Advertisement

Pediatric Nephrology

, Volume 31, Issue 8, pp 1241–1252 | Cite as

Genome-wide association studies in pediatric chronic kidney disease

  • Jayanta Gupta
  • Peter A. Kanetsky
  • Matthias Wuttke
  • Anna Köttgen
  • Franz Schaefer
  • Craig S. WongEmail author
Review

Abstract

The genome-wide association study (GWAS) has become an established scientific method that provides an unbiased screen for genetic loci potentially associated with phenotypes of clinical interest, such as chronic kidney disease (CKD). Thus, GWAS provides opportunities to gain new perspectives regarding the genetic architecture of CKD progression by identifying new candidate genes and targets for intervention. As such, it has become an important arm of translational science providing a complementary line of investigation to identify novel therapeutics to treat CKD. In this review, we describe the method and the challenges of performing GWAS in the pediatric CKD population. We also provide an overview of successful GWAS for kidney disease, and we discuss the established pediatric CKD cohorts in North America and Europe that are poised to identify genetic risk variants associated with CKD progression.

Keywords

Genome-wide association study (GWAS) Chronic kidney disease Translational medicine Pediatric Genetics 

Notes

Acknowledgments

Jayanta Gupta, Peter A. Kanetsky, Franz Schaefer, and Craig S. Wong were supported by NIH grant number DK082394. Anna Köttgen and Matthias Wüttke were supported by the Emmy Noether Program of the German Research Foundation (KO 3598/2-1). Craig S. Wong received additional support from DK066143. Franz Schaefer received additional support from the European Community 7th Framework Programme (grant 2012–305608, EURenOmics), The KfH Foundation for Preventive Medicine (http://www.kfh-stiftung-praeventivmedizin.de/) and the ERA-EDTA.

Conflict of interest

The authors declare no conflict of interest.

Glossary

Alleles

Alternative DNA sequences at the same physical position on homologous chromosomes.

Ancestry informative markers

Single-nucleotide polymorphisms that have large frequency differences across different continental populations; can be used to infer ancestry and adjust for population stratification in genetic association studies.

Common variant

A genetic variant that is common in the population; frequently defined as one with a population frequency of 1 % or more.

Deep sequencing

The whole genome or a genomic region is sequenced multiple times using high-throughput sequencing (next-generation sequencing) technology to reduce the number of sequencing errors and detect rare genetic variants.

Genomic

Pertaining to the collection of all DNA in an organism.

Genotype

The genetic makeup of an individual, which may refer to the whole genome or to specific genes or regions of genes.

Haplotype

A set of genetic variants (usually clustered together at the same physical position of the genome) that are inherited together.

Imputation

In the context of genetic studies, a statistical procedure that uses linkage disequilibrium (i.e., correlation between individual genetic variants) to infer missing or untyped genotypes in an individual based on a reference panel of several individuals who have been fully genotyped.

Linkage disequilibrium

A non-random association of two or more alleles that are located at different loci.

Loci

Specific positions of genes or genetic markers on a chromosome; the term locus is singular for loci.

Phenotype

Measurable or observable physical characteristic or trait of an organism.

Population stratification

Presence of a systematic difference in allele frequencies between subpopulations in a population, can be introduced by different ancestries.

Principal component analysis

A statistical procedure for reducing high dimensional data into fewer dimensions. Used in population genetics to determine how genetic diversity across the genome varies according to geographical location and race/ethnicity. Widely used to adjust for population stratification in GWAS.

Rare variant

A genetic variant with a population frequency of less than 1 %.

Replication

Validation of a gene-disease association from a discovery genetic association study by a follow-up study in an independent sample of subjects.

Single-nucleotide polymorphisms (SNPs)

DNA sequence variation resulting from a change of a single nucleotide, commonly defined as having a frequency of at least 1 % in a given population.

Tag-SNP

A SNP that is highly correlated with other SNPs and used to serve as a marker for a haplotype block. Tag-SNPs can be utilized for SNP-based genotyping.

Variant

A variation in the DNA sequence, e.g., a SNP. Other forms of genetic variation include structural variations (e.g., deletions and insertions, copy number variations etc.)

