Pediatric Nephrology

, Volume 32, Issue 4, pp 565–576 | Cite as

Vesicoureteral reflux and the extracellular matrix connection

  • Fatima Tokhmafshan
  • Patrick D. Brophy
  • Rasheed A. Gbadegesin
  • Indra R. Gupta
Review

Abstract

Primary vesicoureteral reflux (VUR) is a common pediatric condition due to a developmental defect in the ureterovesical junction. The prevalence of VUR among individuals with connective tissue disorders, as well as the importance of the ureter and bladder wall musculature for the anti-reflux mechanism, suggest that defects in the extracellular matrix (ECM) within the ureterovesical junction may result in VUR. This review will discuss the function of the smooth muscle and its supporting ECM microenvironment with respect to VUR, and explore the association of VUR with mutations in ECM-related genes.

Keywords

Vesicoureteral reflux Ureterovesical junction Collagen Elastin Marfan syndrome Williams syndrome Cutis laxa Ehlers–Danlos syndrome Joint hypermobility Tenascin-XB 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare no conflicts of interest.

References

  1. 1.
    Williams G, Fletcher JT, Alexander SI, Craig JC (2008) Vesicoureteral reflux. J Am Soc Nephrol 19:847–862PubMedCrossRefGoogle Scholar
  2. 2.
    Tullus K (2015) Vesicoureteric reflux in children. Lancet 385:371–379PubMedCrossRefGoogle Scholar
  3. 3.
    Fillion ML, Watt CL, Gupta IR (2014) Vesicoureteric reflux and reflux nephropathy: from mouse models to childhood disease. Pediatr Nephrol 29:757–766PubMedCrossRefGoogle Scholar
  4. 4.
    Gbadegesin RA, Brophy PD, Adeyemo A, Hall G, Gupta IR, Hains D, Bartkowiak B, Rabinovich CE, Chandrasekharappa S, Homstad A, Westreich K, Wu G, Liu Y, Holanda D, Clarke J, Lavin P, Selim A, Miller S, Wiener JS, Ross SS, Foreman J, Rotimi C, Winn MP (2013) TNXB mutations can cause vesicoureteral reflux. J Am Soc Nephrol 24:1313–1322PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Elahi S, Homstad A, Vaidya H, Stout J, Hall G, Wu G, Conlon P Jr, Routh JC, Wiener JS, Ross SS, Nagaraj S, Wigfall D, Foreman J, Adeyemo A, Gupta IR, Brophy PD, Rabinovich CE, Gbadegesin RA (2015) Rare variants in tenascin genes in a cohort of children with primary vesicoureteric reflux. Pediatr Nephrol 31:247–253PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Arze RS, Ramos JM, Owen JP, Morley AR, Elliott RW, Wilkinson R, Ward MK, Kerr DN (1982) The natural history of chronic pyelonephritis in the adult. Q J Med 51:396–410PubMedGoogle Scholar
  7. 7.
    el-Khatib MT, Becker GJ, Kincaid-Smith PS (1987) Morphometric aspects of reflux nephropathy. Kidney Int 32:261–266PubMedCrossRefGoogle Scholar
  8. 8.
    el-Khatib MT, Becker GJ, Kincaid-Smith PS (1990) Reflux nephropathy and primary vesicoureteric reflux in adults. Q J Med 77:1241–1253PubMedCrossRefGoogle Scholar
  9. 9.
    Nakashima Y, Matsuoka H, Oshima K, Sakamoto K (1997) [Progression of renal disease in patients with reflux nephropathy. Follow-up study]. Nihon Hinyokika Gakkai Zasshi 88:557–565PubMedGoogle Scholar
  10. 10.
    Bailey RR, Lynn KL, Robson RA (1994) End-stage reflux nephropathy. Ren Fail 16:27–35PubMedCrossRefGoogle Scholar
  11. 11.
    Smellie JM, Barratt TM, Chantler C, Gordon I, Prescod NP, Ransley PG, Woolf AS (2001) Medical versus surgical treatment in children with severe bilateral vesicoureteric reflux and bilateral nephropathy: a randomised trial. Lancet 357:1329–1333PubMedCrossRefGoogle Scholar
  12. 12.
    Becker GJ, Kincaid-Smith P (1993) Reflux nephropathy: the glomerular lesion and progression of renal failure. Pediatr Nephrol 7:365–369PubMedCrossRefGoogle Scholar
  13. 13.
    Dillon MJ, Goonasekera CD (1998) Reflux nephropathy. J Am Soc Nephrol 9:2377–2383PubMedGoogle Scholar
  14. 14.
    Goonasekera CD, Gordon I, Dillon MJ (1998) 15-year follow-up of reflux nephropathy by imaging. Clin Nephrol 50:224–231PubMedGoogle Scholar
  15. 15.
    Duffield JS (2014) Cellular and molecular mechanisms in kidney fibrosis. J Clin Invest 124:2299–2306PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Liu Y (2011) Cellular and molecular mechanisms of renal fibrosis. Nat Rev Nephrol 7:684–696PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Schnaper HW, Hayashida T, Hubchak SC, Poncelet AC (2003) TGF-beta signal transduction and mesangial cell fibrogenesis. Am J Physiol Renal Physiol 284:F243–F252PubMedCrossRefGoogle Scholar
  18. 18.
    Schnaper HW, Kopp JB (2003) Renal fibrosis. Front Biosci 8:e68–e86PubMedCrossRefGoogle Scholar
  19. 19.
