not just fetal urine anymore. J Perinatol 25(5):341–348

    Article  PubMed  Google Scholar 

  16. Hoehn H, Salk D (1982) Morphological and biochemical heterogeneity of amniotic fluid cells in culture. Methods Cell Biol 26:11–34

    Article  CAS  PubMed  Google Scholar 

  17. Gosden CM (1983) Amniotic fluid cell types and culture. Br Med Bull 39(4):348–354

    Article  CAS  PubMed  Google Scholar 

  18. Torricelli F, Brizzi L, Bernabei PA, Gheri G, Di Lollo S, Nutini L, Lisi E, Di Tommaso M, Cariati E (1993) Identification of hematopoietic progenitor cells in human amniotic fluid before the 12th week of gestation. Ital J Anat Embryol 98(2):119–126

    CAS  PubMed  Google Scholar 

  19. Tsangaris RW, Pollak D, Lubec G, Fountoulakis M (2004) The amniotic fluid cells proteome. Electrophoresis 25:1168–1173

    Google Scholar 

  20. Bossolasco P, Montemurro T, Cova L, Zangrossi S, Calzarossa C, Buiatiotis S, Soligo D, Bosari S, Silani V, Deliliers GL, Rebulla P, Lazzari L (2006) Molecular and phenotypic characterization of human amniotic fluid cells and their differentiation potential. Cell Res 16(4):329–336

    Article  CAS  PubMed  Google Scholar 

  21. McLaughlin D, Tsirimonaki E, Vallianatos G, Sakellaridis N, Chatzistamatiou T, Stavropoulos-Gioka C, Tsezou A, Messinis I, Mangoura D (2006) Stable expression of a neuronal dopaminergic progenitor phenotype in cell lines derived from human amniotic fluid cells. J Neurosci Res 83(7):1190–1200

    Article  CAS  PubMed  Google Scholar 

  22. Kunisaki SM, Armant M, Kao GS, Stevenson K, Kim H, Fauza DO (2007) Tissue engineering from human mesenchymal amniocytes: a prelude to clinical trials. J Pediatr Surg 42(6):974–979 discussion 9-80

    Article  PubMed  Google Scholar 

  23. Bertin E, Piccoli M, Franzin C, Spiro G, Donà S, Dedja A, Schiavi F, Taschin E, Bonaldo P, Braghetta P, De Coppi P, Pozzobon M (2016) First steps to define murine amniotic fluid stem cell microenvironment. Sci Rep 15(6):37080

    Article  Google Scholar 

  24. Perin L, Sedrakyan S, Da Sacco S, De Filippo R (2008) Characterization of human amniotic fluid stem cells and their pluripotential capability. Methods Cell Biol 86:85–99

    Article  CAS  PubMed  Google Scholar 

  25. Pipino C, Pierdomenico L, Di Tomo P, Di Giuseppe F, Cianci E, D’Alimonte I, Morabito C, Centurione L, Antonucci I, Mariggiò MA, Di Pietro R, Ciccarelli R, Marchisio M, Romano M, Angelucci S, Pandolfi A (2015) Molecular and phenotypic characterization of human amniotic fluid-derived cells: a morphological and proteomic approach. Stem Cells Dev 24(12):1415–1428

    Article  CAS  PubMed  Google Scholar 

  26. Xiao GY, Liu IH, Cheng CC, Chang CC, Lee YH, Cheng WT, Wu SC (2014) Amniotic fluid stem cells prevent follicle atresia and rescue fertility of mice with premature ovarian failure induced by chemotherapy. PLoS One 9(9):e106538

    Article  PubMed  PubMed Central  Google Scholar 

  27. Piccoli M, Franzin C, Bertin E, Urbani L, Blaauw B, Repele A, Taschin E, Cenedese A, Zanon GF, André-Schmutz I, Rosato A, Melki J, Cavazzana-Calvo M, Pozzobon M, De Coppi P (2012) Amniotic fluid stem cells restore the muscle cell niche in a HSA-Cre, Smn(F7/F7) mouse model. Stem Cells 30(8):1675–1684

    Article  CAS  PubMed  Google Scholar 

  28. Park SB, Seo MS, Kang JG, Chae JS, Kang KS (2011) Isolation and characterization of equine amniotic fluid-derived multipotent stem cells. Cytotherapy 13(3):341–349