References

  1. 1.
    Furth SL, Cole SR, Moxey-Mims M, Kaskel F, Mak R, Schwartz G, Wong C, Munoz A, Warady BA (2006) Design and methods of the Chronic Kidney Disease in Children (CKiD) prospective cohort study. Clin J Am Soc Nephrol 1:1006–1015CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Wuhl E, Trivelli A, Picca S, Litwin M, Peco-Antic A, Zurowska A, Testa S, Jankauskiene A, Emre S, Caldas-Afonso A, Anarat A, Niaudet P, Mir S, Bakkaloglu A, Enke B, Montini G, Wingen AM, Sallay P, Jeck N, Berg U, Caliskan S, Wygoda S, Hohbach-Hohenfellner K, Dusek J, Urasinski T, Arbeiter K, Neuhaus T, Gellermann J, Drozdz D, Fischbach M, Moller K, Wigger M, Peruzzi L, Mehls O, Schaefer F (2009) Strict blood-pressure control and progression of renal failure in children. N Engl J Med 361:1639–1650CrossRefPubMedGoogle Scholar
  3. 3.
    Querfeld U, Anarat A, Bayazit AK, Bakkaloglu AS, Bilginer Y, Caliskan S, Civilibal M, Doyon A, Duzova A, Kracht D, Litwin M, Melk A, Mir S, Sozeri B, Shroff R, Zeller R, Wuhl E, Schaefer F (2010) The cardiovascular comorbidity in children with chronic kidney disease (4C) study: objectives, design, and methodology. Clin J Am Soc Nephrol 5:1642–1648CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Schwartz GJ, Schneider MF, Maier PS, Moxey-Mims M, Dharnidharka VR, Warady BA, Furth SL, Munoz A (2012) Improved equations estimating GFR in children with chronic kidney disease using an immunonephelometric determination of cystatin C. Kidney Int 82:445–453CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Furth SL, Abraham AG, Jerry-Fluker J, Schwartz GJ, Benfield M, Kaskel F, Wong C, Mak RH, Moxey-Mims M, Warady BA (2011) Metabolic abnormalities, cardiovascular disease risk factors, and GFR decline in children with chronic kidney disease. Clin J Am Soc Nephrol 6:2132–2140CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Warady BA, Abraham AG, Schwartz GJ, Wong CS, Munoz A, Betoko A, Mitsnefes M, Kaskel F, Greenbaum LA, Mak RH, Flynn J, Moxey-Mims MM, Furth S (2015) Predictors of rapid progression of glomerular and nonglomerular kidney disease in children and adolescents: the Chronic Kidney Disease in Children (CKiD) cohort. Am J Kidney Dis 65:878–888CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    NCI-NHGRI Working Group on Replication in Association Studies, Chanock SJ, Manolio T, Boehnke M, Boerwinkle E, Hunter DJ, Thomas G, Hirschhorn JN, Abecasis G, Altshuler D, Bailey-Wilson JE, Brooks LD, Cardon LR, Daly M, Donnelly P, Fraumeni JF Jr, Freimer NB, Gerhard DS, Gunter C, Guttmacher AE, Guyer MS, Harris EL, Hoh J, Hoover R, Kong CA, Merikangas KR, Morton CC, Palmer LJ, Phimister EG, Rice JP, Roberts J, Rotimi C, Tucker MA, Vogan KJ, Wacholder S, Wijsman EM, Winn DM, Collins FS (2007) Replicating genotype-phenotype associations. Nature 447:655–660CrossRefGoogle Scholar
  8. 8.