    Solari V, Owen D, Puri P (2005) Association of transforming growth factor-beta1 gene polymorphism with reflux nephropathy. J Urol 174:1609–1611, discussion 1611PubMedCrossRefGoogle Scholar
  20. 20.
    Bottinger EP (2007) TGF-beta in renal injury and disease. Semin Nephrol 27:309–320PubMedCrossRefGoogle Scholar
  21. 21.
    Sabasinska A, Zoch-Zwierz W, Wasilewska A, Porowski T (2008) Laminin and transforming growth factor beta-1 in children with vesicoureteric reflux. Pediatr Nephrol 23:769–774PubMedCrossRefGoogle Scholar
  22. 22.
    Lan HY (2011) Diverse roles of TGF-beta/Smads in renal fibrosis and inflammation. Int J Biol Sci 7:1056–1067PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Lopez-Hernandez FJ, Lopez-Novoa JM (2012) Role of TGF-beta in chronic kidney disease: an integration of tubular, glomerular and vascular effects. Cell Tissue Res 347:141–154PubMedCrossRefGoogle Scholar
  24. 24.
    Leask A, Denton CP, Abraham DJ (2004) Insights into the molecular mechanism of chronic fibrosis: the role of connective tissue growth factor in scleroderma. J Invest Dermatol 122:1–6PubMedCrossRefGoogle Scholar
  25. 25.
    Alcaraz LB, Exposito JY, Chuvin N, Pommier RM, Cluzel C, Martel S, Sentis S, Bartholin L, Lethias C, Valcourt U (2014) Tenascin-X promotes epithelial-to-mesenchymal transition by activating latent TGF-beta. J Cell Biol 205:409–428PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Smellie JM, Prescod NP, Shaw PJ, Risdon RA, Bryant TN (1998) Childhood reflux and urinary infection: a follow-up of 10–41 years in 226 adults. Pediatr Nephrol 12:727–736PubMedCrossRefGoogle Scholar
  27. 27.
    Smellie JM, Jodal U, Lax H, Mobius TT, Hirche H, Olbing H, Writing Committee IRSiC (2001) Outcome at 10 years of severe vesicoureteric reflux managed medically: Report of the International Reflux Study in Children. J Pediatr 139:656–663PubMedCrossRefGoogle Scholar
  28. 28.
    Sjostrom S, Sillen U, Bachelard M, Hansson S, Stokland E (2004) Spontaneous resolution of high grade infantile vesicoureteral reflux. J Urol 172:694–698, discussion 699PubMedCrossRefGoogle Scholar
  29. 29.
    Arlen AM, Garcia-Roig M, Weiss AD, Leong T, Cooper CS, Kirsch AJ (2015) Vesicoureteral reflux index: 2-institution analysis and validation. J Urol. doi: 10.1016/j.juro.2015.03.094 Google Scholar
  30. 30.
    Agostiniani R, Mariotti P (2011) The natural history of vesicoureteral reflux. J Matern Fetal Neonatal Med 24(Suppl 1):2–3PubMedCrossRefGoogle Scholar
  31. 31.
    Roshani H, Dabhoiwala NF, Verbeek FJ, Kurth KH, Lamers WH (1999) Anatomy of ureterovesical junction and distal ureter studied by endoluminal ultrasonography in vitro. J Urol 161:1614–1619PubMedCrossRefGoogle Scholar
  32. 32.
    Tanagho EA, Pugh RC (1963) The anatomy and function of the ureterovesical junction. Br J Urol 35:151–165PubMedCrossRefGoogle Scholar
  33. 33.
    Yu W, Hill WG (2011) Defining protein expression in the urothelium: a problem of more than transitional interest. Am J Physiol Renal Physiol 301:F932–F942PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Wu XR, Kong XP, Pellicer A, Kreibich G, Sun TT (2009) Uroplakins in urothelial biology, function, and disease. Kidney Int 75:1153–1165PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Lazzeri M (2006) The physiological function of the urothelium—more than a simple barrier. Urol Int 76:289–295PubMedCrossRefGoogle Scholar
  36. 36.
    Lilly JD, Parsons CL (1990) Bladder surface glycosaminoglycans is a human epithelial permeability barrier. Surg Gynecol Obstet 171:493–496PubMedGoogle Scholar
  37. 37.
    Parsons CL, Boychuk D, Jones S, Hurst R, Callahan H (1990) Bladder surface glycosaminoglycans: an epithelial permeability barrier. J Urol 143:139–142PubMedGoogle Scholar
  38. 38.
    Parsons CL, Stauffer C, Schmidt JD (1980) Bladder-surface glycosaminoglycans: an efficient mechanism of environmental adaptation. Science 208:605–607PubMedCrossRefGoogle Scholar
  39. 39.
    Noordzij JW, Dabhoiwala NF (1993) A view on the anatomy of the ureterovesical junction. Scand J Urol Nephrol 27:371–380PubMedCrossRefGoogle Scholar
  40. 40.
    Gearhart JP, Canning DA, Gilpin SA, Lam EE, Gosling JA (1993) Histological and histochemical study of the vesicoureteric junction in infancy and childhood. Br J Urol 72:648–654PubMedCrossRefGoogle Scholar
  41. 41.
    Hutch JA (1961) Theory of maturation of the intravesical ureter. J Urol 86:534–538PubMedGoogle Scholar
  42. 42.
    Oswald J, Brenner E, Schwentner C, Deibl M, Bartsch G, Fritsch H, Radmayr C (2003) The intravesical ureter in children with vesicoureteral reflux: a morphological and immunohistochemical characterization. J Urol 170:2423–2427PubMedCrossRefGoogle Scholar
  43. 43.