    Article  CAS  PubMed  Google Scholar 

  29. Iacono E, Brunori L, Pirrone A, Pagliaro PP, Ricci F, Tazzari PL, Merlo B (2012) Isolation, characterization and differentiation of mesenchymal stem cells from amniotic fluid, umbilical cord blood and Wharton’s jelly in the horse. Reproduction 143(4):455–468

    Article  CAS  PubMed  Google Scholar 

  30. Mauro A, Turriani M, Ioannoni A, Russo V, Martelli A, Di Giacinto O, Nardinocchi D, Berardinelli P (2010) Isolation, characterization, and in vitro differentiation of ovine amniotic stem cells. Vet Res Commun 34 [Suppl 1]:S25–S28

    Article  PubMed  Google Scholar 

  31. Tian Y, Tao L, Zhao S, Tai D, Liu D, Liu P (2015) Isolation and morphological characterization of ovine amniotic fluid mesenchymal stem cells. Exp Anim 65(2):125–134

    Article  PubMed  PubMed Central  Google Scholar 

  32. Rossi B, Merlo B, Colleoni S, Iacono E, Tazzari PL, Ricci F, Lazzari G, Galli C (2014) Isolation and in vitro characterization of bovine amniotic fluid derived stem cells at different trimesters of pregnancy. Stem Cell Rev 10(5):712–724

    Article  CAS  PubMed  Google Scholar 

  33. Dev K, Giri SK, Kumar A, Yadav A, Singh B, Gautam SK (2012) Derivation, characterization and differentiation of buffalo (Bubalus bubalis) amniotic fluid derived stem cells. Reprod Domest Anim 47(5):704–711

    Article  CAS  PubMed  Google Scholar 

  34. Pratheesh MD, Gade NE, Katiyar AN, Dubey PK, Sharma B, Saikumar G, Amarpal, Sharma GT (2013) Isolation, culture and characterization of caprine mesenchymal stem cells derived from amniotic fluid. Res Vet Sci 94(2):313–319

    Article  CAS  PubMed  Google Scholar 

  35. Fernandes RA, Wenceslau CV, Reginato AL, Kerkis I, Miglino MA (2012) Derivation and characterization of progenitor stem cells from canine allantois and amniotic fluids at the third trimester of gestation. Placenta 33(8):640–644

    Article  CAS  PubMed  Google Scholar 

  36. Filioli Uranio M, Valentini L, Lange-Consiglio A, Caira M, Guaricci AC, L’Abbate A, Catacchio CR, Ventura M, Cremonesi F, Dell’Aquila ME (2011) Isolation, proliferation, cytogenetic, and molecular characterization and in vitro differentiation potency of canine stem cells from foetal adnexa: a comparative study of amniotic fluid, amnion, and umbilical cord matrix. Mol Reprod Dev 78(5):361–373

    Article  CAS  PubMed  Google Scholar 

  37. Chen J, Lu Z, Cheng D, Peng S, Wang H (2011) Isolation and characterization of porcine amniotic fluid-derived multipotent stem cells. PLoS One 6(5):e19964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. De Coppi P, Bartsch G Jr, Siddiqui MM, Xu T, Santos CC, Perin L, Mostoslavsky G, Serre AC, Snyder EY, Yoo JJ, Furth ME, Soker S, Atala A (2007) Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol 25(1):100–106

    Article  PubMed  Google Scholar 

  39. Wang D, Chen R, Zhong X, Fan Y, Lai W, Sun X (2014) Levels of CD105 cells increase and cell proliferation decreases during S-phase arrest of amniotic fluid cells in long-term culture. Exp Ther Med 8(5):1604–1610

    Article  PubMed  PubMed Central  Google Scholar 

  40. Phermthai T, Odglun Y, Julavijitphong S, Titapant V, Chuenwattana P, Vantanasiri C, Pattanapanyasat K (2010) A novel method to derive amniotic fluid stem cells for therapeutic purposes. BMC Cell Biol 11:79

    Article  PubMed  PubMed Central  Google Scholar 

  41. Mareschi K, Rustichelli D, Comunanza V, De Fazio R, Cravero C, Morterra G, Martinoglio B, Medico E, Carbone E, Benedetto C, Fagioli F (2009) Multipotent mesenchymal stem cells from amniotic fluid originate neural precursors with functional voltage-gated sodium channels. Cytotherapy 11(5):534–547