    Manchia M, Cullis J, Turecki G, Rouleau GA, Uher R, Alda M (2013) The impact of phenotypic and genetic heterogeneity on results of genome-wide association studies of complex diseases. PLoS One 8, e76295CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Gbadegesin RA, Adeyemo A, Webb NJ, Greenbaum LA, Abeyagunawardena A, Thalgahagoda S, Kale A, Gipson D, Srivastava T, Lin JJ, Chand D, Hunley TE, Brophy PD, Bagga A, Sinha A, Rheault MN, Ghali J, Nicholls K, Abraham E, Janjua HS, Omoloja A, Barletta GM, Cai Y, Milford DD, O'Brien C, Awan A, Belostotsky V, Smoyer WE, Homstad A, Hall G, Wu G, Nagaraj S, Wigfall D, Foreman J, Winn MP, Mid-West Pediatric Nephrology Consortium (2015) HLA-DQA1 and PLCG2 are candidate risk loci for childhood-onset steroid-sensitive nephrotic syndromeHLA-DQA1 and PLCG2 are candidate risk loci for childhood-onset steroid-sensitive nephrotic syndrome. J Am Soc Nephrol 26:1701–1710Google Scholar
  10. 10.
    Stanescu HC, Arcos-Burgos M, Medlar A, Bockenhauer D, Köttgen A, Dragomirescu L, Voinescu C, Patel N, Pearce K, Hubank M, Stephens HA, Laundy V, Padmanabhan S, Zawadzka A, Hofstra JM, Coenen MJ, den Heijer M, Kiemeney LA, Bacq-Daian D, Stengel B, Powis SH, Brenchley P, Feehally J, Rees AJ, Debiec H, Wetzels JF, Ronco P, Mathieson PW, Kleta R (2011) Risk HLA-DQA1 and PLA(2)R1 alleles in idiopathic membranous nephropathy. N Engl J Med 364:616–626CrossRefPubMedGoogle Scholar
  11. 11.
    Köttgen A (2010) Genome-wide association studies in nephrology research. Am J Kidney Dis 56:743–758CrossRefPubMedGoogle Scholar
  12. 12.
    Pompanon F, Bonin A, Bellemain E, Taberlet P (2005) Genotyping errors: causes, consequences and solutions. Nat Rev Genet 6:847–859CrossRefPubMedGoogle Scholar
  13. 13.
    Wuttke M, Wong CS, Wühl E, Epting D, Luo L, Hoppmann A, Doyon A, Li Y, Consortium C, Sözeri B, Thurn D, Helmstädter M, Huber TB, Blydt-Hansen TD, Kramer-Zucker A, Mehls O, Melk A, Querfeld U, Furth SL, Warady BA, Schaefer F, Köttgen A (2015) Genetic loci associated with renal function measures and Chronic Kidney Disease in Children: the pediatric investigation for genetic factors linked with renal progression consortium. Nephrol Dial Transplant. doi: 10.1093/ndt/gfv342 PubMedGoogle Scholar
  14. 14.
    Wuttke M, Schaefer F, Wong CS, Köttgen A (2015) Genome-wide association studies in nephrology: using known associations for data checks. Am J Kidney Dis 65:217–222CrossRefPubMedGoogle Scholar
  15. 15.
    Hennekens CH, Buring JE (1987) Epidemiology in medicine. Lippincott, Williams, and WilkinsGoogle Scholar
  16. 16.
    Li MX, Yeung JM, Cherny SS, Sham PC (2012) Evaluating the effective numbers of independent tests and significant p value thresholds in commercial genotyping arrays and public imputation reference datasets. Hum Genet 131:747–756Google Scholar
  17. 17.
    Cardon LR, Palmer LJ (2003) Population stratification and spurious allelic association. Lancet 361:598–604CrossRefPubMedGoogle Scholar
  18. 18.