    Oswald J, Schwentner C, Brenner E, Deibl M, Fritsch H, Bartsch G, Radmayr C (2004) Extracellular matrix degradation and reduced nerve supply in refluxing ureteral endings. J Urol 172:1099–1102PubMedCrossRefGoogle Scholar
  44. 44.
    Schwentner C, Oswald J, Lunacek A, Schlenck B, Berger AP, Deibl M, Fritsch H, Bartsch G, Radmayr C (2006) Structural changes of the intravesical ureter in children with vesicoureteral reflux-does ischemia have a role? J Urol 176:2212–2218PubMedCrossRefGoogle Scholar
  45. 45.
    Schwentner C, Oswald J, Lunacek A, Pelzer AE, Fritsch H, Schlenck B, Karatzas A, Bartsch G, Radmayr C (2008) Extracellular microenvironment and cytokine profile of the ureterovesical junction in children with vesicoureteral reflux. J Urol 180:694–700PubMedCrossRefGoogle Scholar
  46. 46.
    Radmayr C, Fritsch H, Schwentner C, Lunacek A, Deibl M, Bartsch G, Oswald J (2005) Fetal development of the vesico-ureteric junction, and immunohistochemistry of the ends of refluxing ureters. J Pediatr Urol 1:53–59PubMedCrossRefGoogle Scholar
  47. 47.
    Radmayr C, Schwentner C, Lunacek A, Karatzas A, Oswald J (2009) Embryology and anatomy of the vesicoureteric junction with special reference to the etiology of vesicoureteral reflux. Ther Adv Urol 1:243–250PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Stetler-Stevenson WG (1996) Dynamics of matrix turnover during pathologic remodeling of the extracellular matrix. Am J Pathol 148:1345–1350PubMedPubMedCentralGoogle Scholar
  49. 49.
    Bonnans C, Chou J, Werb Z (2014) Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol 15:786–801PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Lu P, Takai K, Weaver VM, Werb Z (2011) Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb Perspect Biol 3.12:a005058Google Scholar
  51. 51.
    Leonard MP, Canning DA, Epstein JI, Gearhart JP, Jeffs RD (1990) Local tissue reaction to the subureteral injection of glutaraldehyde cross-linked bovine collagen in humans. J Urol 143:1209–1212PubMedGoogle Scholar
  52. 52.
    Frey P, Lutz N, Berger D, Herzog B (1994) Histological behavior of glutaraldehyde cross-linked bovine collagen injected into the human bladder for the treatment of vesicoureteral reflux. J Urol 152:632–635PubMedGoogle Scholar
  53. 53.
    Cerwinka WH, Scherz HC, Kirsch AJ (2008) Endoscopic treatment of vesicoureteral reflux with dextranomer/hyaluronic acid in children. Adv Urol 2008:513854PubMedCentralCrossRefGoogle Scholar
  54. 54.
    Stenberg A, Larsson E, Lackgren G (2003) Endoscopic treatment with dextranomer-hyaluronic acid for vesicoureteral reflux: histological findings. J Urol 169:1109–1113PubMedCrossRefGoogle Scholar
  55. 55.
    Alkan M, Talim B, Ciftci AO, Senocak ME, Caglar M, Buyukpamukcu N (2006) Histological response to injected gluteraldehyde cross-linked bovine collagen based implant in a rat model. BMC Urol 6:3PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Routh JC, Ashley RA, Sebo TJ, Vandersteen DR, Slezak J, Reinberg Y (2007) Histopathological changes associated with dextranomer/hyaluronic acid injection for pediatric vesicoureteral reflux. J Urol 178:1707–1710PubMedCrossRefGoogle Scholar
  57. 57.
    Arena S, Fazzari C, Implatini A, Torre S, Villari D, Arena F, Di Benedetto V (2009) Dextranomer/hyaluronic Acid copolymer implant for vesicoureteral reflux: role of myofibroblast differentiation. J Urol 181:2695–2701PubMedCrossRefGoogle Scholar
  58. 58.
    Jarvelainen H, Sainio A, Koulu M, Wight TN, Penttinen R (2009) Extracellular matrix molecules: potential targets in pharmacotherapy. Pharmacol Rev 61:198–223PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Gordon MK, Hahn RA (2010) Collagens. Cell Tissue Res 339:247–257PubMedCrossRefGoogle Scholar
  60. 60.
    Ottani V, Raspanti M, Ruggeri A (2001) Collagen structure and functional implications. Micron 32:251–260PubMedCrossRefGoogle Scholar
  61. 61.
    Gelse K, Poschl E, Aigner T (2003) Collagens—structure, function, and biosynthesis. Adv Drug Deliv Rev 55:1531–1546PubMedCrossRefGoogle Scholar
  62. 62.
    Martin R, Waldmann L, Kaplan DL (2003) Supramolecular assembly of collagen triblock peptides. Biopolymers 70:435–444PubMedCrossRefGoogle Scholar
  63. 63.
    Birk DE, Fitch JM, Babiarz JP, Doane KJ, Linsenmayer TF (1990) Collagen fibrillogenesis in vitro: interaction of types I and V collagen regulates fibril diameter. J Cell Sci 95(Pt 4):649–657PubMedGoogle Scholar
  64. 64.
    Wenstrup RJ, Florer JB, Brunskill EW, Bell SM, Chervoneva I, Birk DE (2004) Type V collagen controls the initiation of collagen fibril assembly. J Biol Chem 279:53331–53337PubMedCrossRefGoogle Scholar
  65. 65.