    Article  CAS  PubMed  Google Scholar 

  42. Thangnipon W, Puangmalai N, Suwanna N, Soi-Ampornkul R, Phonchai R, Kotchabhakdi N, Mukda S, Phermthai T, Julavijitphong S, Tuchinda P, Nobsathian S (2015) Potential role of N-benzylcinnamide in inducing neuronal differentiation from human amniotic fluid mesenchymal stem cells. Neurosci Lett 610:6–12

    Article  PubMed  Google Scholar 

  43. Gao L, Zhao M, Ye W, Huang J, Chu J, Yan S, Wang C, Zeng R (2016) Inhibition of glycogen synthase kinase-3 (GSK3) promotes the neural differentiation of full-term amniotic fluid-derived stem cells towards neural progenitor cells. Tissue Cell 48(4):312–320

    Article  CAS  PubMed  Google Scholar 

  44. Connell JP, Augustini E, Moise KJ Jr, Johnson A, Jacot JG (2013) Formation of functional gap junctions in amniotic fluid-derived stem cells induced by transmembrane co-culture with neonatal rat cardiomyocytes. J Cell Mol Med 17(6):774–781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Peng SY, Yang YS, Chou CJ, Lin KY, Wu SC (2015) Differentiation of enhanced green fluorescent protein-labeled mouse amniotic fluid-derived stem cells into cardiomyocyte-like beating cells. Acta Cardiol Sin 31(3):209–214

    PubMed  PubMed Central  Google Scholar 

  46. Ginsberg M, Schachterle W, Shido K, Rafii S (2015) Direct conversion of human amniotic cells into endothelial cells without transitioning through a pluripotent state. Nat Protoc 10(12):1975–1985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhang R, Lu Y, Li J, Wang J, Liu C, Gao F, Sun D (2016) Glial cell line-derived neurotrophic factor induced the differentiation of amniotic fluid-derived stem cells into vascular endothelial-like cells in vitro. J Mol Histol 47(1):9–19

    Article  CAS  PubMed  Google Scholar 

  48. Gage BK, Riedel MJ, Karanu F, Rezania A, Fujita Y, Webber TD, Baker RK, Wideman RD, Kieffer TJ (2010) Cellular reprogramming of human amniotic fluid cells to express insulin. Differentiation 80(2–3):130–139

    Article  CAS  PubMed  Google Scholar 

  49. Mu XP, Ren LQ, Yan HW, Zhang XM, Xu TM, Wei AH, Jiang JL (2016) Enhanced differentiation of human amniotic fluid-derived stem cells into insulin-producing cells in vitro. J Diabetes Investig 8(1):34–43

    Article  PubMed  PubMed Central  Google Scholar 

  50. Saulnier N, Lattanzi W, Puglisi MA, Pani G, Barba M, Piscaglia AC, Giachelia M, Alfieri S, Neri G, Gasbarrini G, Gasbarrini A (2009) Mesenchymal stromal cells multipotency and plasticity: induction toward the hepatic lineage. Eur Rev Med Pharmacol Sci 13 [Suppl 1)]:71–78

    PubMed  Google Scholar 

  51. Vadasz S, Jensen T, Moncada C, Girard E, Zhang F, Blanchette A, Finck C (2014) Second and third trimester amniotic fluid mesenchymal stem cells can repopulate a de-cellularized lung scaffold and express lung markers. J Pediatr Surg 49(11):1554–1563

    Article  PubMed  Google Scholar 

  52. Liang H, Sun Q, Zhen Y, Li F, Xu Y, Liu Y, Zhang X, Qin M (2016) The differentiation of amniotic fluid stem cells into sweat glandlike cells is enhanced by the presence of sonic hedgehog in the conditioned medium. Exp Dermatol 25(9):714–720

    Article  CAS  PubMed  Google Scholar 

  53. Perin L, Giuliani S, Jin D, Sedrakyan S, Carraro G, Habibian R, Warburton D, Atala A, De Filippo RE (2007) Renal differentiation of amniotic fluid stem cells. Cell Prolif 40(6):936–948

    Article  CAS  PubMed  Google Scholar 

  54. Siegel N, Valli A, Fuchs C, Rosner M, Hengstschlager M (2009) Induction of mesenchymal/epithelial marker expression in human amniotic fluid stem cells. Reprod Biomed Online 19(6):838–846

    Article  CAS  PubMed  Google Scholar 

  55. Siegel N, Rosner M, Unbekandt M, Fuchs C, Slabina N, Dolznig H, Davies JA, Lubec G, Hengstschläger M (2010) Contribution of human amniotic fluid stem cells to renal tissue formation depends on mTOR. Hum Mol Genet 19(17):3320–3331