    Panagiotou OA, Willer CJ, Hirschhorn JN, Ioannidis JP (2013) The power of meta-analysis in genome-wide association studies. Annu Rev Genomics Hum Genet 14:441–465CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Cantor RM, Lange K, Sinsheimer JS (2010) Prioritizing GWAS results: a review of statistical methods and recommendations for their application. Am J Hum Genet 86:6–22CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Gorski M, Tin A, Garnaas M, McMahon GM, Chu AY, Tayo BO, Pattaro C, Teumer A, Chasman DI, Chalmers J, Hamet P, Tremblay J, Woodward M, Aspelund T, Eiriksdottir G, Gudnason V, Harris TB, Launer LJ, Smith AV, Mitchell BD, O'Connell JR, Shuldiner AR, Coresh J, Li M, Freudenberger P, Hofer E, Schmidt H, Schmidt R, Holliday EG, Mitchell P, Wang JJ, de Boer IH, Li G, Siscovick DS, Kutalik Z, Corre T, Vollenweider P, Waeber G, Gupta J, Kanetsky PA, Hwang SJ, Olden M, Yang Q, de Andrade M, Atkinson EJ, Kardia SL, Turner ST, Stafford JM, Ding J, Liu Y, Barlassina C, Cusi D, Salvi E, Staessen JA, Ridker PM, Grallert H, Meisinger C, Muller-Nurasyid M, Kramer BK, Kramer H, Rosas SE, Nolte IM, Penninx BW, Snieder H, Fabiola Del Greco M, Franke A, Nothlings U, Lieb W, Bakker SJ, Gansevoort RT, van der Harst P, Dehghan A, Franco OH, Hofman A, Rivadeneira F, Sedaghat S, Uitterlinden AG, Coassin S, Haun M, Kollerits B, Kronenberg F, Paulweber B, Aumann N, Endlich K, Pietzner M, Volker U, Rettig R, Chouraki V, Helmer C, Lambert JC, Metzger M, Stengel B, Lehtimaki T, Lyytikainen LP, Raitakari O, Johnson A, Parsa A, Bochud M, Heid IM, Goessling W, Köttgen A, Kao WH, Fox CS, Boger CA (2015) Genome-wide association study of kidney function decline in individuals of European descent. Kidney Int 87:1017–1029CrossRefPubMedGoogle Scholar
  21. 21.
    Lash JP, Go AS, Appel LJ, He J, Ojo A, Rahman M, Townsend RR, Xie D, Cifelli D, Cohan J, Fink JC, Fischer MJ, Gadegbeku C, Hamm LL, Kusek JW, Landis JR, Narva A, Robinson N, Teal V, Feldman HI (2009) Chronic renal insufficiency cohort (CRIC) study: baseline characteristics and associations with kidney function. Clin J Am Soc Nephrol 4:1302–1311CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Chadha V, Warady BA (2005) Epidemiology of pediatric chronic kidney disease. Adv Chronic Kidney Dis 12:343–352CrossRefPubMedGoogle Scholar
  23. 23.
    Eddy AA (2005) Progression in chronic kidney disease. Adv Chronic Kidney Dis 12:353–365CrossRefPubMedGoogle Scholar
  24. 24.
    Hodgkins KS, Schnaper HW (2012) Tubulointerstitial injury and the progression of chronic kidney disease. Pediatr Nephrol 27:901–909CrossRefPubMedGoogle Scholar
  25. 25.
    Ioannidis JP, Thomas G, Daly MJ (2009) Validating, augmenting and refining genome-wide association signals. Nat Rev Genet 10:318–329CrossRefPubMedGoogle Scholar
  26. 26.
    Kao WH, Klag MJ, Meoni LA, Reich D, Berthier-Schaad Y, Li M, Coresh J, Patterson N, Tandon A, Powe NR, Fink NE, Sadler JH, Weir MR, Abboud HE, Adler SG, Divers J, Iyengar SK, Freedman BI, Kimmel PL, Knowler WC, Kohn OF, Kramp K, Leehey DJ, Nicholas SB, Pahl MV, Schelling JR, Sedor JR, Thornley-Brown D, Winkler CA, Smith MW, Parekh RS (2008) MYH9 is associated with nondiabetic end-stage renal disease in African Americans. Nat Genet 40:1185–1192CrossRefPubMedGoogle Scholar
  27. 27.