    Mouw JK, Ou G, Weaver VM (2014) Extracellular matrix assembly: a multiscale deconstruction. Nat Rev Mol Cell Biol 15:771–785PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Liu X, Wu H, Byrne M, Krane S, Jaenisch R (1997) Type III collagen is crucial for collagen I fibrillogenesis and for normal cardiovascular development. Proc Natl Acad Sci U S A 94:1852–1856PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Henkel W, Glanville RW (1982) Covalent crosslinking between molecules of type I and type III collagen. The involvement of the N-terminal, nonhelical regions of the alpha 1 (I) and alpha 1 (III) chains in the formation of intermolecular crosslinks. Eur J Biochem 122:205–213PubMedCrossRefGoogle Scholar
  68. 68.
    Sherratt MJ (2009) Tissue elasticity and the ageing elastic fibre. Age (Dordr) 31:305–325CrossRefGoogle Scholar
  69. 69.
    Gosline J, Lillie M, Carrington E, Guerette P, Ortlepp C, Savage K (2002) Elastic proteins: biological roles and mechanical properties. Philos Trans R Soc Lond B Biol Sci 357:121–132PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Kielty CM, Sherratt MJ, Shuttleworth CA (2002) Elastic fibres. J Cell Sci 115:2817–2828PubMedGoogle Scholar
  71. 71.
    Liu X, Zhao Y, Gao J, Pawlyk B, Starcher B, Spencer JA, Yanagisawa H, Zuo J, Li T (2004) Elastic fiber homeostasis requires lysyl oxidase-like 1 protein. Nat Genet 36:178–182PubMedCrossRefGoogle Scholar
  72. 72.
    Kielty CM (2006) Elastic fibres in health and disease. Expert Rev Mol Med 8:1–23PubMedCrossRefGoogle Scholar
  73. 73.
    Shapiro SD, Endicott SK, Province MA, Pierce JA, Campbell EJ (1991) Marked longevity of human lung parenchymal elastic fibers deduced from prevalence of d-aspartate and nuclear weapons-related radiocarbon. J Clin Invest 87:1828–1834Google Scholar
  74. 74.
    Kielty CM, Shuttleworth CA (1995) Fibrillin-containing microfibrils: structure and function in health and disease. Int J Biochem Cell Biol 27:747–760PubMedCrossRefGoogle Scholar
  75. 75.
    Milewicz DM, Grossfield J, Cao SN, Kielty C, Covitz W, Jewett T (1995) A mutation in FBN1 disrupts profibrillin processing and results in isolated skeletal features of the Marfan syndrome. J Clin Invest 95:2373–2378PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Kielty CM, Wess TJ, Haston L, Ashworth JL, Sherratt MJ, Shuttleworth CA (2002) Fibrillin-rich microfibrils: elastic biopolymers of the extracellular matrix. J Muscle Res Cell Motil 23:581–596PubMedCrossRefGoogle Scholar
  77. 77.
    Hyytiainen M, Penttinen C, Keski-Oja J (2004) Latent TGF-beta binding proteins: extracellular matrix association and roles in TGF-beta activation. Crit Rev Clin Lab Sci 41:233–264PubMedCrossRefGoogle Scholar
  78. 78.
    Rifkin DB (2005) Latent transforming growth factor-beta (TGF-beta) binding proteins: orchestrators of TGF-beta availability. J Biol Chem 280:7409–7412PubMedCrossRefGoogle Scholar
  79. 79.
    Huang J, Davis EC, Chapman SL, Budatha M, Marmorstein LY, Word RA, Yanagisawa H (2010) Fibulin-4 deficiency results in ascending aortic aneurysms: a potential link between abnormal smooth muscle cell phenotype and aneurysm progression. Circ Res 106:583–592PubMedCrossRefGoogle Scholar
  80. 80.
    Yanagisawa H, Schluterman MK, Brekken RA (2009) Fibulin-5, an integrin-binding matricellular protein: its function in development and disease. J Cell Commun Signal 3:337–347PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Bristow J, Tee MK, Gitelman SE, Mellon SH, Miller WL (1993) Tenascin-X: a novel extracellular matrix protein encoded by the human XB gene overlapping P450c21B. J Cell Biol 122:265–278PubMedCrossRefGoogle Scholar
  82. 82.
    Lethias C, Descollonges Y, Boutillon MM, Garrone R (1996) Flexilin: a new extracellular matrix glycoprotein localized on collagen fibrils. Matrix Biol 15:11–19PubMedCrossRefGoogle Scholar
  83. 83.
    Lethias C, Carisey A, Comte J, Cluzel C, Exposito JY (2006) A model of tenascin-X integration within the collagenous network. FEBS Lett 580:6281–6285PubMedCrossRefGoogle Scholar
  84. 84.
    Bristow J, Carey W, Egging D, Schalkwijk J (2005) Tenascin-X, collagen, elastin, and the Ehlers–Danlos syndrome. Am J Med Genet C: Semin Med Genet 139C:24–30CrossRefGoogle Scholar
  85. 85.
    Veit G, Hansen U, Keene DR, Bruckner P, Chiquet-Ehrismann R, Chiquet M, Koch M (2006) Collagen XII interacts with avian tenascin-X through its NC3 domain. J Biol Chem 281:27461–27470PubMedCrossRefGoogle Scholar
  86. 86.
    Egging D, van den Berkmortel F, Taylor G, Bristow J, Schalkwijk J (2007) Interactions of human tenascin-X domains with dermal extracellular matrix molecules. Arch Dermatol Res 298:389–396PubMedCrossRefGoogle Scholar
  87. 87.