    Article  CAS  PubMed  Google Scholar 

  56. Xinaris C, Benedetti V, Novelli R, Abbate M, Rizzo P, Conti S, Tomasoni S, Corna D, Pozzobon M, Cavallotti D, Yokoo T, Morigi M, Benigni A, Remuzzi G (2016) Functional human podocytes generated in organoids from amniotic fluid stem cells. J Am Soc Nephrol 27(5):1400–1411

    Article  CAS  PubMed  Google Scholar 

  57. Monteiro Carvalho Mori da Cunha MG, Zia S, Oliveira Arcolino F, Carlon MS, Beckmann DV, Pippi NL, Luhers Graça D, Levtchenko E, Deprest J, Toelen J (2015) Amniotic fluid derived stem cells with a renal progenitor phenotype inhibit interstitial fibrosis in renal ischemia and reperfusion injury in rats. PLoS One 10(8):e0136145

    Article  PubMed  PubMed Central  Google Scholar 

  58. Da Sacco S, Lemley KV, Sedrakyan S, Zanusso I, Petrosyan A, Peti-Peterdi J, Burford J, De Filippo RE, Perin L (2013) A novel source of cultured podocytes. PLoS One 8(12):e81812

    Article  PubMed  PubMed Central  Google Scholar 

  59. Da Sacco S, Thornton ME, Petrosyan A, Lavarreda-Pearce M, Sedrakyan S, Grubbs BH, De Filippo RE, Perin L (2017) Direct isolation and characterization of human nephron progenitors. Stem Cells Transl Med 6(2):419–433

    Article  PubMed  Google Scholar 

  60. Perin L, Sedrakyan S, Giuliani S, Da Sacco S, Carraro G, Shiri L, Lemley KV, Rosol M, Wu S, Atala A, Warburton D, De Filippo RE (2010) Protective effect of human amniotic fluid stem cells in an immunodeficient mouse model of acute tubular necrosis. PLoS One 5(2):e9357

    Article  PubMed  PubMed Central  Google Scholar 

  61. Hauser PV, De Fazio R, Bruno S, Sdei S, Grange C, Bussolati B, Benedetto C, Camussi G (2010) Stem cells derived from human amniotic fluid contribute to acute kidney injury recovery. Am J Pathol 177(4):2011–2021

    Article  PubMed  PubMed Central  Google Scholar 

  62. Al-Husseiny F, Sobh MA, Ashour RH, Foud S, Medhat T, El-Gilany AH, Elghannam D, Abdel-Ghaffar H, Saad MA, Sobh M (2016) Amniotic fluid-derived mesenchymal stem cells cut short the acuteness of cisplatin-induced nephrotoxicity in Sprague-Dawley rats. Int J Stem Cells 9(1):70–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ashour RH, Saad MA, Sobh MA, Al-Husseiny F, Abouelkheir M, Awad A, Elghannam D, Abdel-Ghaffar H, Sobh M (2016) Comparative study of allogenic and xenogeneic mesenchymal stem cells on cisplatin-induced acute kidney injury in Sprague-Dawley rats. Stem Cell Res Ther 7(1):126

    Article  PubMed  PubMed Central  Google Scholar 

  64. Dragun D, Hoff U, Park JK, Qun Y, Schneider W, Luft FC, Haller H (2000) Ischemia-reperfusion injury in renal transplantation is independent of the immunologic background. Kidney Int 58(5):2166–2177

    Article  CAS  PubMed  Google Scholar 

  65. Liaño F, Pascual J (1996) Epidemiology of acute renal failure: a prospective, multicenter, community-based study. Madrid acute renal failure study group. Kidney Int 50(3):811–818

    Article  PubMed  Google Scholar 

  66. Mori da Cunha MG, Zia S, Beckmann DV, Carlon MS, Arcolino FO, Albersen M, Pippi NL, Graça DL, Gysemans C, Carmeliet P, Levtchenko E, Deprest J, Toelen J (2017) Vascular endothelial growth factor up-regulation in human amniotic fluid stem cell enhances Nephroprotection after ischemia-reperfusion injury in the rat. Crit Care Med 45(1):e86–e96