    Kopp JB, Smith MW, Nelson GW, Johnson RC, Freedman BI, Bowden DW, Oleksyk T, McKenzie LM, Kajiyama H, Ahuja TS, Berns JS, Briggs W, Cho ME, Dart RA, Kimmel PL, Korbet SM, Michel DM, Mokrzycki MH, Schelling JR, Simon E, Trachtman H, Vlahov D, Winkler CA (2008) MYH9 is a major-effect risk gene for focal segmental glomerulosclerosis. Nat Genet 40:1175–1184CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Genovese G, Friedman DJ, Ross MD, Lecordier L, Uzureau P, Freedman BI, Bowden DW, Langefeld CD, Oleksyk TK, Uscinski Knob AL, Bernhardy AJ, Hicks PJ, Nelson GW, Vanhollebeke B, Winkler CA, Kopp JB, Pays E, Pollak MR (2010) Association of trypanolytic ApoL1 variants with kidney disease in African Americans. Science 329:841–845CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Parsa A, Kao WH, Xie D, Astor BC, Li M, Hsu CY, Feldman HI, Parekh RS, Kusek JW, Greene TH, Fink JC, Anderson AH, Choi MJ, Wright JT Jr, Lash JP, Freedman BI, Ojo A, Winkler CA, Raj DS, Kopp JB, He J, Jensvold NG, Tao K, Lipkowitz MS, Appel LJ (2013) APOL1 risk variants, race, and progression of chronic kidney disease. N Engl J Med 369:2183–2196CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Reeves-Daniel AM, DePalma JA, Bleyer AJ, Rocco MV, Murea M, Adams PL, Langefeld CD, Bowden DW, Hicks PJ, Stratta RJ, Lin JJ, Kiger DF, Gautreaux MD, Divers J, Freedman BI (2011) The APOL1 gene and allograft survival after kidney transplantation. Am J Transplant 11:1025–1030CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Freedman BI, Julian BA, Pastan SO, Israni AK, Schladt D, Gautreaux MD, Hauptfeld V, Bray RA, Gebel HM, Kirk AD, Gaston RS, Rogers J, Farney AC, Orlando G, Stratta RJ, Mohan S, Ma L, Langefeld CD, Hicks PJ, Palmer ND, Adams PL, Palanisamy A, Reeves-Daniel AM, Divers J (2015) Apolipoprotein L1 gene variants in deceased organ donors are associated with renal allograft failure. Am J Transplant 15:1615–1622CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Lee BT, Kumar V, Williams TA, Abdi R, Bernhardy A, Dyer C, Conte S, Genovese G, Ross MD, Friedman DJ, Gaston R, Milford E, Pollak MR, Chandraker A (2012) The APOL1 genotype of African American kidney transplant recipients does not impact 5-year allograft survival. Am J Transplant 12:1924–1928CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Köttgen A, Pattaro C, Boger CA, Fuchsberger C, Olden M, Glazer NL, Parsa A, Gao X, Yang Q, Smith AV, O'Connell JR, Li M, Schmidt H, Tanaka T, Isaacs A, Ketkar S, Hwang SJ, Johnson AD, Dehghan A, Teumer A, Pare G, Atkinson EJ, Zeller T, Lohman K, Cornelis MC, Probst-Hensch NM, Kronenberg F, Tonjes A, Hayward C, Aspelund T, Eiriksdottir G, Launer LJ, Harris TB, Rampersaud E, Mitchell BD, Arking DE, Boerwinkle E, Struchalin M, Cavalieri M, Singleton A, Giallauria F, Metter J, de Boer IH, Haritunians T, Lumley T, Siscovick D, Psaty BM, Zillikens MC, Oostra BA, Feitosa M, Province M, de Andrade M, Turner ST, Schillert A, Ziegler A, Wild PS, Schnabel RB, Wilde S, Munzel TF, Leak TS, Illig T, Klopp N, Meisinger C, Wichmann HE, Koenig W, Zgaga L, Zemunik T, Kolcic I, Minelli C, Hu FB, Johansson A, Igl W, Zaboli G, Wild SH, Wright AF, Campbell H, Ellinghaus D, Schreiber S, Aulchenko YS, Felix JF, Rivadeneira F, Uitterlinden AG, Hofman A, Imboden M, Nitsch D, Brandstatter A, Kollerits B, Kedenko L, Magi R, Stumvoll M, Kovacs P, Boban M, Campbell S, Endlich K, Volzke