    Minamitani T, Ikuta T, Saito Y, Takebe G, Sato M, Sawa H, Nishimura T, Nakamura F, Takahashi K, Ariga H, Matsumoto K (2004) Modulation of collagen fibrillogenesis by tenascin-X and type VI collagen. Exp Cell Res 298:305–315PubMedCrossRefGoogle Scholar
  88. 88.
    Burch GH, Gong Y, Liu W, Dettman RW, Curry CJ, Smith L, Miller WL, Bristow J (1997) Tenascin-X deficiency is associated with Ehlers–Danlos syndrome. Nat Genet 17:104–108PubMedCrossRefGoogle Scholar
  89. 89.
    Schalkwijk J, Zweers MC, Steijlen PM, Dean WB, Taylor G, van Vlijmen IM, van Haren B, Miller WL, Bristow J (2001) A recessive form of the Ehlers–Danlos syndrome caused by tenascin-X deficiency. N Engl J Med 345:1167–1175PubMedCrossRefGoogle Scholar
  90. 90.
    Voermans NC, Jenniskens GJ, Hamel BC, Schalkwijk J, Guicheney P, van Engelen BG (2007) Ehlers–Danlos syndrome due to tenascin-X deficiency: muscle weakness and contractures support overlap with collagen VI myopathies. Am J Med Genet Part A 143A:2215–2219PubMedCrossRefGoogle Scholar
  91. 91.
    Voermans NC, Altenburg TM, Hamel BC, de Haan A, van Engelen BG (2007) Reduced quantitative muscle function in tenascin-X deficient Ehlers–Danlos patients. Neuromuscul Disord 17:597–602PubMedCrossRefGoogle Scholar
  92. 92.
    Voermans NC, Verrijp K, Eshuis L, Balemans MC, Egging D, Sterrenburg E, van Rooij IA, van der Laak JA, Schalkwijk J, van der Maarel SM, Lammens M, van Engelen BG (2011) Mild muscular features in tenascin-X knockout mice, a model of Ehlers–Danlos syndrome. Connect Tissue Res 52:422–432PubMedCrossRefGoogle Scholar
  93. 93.
    Lindor NM, Bristow J (2005) Tenascin-X deficiency in autosomal recessive Ehlers–Danlos syndrome. Am J Med Genet Part A 135:75–80PubMedCrossRefGoogle Scholar
  94. 94.
    Mao JR, Taylor G, Dean WB, Wagner DR, Afzal V, Lotz JC, Rubin EM, Bristow J (2002) Tenascin-X deficiency mimics Ehlers–Danlos syndrome in mice through alteration of collagen deposition. Nat Genet 30:421–425PubMedCrossRefGoogle Scholar
  95. 95.
    Egging DF, van Vlijmen I, Starcher B, Gijsen Y, Zweers MC, Blankevoort L, Bristow J, Schalkwijk J (2006) Dermal connective tissue development in mice: an essential role for tenascin-X. Cell Tissue Res 323:465–474PubMedCrossRefGoogle Scholar
  96. 96.
    Zweers MC, Hakim AJ, Grahame R, Schalkwijk J (2004) Joint hypermobility syndromes: the pathophysiologic role of tenascin-X gene defects. Arthritis Rheum 50:2742–2749PubMedCrossRefGoogle Scholar
  97. 97.
    Zweers MC, Bristow J, Steijlen PM, Dean WB, Hamel BC, Otero M, Kucharekova M, Boezeman JB, Schalkwijk J (2003) Haploinsufficiency of TNXB is associated with hypermobility type of Ehlers–Danlos syndrome. Am J Hum Genet 73:214–217PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Zweers MC, van Vlijmen-Willems IM, van Kuppevelt TH, Mecham RP, Steijlen PM, Bristow J, Schalkwijk J (2004) Deficiency of tenascin-X causes abnormalities in dermal elastic fiber morphology. J Invest Dermatol 122:885–891PubMedCrossRefGoogle Scholar
  99. 99.
    Zweers MC, Schalkwijk J, van Kuppevelt TH, van Vlijmen-Willems IM, Bergers M, Lethias C, Lamme EN (2005) Transplantation of reconstructed human skin on nude mice: a model system to study expression of human tenascin-X and elastic fiber components. Cell Tissue Res 319:279–287PubMedCrossRefGoogle Scholar
  100. 100.
    Chiquet-Ehrismann R, Kalla P, Pearson CA, Beck K, Chiquet M (1988) Tenascin interferes with fibronectin action. Cell 53:383–390PubMedCrossRefGoogle Scholar
  101. 101.
    Fujie S, Maita H, Ariga H, Matsumoto K (2009) Tenascin-X induces cell detachment through p38 mitogen-activated protein kinase activation. Biol Pharm Bull 32:1795–1799PubMedCrossRefGoogle Scholar
  102. 102.
    Matsumoto K, Takayama N, Ohnishi J, Ohnishi E, Shirayoshi Y, Nakatsuji N, Ariga H (2001) Tumour invasion and metastasis are promoted in mice deficient in tenascin-X. Genes Cells 6:1101–1111PubMedCrossRefGoogle Scholar
  103. 103.
    Matsumoto K, Minamitani T, Orba Y, Sato M, Sawa H, Ariga H (2004) Induction of matrix metalloproteinase-2 by tenascin-X deficiency is mediated through the c-Jun N-terminal kinase and protein tyrosine kinase phosphorylation pathway. Exp Cell Res 297:404–414PubMedCrossRefGoogle Scholar
  104. 104.