    Article  CAS  PubMed  Google Scholar 

  67. Liu P, Feng Y, Dong D, Liu X, Chen Y, Wang Y, Zhou Y (2016) Enhanced renoprotective effect of IGF-1 modified human umbilical cord-derived mesenchymal stem cells on gentamicin-induced acute kidney injury. Sci Rep 6:20287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Chen Y, Qian H, Zhu W, Zhang X, Yan Y, Ye S, Peng X, Li W, Xu W (2011) Hepatocyte growth factor modification promotes the amelioration effects of human umbilical cord mesenchymal stem cells on rat acute kidney injury. Stem Cells Dev 20(1):103–113

    Article  CAS  PubMed  Google Scholar 

  69. Zhen-Qiang F, Bing-Wei Y, Yong-Liang L, Xiang-Wei W, Shan-Hong Y, Yuan-Ning Z, Wei-Sheng J, Wei C, Ye G (2012) Localized expression of human BMP-7 by BM-MSCs enhances renal repair in an in vivo model of ischemia-reperfusion injury. Genes Cells 17(1):53–64

    Article  PubMed  Google Scholar 

  70. Si X, Liu X, Li J, Wu X (2015) Transforming growth factor-β1 promotes homing of bone marrow mesenchymal stem cells in renal ischemia-reperfusion injury. Int J Clin Exp Pathol 8(10):12368–12378

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Bartlett CS, Jeansson M, Quaggin SE (2016) Vascular growth factors and glomerular disease. Annu Rev Physiol 78:437–461

    Article  CAS  PubMed  Google Scholar 

  72. Tossidou I, Schiffer M (2012) TGF-β/BMP pathways and the podocyte. Semin Nephrol 32(4):368–376

    Article  CAS  PubMed  Google Scholar 

  73. Urushihara M, Kagami S (2016) Role of the intrarenal renin-angiotensin system in the progression of renal disease. Pediatr Nephrol. doi:10.1007/s00467-016-3449-7

  74. Sun D, Bu L, Liu C, Yin Z, Zhou X, Li X, Xiao A (2013) Therapeutic effects of human amniotic fluid-derived stem cells on renal interstitial fibrosis in a murine model of unilateral ureteral obstruction. PLoS One 8(5):e65042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Yoon BS, Moon JH, Jun EK, Kim J, Maeng I, Kim JS, Lee JH, Baik CS, Kim A, Cho KS, Lee JH, Lee HH, Whang KY, You S (2010) Secretory profiles and wound healing effects of human amniotic fluid-derived mesenchymal stem cells. Stem Cells Dev 19(6):887–902

    Article  CAS  PubMed  Google Scholar 

  76. Petrosyan A, Orlando G, Peloso A, Wang Z, Farney AC, Rogers G, Katari R, Da Sacco S, Sedrakyan S, De Filippo RE, Stratta RJ, Soker S, Perin L (2015) Understanding the bioactivity of stem cells seeded on extracellular matrix scaffolds produced from discarded human kidneys: a critical step towards a new generation bio-artificial kidney. CellR4 3(1):e1401

    Google Scholar 

  77. Homsi E, Ribeiro-Alves MA, Lopes de Faria JB, Dias EP (2002) Interleukin-6 stimulates tubular regeneration in rats with glycerol-induced acute renal failure. Nephron 92(1):192–199

    Article  CAS  PubMed  Google Scholar 

  78. Feng J, Zhao L, Deng H, Wei M, Li J, Xu K (2013) Immune tolerance of amniotic fluid stem cell-induced rat kidney graft and influences on oxidative stress. Transplant Proc 45(9):3394–3401

    Article  CAS  PubMed  Google Scholar 

  79. Swijnenburg RJ, Schrepfer S, Cao F, Pearl JI, Xie X, Connolly AJ, Robbins RC, Wu JC (2008) In vivo imaging of embryonic stem cells reveals patterns of survival and immune rejection following transplantation. Stem Cells Dev 17(6):1023–1029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Bobbert M (2006) Ethical questions concerning research on human embryos, embryonic stem cells and chimeras. Biotechnol J 1(12):1352–1369

    Article  CAS  PubMed  Google Scholar 

  81. Fu X, Xu Y (2012) Challenges to the clinical application of pluripotent stem cells: towards genomic and functional stability. Genome Med 4(6):55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Shtrichman R, Germanguz I, Itskovitz-Eldor J (2013) Induced pluripotent stem cells (iPSCs) derived from different cell sources and their potential for regenerative and personalized medicine. Curr Mol Med 13(5):792–805