H, Kroemer HK, Nauck M, Volker U, Polasek O, Vitart V, Badola S, Parker AN, Ridker PM, Kardia SL, Blankenberg S, Liu Y, Curhan GC, Franke A, Rochat T, Paulweber B, Prokopenko I, Wang W, Gudnason V, Shuldiner AR, Coresh J, Schmidt R, Ferrucci L, Shlipak MG, van Duijn CM, Borecki I, Kramer BK, Rudan I, Gyllensten U, Wilson JF, Witteman JC, Pramstaller PP, Rettig R, Hastie N, Chasman DI, Kao WH, Heid IM, Fox CS (2010) New loci associated with kidney function and chronic kidney disease. Nat Genet 42:376–384CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Köttgen A, Glazer NL, Dehghan A, Hwang SJ, Katz R, Li M, Yang Q, Gudnason V, Launer LJ, Harris TB, Smith AV, Arking DE, Astor BC, Boerwinkle E, Ehret GB, Ruczinski I, Scharpf RB, Chen YD, de Boer IH, Haritunians T, Lumley T, Sarnak M, Siscovick D, Benjamin EJ, Levy D, Upadhyay A, Aulchenko YS, Hofman A, Rivadeneira F, Uitterlinden AG, van Duijn CM, Chasman DI, Pare G, Ridker PM, Kao WH, Witteman JC, Coresh J, Shlipak MG, Fox CS (2009) Multiple loci associated with indices of renal function and chronic kidney disease. Nat Genet 41:712–717CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Gudbjartsson DF, Holm H, Indridason OS, Thorleifsson G, Edvardsson V, Sulem P, de Vegt F, d'Ancona FC, den Heijer M, Wetzels JF, Franzson L, Rafnar T, Kristjansson K, Bjornsdottir US, Eyjolfsson GI, Kiemeney LA, Kong A, Palsson R, Thorsteinsdottir U, Stefansson K (2010) Association of variants at UMOD with chronic kidney disease and kidney stones-role of age and comorbid diseases. PLoS Genet 6, e1001039CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Boger CA, Gorski M, Li M, Hoffmann MM, Huang C, Yang Q, Teumer A, Krane V, O'Seaghdha CM, Kutalik Z, Wichmann HE, Haak T, Boes E, Coassin S, Coresh J, Kollerits B, Haun M, Paulweber B, Köttgen A, Li G, Shlipak MG, Powe N, Hwang SJ, Dehghan A, Rivadeneira F, Uitterlinden A, Hofman A, Beckmann JS, Kramer BK, Witteman J, Bochud M, Siscovick D, Rettig R, Kronenberg F, Wanner C, Thadhani RI, Heid IM, Fox CS, Kao WH (2011) Association of eGFR-related loci identified by GWAS with incident CKD and ESRD. PLoS Genet 7, e1002292CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Liu CT, Garnaas MK, Tin A, Köttgen A, Franceschini N, Peralta CA, de Boer IH, Lu X, Atkinson E, Ding J, Nalls M, Shriner D, Coresh J, Kutlar A, Bibbins-Domingo K, Siscovick D, Akylbekova E, Wyatt S, Astor B, Mychaleckjy J, Li M, Reilly MP, Townsend RR, Adeyemo A, Zonderman AB, de Andrade M, Turner ST, Mosley TH, Harris TB, Rotimi CN, Liu Y, Kardia SL, Evans MK, Shlipak MG, Kramer H, Flessner MF, Dreisbach AW, Goessling W, Cupples LA, Kao WL, Fox CS (2011) Genetic association for renal traits among participants of African ancestry reveals new loci for renal function. PLoS Genet 7, e1002264CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Okada Y, Sim X, Go MJ, Wu JY, Gu D, Takeuchi F, Takahashi A, Maeda S, Tsunoda T, Chen P, Lim SC, Wong TY, Liu J, Young TL, Aung T, Seielstad M, Teo YY, Kim YJ, Lee JY, Han BG, Kang D, Chen CH, Tsai FJ, Chang LC, Fann SJ, Mei H, Rao DC, Hixson JE, Chen S, Katsuya T, Isono M, Ogihara T, Chambers