    Ikuta T, Ariga H, Matsumoto KI (2001) Effect of tenascin-X together with vascular endothelial growth factor A on cell proliferation in cultured embryonic hearts. Biol Pharm Bull 24:1320–1323PubMedCrossRefGoogle Scholar
  105. 105.
    Lee BR, Silver RI, Partin AW, Epstein JI, Gearhart JP (1998) A quantitative histologic analysis of collagen subtypes: the primary obstructed and refluxing megaureter of childhood. Urology 51:820–823PubMedCrossRefGoogle Scholar
  106. 106.
    Sokolis DP (2012) Multiaxial mechanical behaviour of the passive ureteral wall: experimental study and mathematical characterisation. Comput Methods Biomech Biomed Engin 15:1145–1156PubMedCrossRefGoogle Scholar
  107. 107.
    Rassoli A, Shafigh M, Seddighi A, Seddighi A, Daneshparvar H, Fatouraee N (2014) Biaxial mechanical properties of human ureter under tension. Urol J 11:1678–1686PubMedGoogle Scholar
  108. 108.
    Shilo Y, Pichamuthu JE, Averch TD, Vorp DA (2014) Evaluation of the tensile strength of the human ureter—preliminary results. J Endourol 28:1470–1473PubMedCrossRefGoogle Scholar
  109. 109.
    Escala JM, Keating MA, Boyd G, Pierce A, Hutton JL, Lister J (1989) Development of elastic fibres in the upper urinary tract. J Urol 141:969–973PubMedGoogle Scholar
  110. 110.
    Andersson KE, McCloskey KD (2014) Lamina propria: the functional center of the bladder? Neurourol Urodyn 33:9–16PubMedCrossRefGoogle Scholar
  111. 111.
    Chang SL, Howard PS, Koo HP, Macarak EJ (1998) Role of type III collagen in bladder filling. Neurourol Urodyn 17:135–145PubMedCrossRefGoogle Scholar
  112. 112.
    Aitken KJ, Bagli DJ (2009) The bladder extracellular matrix. Part I: architecture, development and disease. Nat Rev Urol 6:596–611PubMedCrossRefGoogle Scholar
  113. 113.
    Macarak EJ, Howard PS (1999) The role of collagen in bladder filling. Adv Exp Med Biol 462:215–223, discussion 225–233PubMedCrossRefGoogle Scholar
  114. 114.
    Callewaert B, Malfait F, Loeys B, De Paepe A (2008) Ehlers–Danlos syndromes and Marfan syndrome. Best Pract Res Clin Rheumatol 22:165–189PubMedCrossRefGoogle Scholar
  115. 115.
    De Paepe A, Malfait F (2012) The Ehlers–Danlos syndrome, a disorder with many faces. Clin Genet 82:1–11PubMedCrossRefGoogle Scholar
  116. 116.
    Wenstrup RJ, Florer JB, Cole WG, Willing MC, Birk DE (2004) Reduced type I collagen utilization: a pathogenic mechanism in COL5A1 haplo-insufficient Ehlers–Danlos syndrome. J Cell Biochem 92:113–124PubMedCrossRefGoogle Scholar
  117. 117.
    Malfait F, Wenstrup RJ, De Paepe A (2010) Clinical and genetic aspects of Ehlers–Danlos syndrome, classic type. Genet Med 12:597–605PubMedCrossRefGoogle Scholar
  118. 118.
    Malfait F, De Coster P, Hausser I, van Essen AJ, Franck P, Colige A, Nusgens B, Martens L, De Paepe A (2004) The natural history, including orofacial features of three patients with Ehlers–Danlos syndrome, dermatosparaxis type (EDS type VIIC). Am H Med Genet Part A 131:18–28CrossRefGoogle Scholar
  119. 119.
    Symoens S, Malfait F, Renard M, Andre J, Hausser I, Loeys B, Coucke P, De Paepe A (2009) COL5A1 signal peptide mutations interfere with protein secretion and cause classic Ehlers–Danlos syndrome. Hum Mutat 30:E395–E403PubMedCrossRefGoogle Scholar
  120. 120.
    Zalis EG, Roberts DC (1967) Ehlers–Danlos syndrome with a hypoplastic kidney, bladder diverticulum, and diaphragmatic hernia. Arch Dermatol 96:540–544PubMedCrossRefGoogle Scholar
  121. 121.
    Burrows NP, Monk BE, Harrison JB, Pope FM (1998) Giant bladder diverticulum in Ehlers–Danlos syndrome type I causing outflow obstruction. Clin Exp Dermatol 23:109–112PubMedCrossRefGoogle Scholar
  122. 122.
    Cuckow PM, Blackhall RJ, Mouriquand PD (1994) Huge bladder diverticula associated with Ehlers–Danlos syndrome. J R Soc Med 87:290–291PubMedPubMedCentralGoogle Scholar
  123. 123.
    Levard G, Aigrain Y, Ferkadji L, Elghoneimi A, Pichon J, Boureau M (1989) Urinary bladder diverticula and the Ehlers–Danlos syndrome in children. J Pediatr Surg 24:1184–1186PubMedCrossRefGoogle Scholar
  124. 124.
    Berger J, Lang E, Schaeffer EM (2007) Urological radiographic manifestations of the Ehlers–Danlos syndrome. J Urol 178:1490PubMedCrossRefGoogle Scholar
  125. 125.
    Jorion JL, Michel M (1999) Spontaneous rupture of bladder diverticula in a girl with Ehlers–Danlos syndrome. J Pediatr Surg 34:483–484PubMedCrossRefGoogle Scholar
  126. 126.