    Article  CAS  PubMed  Google Scholar 

  83. Moorefield EC, McKee EE, Solchaga L, Orlando G, Yoo JJ, Walker S, Furth ME, Bishop CE (2011) Cloned, CD117 selected human amniotic fluid stem cells are capable of modulating the immune response. PLoS One 6(10):e26535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Mareschi K, Castiglia S, Sanavio F, Rustichelli D, Muraro M, Defedele D, Bergallo M, Fagioli F (2016) Immunoregulatory effects on T lymphocytes by human mesenchymal stromal cells isolated from bone marrow, amniotic fluid, and placenta. Exp Hematol 44(2):138–150

    Article  CAS  PubMed  Google Scholar 

  85. Di Trapani M, Bassi G, Fontana E, Giacomello L, Pozzobon M, Guillot PV, De Coppi P, Krampera M (2015) Immune regulatory properties of CD117(pos) amniotic fluid stem cells vary according to gestational age. Stem Cells Dev 24(1):132–143

    Article  PubMed  Google Scholar 

  86. de Fijter JW (2005) The impact of age on rejection in kidney transplantation. Drugs Aging 22(5):433–449

    Article  PubMed  Google Scholar 

  87. Höcker B, Tönshoff B (2009) Treatment strategies to minimize or prevent chronic allograft dysfunction in pediatric renal transplant recipients: an overview. Paediatr Drugs 11(6):3813–3896

    Article  Google Scholar 

  88. Collino F, Bruno S, Incarnato D, Dettori D, Neri F, Provero P, Pomatto M, Oliviero S, Tetta C, Quesenberry PJ, Camussi G (2015) AKI recovery induced by mesenchymal stromal cell-derived extracellular vesicles carrying MicroRNAs. J Am Soc Nephrol 26(10):2349–2360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Charron D (2013) Allogenicity & immunogenicity in regenerative stem cell therapy. Indian J Med Res 138(5):749–754

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Nawaz M, Fatima F, Vallabhaneni KC, Penfornis P, Valadi H, Ekström K, Kholia S, Whitt JD, Fernandes JD, Pochampally R, Squire JA, Camussi G (2016) Extracellular vesicles: evolving factors in stem cell biology. Stem Cells Int 2016:1073140

    Article  PubMed  Google Scholar 

  91. Ross EA, Abrahamson DR, St John P, Clapp WL, Williams MJ, Terada N, Hamazaki T, Ellison GW, Batich CD (2012) Mouse stem cells seeded into decellularized rat kidney scaffolds endothelialize and remodel basement membranes. Organ 8(2):49–55

    Google Scholar 

  92. Ross EA, Williams MJ, Hamazaki T, Terada N, Clapp WL, Adin C, Ellison GW, Jorgensen M, Batich CD (2009) Embryonic stem cells proliferate and differentiate when seeded into kidney scaffolds. J Am Soc Nephrol 20(11):2338–2347

    Article  PubMed  PubMed Central  Google Scholar 

  93. Bonandrini B, Figliuzzi M, Papadimou E, Morigi M, Perico N, Casiraghi F, Dipl C, Sangalli F, Conti S, Benigni A, Remuzzi A, Remuzzi G (2014) Recellularization of well-preserved acellular kidney scaffold using embryonic stem cells. Tissue Eng Part A 20(9–10):1486–9148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Song JJ, Guyette JP, Gilpin SE, Gonzalez G, Vacanti JP, Ott HC (2013) Regeneration and experimental orthotopic transplantation of a bioengineered kidney. Nat Med 9(5):646–651

    Article  Google Scholar 

  95. Guan Y, Liu S, Sun C, Cheng G, Kong F, Luan Y, Xie X, Zhao S, Zhang D, Wang J, Li K, Liu Y (2015) The effective bioengineering method of implantation decellularized renal extracellular matrix scaffolds. Oncotarget 6(34):36126–36138

    PubMed  PubMed Central  Google Scholar 

  96. Petrosyan A, Zanusso I, Lavarreda-Pearce M, Leslie S, Sedrakyan S, De Filippo RE, Orlando G, Da Sacco S, Perin L (2016) Decellularized renal matrix and regenerative medicine of the kidney: a different point of view. Tissue Eng Part B Rev 22(3):183–192

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sargis Sedrakyan.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Da Sacco, S., Perin, L. & Sedrakyan, S. Amniotic fluid cells: current progress and emerging challenges in renal regeneration. Pediatr Nephrol 33, 935–945 (2018). https://doi.org/10.1007/s00467-017-3711-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-017-3711-7

Keywords

Navigation