JC, Zhang W, Kooner JS, Albrecht E, Yamamoto K, Kubo M, Nakamura Y, Kamatani N, Kato N, He J, Chen YT, Cho YS, Tai ES, Tanaka T (2012) Meta-analysis identifies multiple loci associated with kidney function-related traits in east Asian populations. Nat Genet 44:904–909CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Trudu M, Janas S, Lanzani C, Debaix H, Schaeffer C, Ikehata M, Citterio L, Demaretz S, Trevisani F, Ristagno G, Glaudemans B, Laghmani K, Dell'Antonio G, Loffing J, Rastaldi MP, Manunta P, Devuyst O, Rampoldi L (2013) Common noncoding UMOD gene variants induce salt-sensitive hypertension and kidney damage by increasing uromodulin expression. Nat Med 19:1655–1660CrossRefPubMedGoogle Scholar
  40. 40.
    Feehally J, Farrall M, Boland A, Gale DP, Gut I, Heath S, Kumar A, Peden JF, Maxwell PH, Morris DL, Padmanabhan S, Vyse TJ, Zawadzka A, Rees AJ, Lathrop M, Ratcliffe PJ (2010) HLA has strongest association with IgA nephropathy in genome-wide analysis. J Am Soc Nephrol 21:1791–179CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Gharavi AG, Kiryluk K, Choi M, Li Y, Hou P, Xie J, Sanna-Cherchi S, Men CJ, Julian BA, Wyatt RJ, Novak J, He JC, Wang H, Lv J, Zhu L, Wang W, Wang Z, Yasuno K, Gunel M, Mane S, Umlauf S, Tikhonova I, Beerman I, Savoldi S, Magistroni R, Ghiggeri GM, Bodria M, Lugani F, Ravani P, Ponticelli C, Allegri L, Boscutti G, Frasca G, Amore A, Peruzzi L, Coppo R, Izzi C, Viola BF, Prati E, Salvadori M, Mignani R, Gesualdo L, Bertinetto F, Mesiano P, Amoroso A, Scolari F, Chen N, Zhang H, Lifton RP (2011) Genome-wide association study identifies susceptibility loci for IgA nephropathy. Nat Genet 43:321–327CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Kiryluk K, Li Y, Sanna-Cherchi S, Rohanizadegan M, Suzuki H, Eitner F, Snyder HJ, Choi M, Hou P, Scolari F, Izzi C, Gigante M, Gesualdo L, Savoldi S, Amoroso A, Cusi D, Zamboli P, Julian BA, Novak J, Wyatt RJ, Mucha K, Perola M, Kristiansson K, Viktorin A, Magnusson PK, Thorleifsson G, Thorsteinsdottir U, Stefansson K, Boland A, Metzger M, Thibaudin L, Wanner C, Jager KJ, Goto S, Maixnerova D, Karnib HH, Nagy J, Panzer U, Xie J, Chen N, Tesar V, Narita I, Berthoux F, Floege J, Stengel B, Zhang H, Lifton RP, Gharavi AG (2012) Geographic differences in genetic susceptibility to IgA nephropathy: GWAS replication study and geospatial risk analysis. PLoS Genet 8, e1002765CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Yu XQ, Li M, Zhang H, Low HQ, Wei X, Wang JQ, Sun LD, Sim KS, Li Y, Foo JN, Wang W, Li ZJ, Yin XY, Tang XQ, Fan L, Chen J, Li RS, Wan JX, Liu ZS, Lou TQ, Zhu L, Huang XJ, Zhang XJ, Liu ZH, Liu JJ (2012) A genome-wide association study in Han Chinese identifies multiple susceptibility loci for IgA nephropathy. Nat Genet 44:178–182CrossRefGoogle Scholar
  44. 44.