    Handa S, Sethuraman G, Mohan A, Sharma VK (2001) Ehlers–Danlos syndrome with bladder diverticula. Br J Dermatol 144:1084–1085PubMedCrossRefGoogle Scholar
  127. 127.
    Shukla AR, Bellah RA, Canning DA, Carr MC, Snyder HM, Zderic SA (2004) Giant bladder diverticula causing bladder outlet obstruction in children. J Urol 172:1977–1979PubMedCrossRefGoogle Scholar
  128. 128.
    Eadie DG, Wilkins JL (1967) Bladder-neck obstruction and the Ehlers–Danlos syndrome. Br J Urol 39:353–358PubMedCrossRefGoogle Scholar
  129. 129.
    Kuivaniemi H, Peltonen L, Palotie A, Kaitila I, Kivirikko KI (1982) Abnormal copper metabolism and deficient lysyl oxidase activity in a heritable connective tissue disorder. J Clin Invest 69:730–733PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Breivik N, Refsum S Jr, Oppedal BR, Vesterhus P (1985) Ehlers–Danlos syndrome and diverticula of the bladder. Z Kinderchir 40:243–246PubMedGoogle Scholar
  131. 131.
    Schippers E, Dittler HJ (1989) Multiple hollow organ dysplasia in Ehlers–Danlos syndrome. J Pediatr Surg 24:1181–1183PubMedCrossRefGoogle Scholar
  132. 132.
    Kahn T, Reiser M, Gmeinwieser J, Heuck A (1988) The Ehlers–Danlos syndrome, type IV, with an unusual combination of organ malformations. Cardiovasc Intervent Radiol 11:288–291PubMedCrossRefGoogle Scholar
  133. 133.
    Bade JJ, Ypma AF, van Elk P, Mensink HJ (1994) A pelvic mass: bladder diverticulum with haemorrhage in Ehlers–Danlos patient. Scand J Urol Nephrol 28:319–321PubMedGoogle Scholar
  134. 134.
    Stage KH, Tank ES (1992) Primary congenital bladder diverticula in boys. Urology 40:536–538PubMedCrossRefGoogle Scholar
  135. 135.
    Kumar S, Jayant K, Barapatra Y, Rani J, Agrawal S (2014) Giant Urinary Bladder Diverticula presenting as Epigastric Mass and Dyspepsia. Nephrourol Mon 6:e18918PubMedPubMedCentralGoogle Scholar
  136. 136.
    Ghosh AK, O’Bryan T (1995) Ehlers–Danlos syndrome with reflux nephropathy. Nephron 70:266PubMedCrossRefGoogle Scholar
  137. 137.
    Beighton P, De Paepe A, Steinmann B, Tsipouras P, Wenstrup RJ (1998) Ehlers–Danlos syndromes: revised nosology, Villefranche, 1997. Ehlers–Danlos National Foundation (USA) and Ehlers–Danlos Support Group (UK). Am J Med Genet 77:31–37PubMedCrossRefGoogle Scholar
  138. 138.
    Forleo LH, Hilario MO, Peixoto AL, Naspitz C, Goldenberg J (1993) Articular hypermobility in school children in Sao Paulo, Brazil. J Rheumatol 20:916–917PubMedGoogle Scholar
  139. 139.
    Larsson LG, Baum J, Mudholkar GS, Srivastava DK (1993) Hypermobility: prevalence and features in a Swedish population. Br J Rheumatol 32:116–119PubMedCrossRefGoogle Scholar
  140. 140.
    Decoster LC, Vailas JC, Lindsay RH, Williams GR (1997) Prevalence and features of joint hypermobility among adolescent athletes. Arch Pediatr Adolesc Med 151:989–992PubMedCrossRefGoogle Scholar
  141. 141.
    Rikken-Bultman DG, Wellink L, van Dongen PW (1997) Hypermobility in two Dutch school populations. Eur J Obstet Gynecol Reprod Biol 73:189–192PubMedCrossRefGoogle Scholar
  142. 142.
    Remvig L, Jensen DV, Ward RC (2007) Epidemiology of general joint hypermobility and basis for the proposed criteria for benign joint hypermobility syndrome: review of the literature. J Rheumatol 34:804–809PubMedGoogle Scholar
  143. 143.
    De Wandele I, Rombaut L, Malfait F, De Backer T, De Paepe A, Calders P (2013) Clinical heterogeneity in patients with the hypermobility type of Ehlers–Danlos syndrome. Res Dev Disabil 34:873–881PubMedCrossRefGoogle Scholar
  144. 144.
    Remvig L, Jensen DV, Ward RC (2007) Are diagnostic criteria for general joint hypermobility and benign joint hypermobility syndrome based on reproducible and valid tests? A review of the literature. J Rheumatol 34:798–803PubMedGoogle Scholar
  145. 145.
    Tinkle BT, Bird HA, Grahame R, Lavallee M, Levy HP, Sillence D (2009) The lack of clinical distinction between the hypermobility type of Ehlers–Danlos syndrome and the joint hypermobility syndrome (a.k.a. hypermobility syndrome). Am J Med Genet Part A 149A:2368–2370PubMedCrossRefGoogle Scholar
  146. 146.
    van Eerde AM, Verhoeven VJ, de Jong TP, van de Putte EM, Giltay JC, Engelbert RH (2012) Is joint hypermobility associated with vesico-ureteral reflux? An assessment of 50 patients. BJU Int 109:1243–1248PubMedCrossRefGoogle Scholar
  147. 147.
    Pournasiri Z, Madani A, Zandi H, Salehpour S, Abdollah Gorji F, Ahmadzahe A (2014) Relationship of generalized joint hypermobility with vesicoureteral reflux and urinary tract infection. Iran J Kidney Dis 8:189–193PubMedGoogle Scholar
  148. 148.
    Beiraghdar F, Rostami Z, Panahi Y, Einollahi B, Teimoori M (2013) Vesicourethral reflux in pediatrics with hypermobility syndrome. Nephrourol Mon 5:924–927PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Adib N, Davies K, Grahame R, Woo P, Murray KJ (2005) Joint hypermobility syndrome in childhood. A not so benign multisystem disorder? Rheumatology (Oxford) 44:744–750CrossRefGoogle Scholar
  150. 150.
    Malfait F, Hakim AJ, De Paepe A, Grahame R (2006) The genetic basis of the joint hypermobility syndromes. Rheumatology (Oxford) 45:502–507CrossRefGoogle Scholar
  151. 151.
    Mohamed M, Voet M, Gardeitchik T, Morava E (2014) Cutis Laxa. Adv Exp Med Biol 802:161–184PubMedCrossRefGoogle Scholar
  152. 152.
    Morava E, Guillard M, Lefeber DJ, Wevers RA (2009) Autosomal recessive cutis laxa syndrome revisited. Eur J Hum Genet 17:1099–1110PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Alehossein M, Pourgholami M, Kamrani K, Soltani M, Yazdi A, Salamati P (2013) Radiologic findings in cutis laxa syndrome and unusual association with hypertrophic pyloric stenosis. Iran J Radiol 10:94–98PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Agha A, Sakati NO, Higginbottom MC, Jones KL Jr, Bay C, Nyhan WL (1978) Two forms of cutis laxa presenting in the newborn period. Acta Paediatr Scand 67:775–780PubMedCrossRefGoogle Scholar
  155. 155.
    Robertson SP, Bankier A (1999) Sotos syndrome and cutis laxa. J Med Genet 36:51–56PubMedPubMedCentralGoogle Scholar
  156. 156.
    Kielty CM, Davies SJ, Phillips JE, Jones CJ, Shuttleworth CA, Charles SJ (1995) Marfan syndrome: fibrillin expression and microfibrillar abnormalities in a family with predominant ocular defects. J Med Genet 32:1–6PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Robinson PN, Godfrey M (2000) The molecular genetics of Marfan syndrome and related microfibrillopathies. J Med Genet 37:9–25PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Clunie GJ, Mason JM (1962) Visceral diverticula and the Marfan syndrome. Br J Surg 50:51–52PubMedCrossRefGoogle Scholar
  159. 159.
    de Silva DG, Gunawardena TP, Law FM (1996) Unusual complications in siblings with marfanoid phenotype. Arch Dis Child 75:247–248PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Al-Hakim W, Goldsmith DJ (2003) Bilateral popliteal aneurysms complicating adult polycystic kidney disease in a patient with a marfanoid habitus. Postgrad Med J 79:474–475PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Stromme P, Bjornstad PG, Ramstad K (2002) Prevalence estimation of Williams syndrome. J Child Neurol 17:269–271PubMedCrossRefGoogle Scholar
  162. 162.
    Pober BR (2010) Williams-Beuren syndrome. N Engl J Med 362:239–252PubMedCrossRefGoogle Scholar
  163. 163.
    Stoermer J, Olbing H, Hentrich F, Even K, Galal O, Bachmann J (1984) Syndrome of supravalvular aortic stenosis (Williams-Beuren syndrome) in association with changes in the kidney and efferent urinary tract. Monatsschr Kinderheilkd 132:110–112PubMedGoogle Scholar
  164. 164.
    Pober BR, Lacro RV, Rice C, Mandell V, Teele RL (1993) Renal findings in 40 individuals with Williams syndrome. Am J Med Genet 46:271–274PubMedCrossRefGoogle Scholar
  165. 165.
    Pankau R, Partsch CJ, Winter M, Gosch A, Wessel A (1996) Incidence and spectrum of renal abnormalities in Williams-Beuren syndrome. Am J Med Genet 63:301–304PubMedCrossRefGoogle Scholar
  166. 166.
    Sugayama SM, Koch VH, Furusawa EA, Leone C, Kim CA (2004) Renal and urinary findings in 20 patients with Williams-Beuren syndrome diagnosed by fluorescence in situ hybridization (FISH). Rev Hosp Clin Fac Med Sao Paulo 59:266–272PubMedGoogle Scholar
  167. 167.
    Morris CA, Leonard CO, Dilts C, Demsey SA (1990) Adults with Williams syndrome. Am J Med Genet Suppl 6:102–107PubMedGoogle Scholar

Copyright information

© IPNA 2016

Authors and Affiliations

  • Fatima Tokhmafshan
    • 1
  • Patrick D. Brophy
    • 2
  • Rasheed A. Gbadegesin
    • 3
    • 4
  • Indra R. Gupta
    • 1
    • 5
  1. 1.Department of Human GeneticsMcGill UniversityMontrealCanada
  2. 2.Department of PediatricsUniversity of Iowa, Carver College of MedicineIowa CityUSA
  3. 3.Department of Pediatrics, Division of NephrologyDuke University Medical CenterDurhamUSA
  4. 4.Center for Human GeneticsDuke University Medical CenterDurhamUSA
  5. 5.Department of PediatricsMcGill UniversityMontrealCanada

Personalised recommendations