    Kiryluk K, Li Y, Scolari F, Sanna-Cherchi S, Choi M, Verbitsky M, Fasel D, Lata S, Prakash S, Shapiro S, Fischman C, Snyder HJ, Appel G, Izzi C, Viola BF, Dallera N, Del Vecchio L, Barlassina C, Salvi E, Bertinetto FE, Amoroso A, Savoldi S, Rocchietti M, Amore A, Peruzzi L, Coppo R, Salvadori M, Ravani P, Magistroni R, Ghiggeri GM, Caridi G, Bodria M, Lugani F, Allegri L, Delsante M, Maiorana M, Magnano A, Frasca G, Boer E, Boscutti G, Ponticelli C, Mignani R, Marcantoni C, Di Landro D, Santoro D, Pani A, Polci R, Feriozzi S, Chicca S, Galliani M, Gigante M, Gesualdo L, Zamboli P, Battaglia GG, Garozzo M, Maixnerova D, Tesar V, Eitner F, Rauen T, Floege J, Kovacs T, Nagy J, Mucha K, Paczek L, Zaniew M, Mizerska-Wasiak M, Roszkowska-Blaim M, Pawlaczyk K, Gale D, Barratt J, Thibaudin L, Berthoux F, Canaud G, Boland A, Metzger M, Panzer U, Suzuki H, Goto S, Narita I, Caliskan Y, Xie J, Hou P, Chen N, Zhang H, Wyatt RJ, Novak J, Julian BA, Feehally J, Stengel B, Cusi D, Lifton RP, Gharavi AG (2014) Discovery of new risk loci for IgA nephropathy implicates genes involved in immunity against intestinal pathogens. Nat Genet 46:1187–1196CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Tanaka N, Babazono T, Saito S, Sekine A, Tsunoda T, Haneda M, Tanaka Y, Fujioka T, Kaku K, Kawamori R, Kikkawa R, Iwamoto Y, Nakamura Y, Maeda S (2003) Association of solute carrier family 12 (sodium/chloride) member 3 with diabetic nephropathy, identified by genome-wide analyses of single-nucleotide polymorphisms. Diabetes 52:2848–2853CrossRefPubMedGoogle Scholar
  46. 46.
    Shimazaki A, Kawamura Y, Kanazawa A, Sekine A, Saito S, Tsunoda T, Koya D, Babazono T, Tanaka Y, Matsuda M, Kawai K, Iiizumi T, Imanishi M, Shinosaki T, Yanagimoto T, Ikeda M, Omachi S, Kashiwagi A, Kaku K, Iwamoto Y, Kawamori R, Kikkawa R, Nakajima M, Nakamura Y, Maeda S (2005) Genetic variations in the gene encoding ELMO1 are associated with susceptibility to diabetic nephropathy. Diabetes 54:1171–1178CrossRefPubMedGoogle Scholar
  47. 47.
    Maeda S, Kobayashi MA, Araki S, Babazono T, Freedman BI, Bostrom MA, Cooke JN, Toyoda M, Umezono T, Tarnow L, Hansen T, Gaede P, Jorsal A, Ng DP, Ikeda M, Yanagimoto T, Tsunoda T, Unoki H, Kawai K, Imanishi M, Suzuki D, Shin HD, Park KS, Kashiwagi A, Iwamoto Y, Kaku K, Kawamori R, Parving HH, Bowden DW, Pedersen O, Nakamura Y (2010) A single-nucleotide polymorphism within the acetyl-coenzyme A carboxylase beta gene is associated with proteinuria in patients with type 2 diabetes. PLoS Genet 6, e1000842CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Pezzolesi MG, Katavetin P, Kure M, Poznik GD, Skupien J, Mychaleckyj JC, Rich SS, Warram JH, Krolewski AS (2009) Confirmation of genetic associations at ELMO1 in the GoKinD collection supports its role as a susceptibility gene in diabetic nephropathy. Diabetes 58:2698–2702CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Sandholm N, Salem RM, McKnight AJ, Brennan EP, Forsblom C, Isakova T, McKay GJ, Williams WW, Sadlier DM, Makinen VP, Swan EJ, Palmer C, Boright AP, Ahlqvist E, Deshmukh HA, Keller BJ, Huang H, Ahola AJ, Fagerholm E, Gordin D, Harjutsalo V, He B, Heikkila O, Hietala K, Kyto J, Lahermo P, Lehto M, Lithovius R, Osterholm AM, Parkkonen M, Pitkaniemi J, Rosengard-Barlund M, Saraheimo M, Sarti C, Soderlund J, Soro-Paavonen A, Syreeni A, Thorn LM, Tikkanen H, Tolonen N, Tryggvason K, Tuomilehto J, Waden J, Gill GV, Prior S, Guiducci C, Mirel DB, Taylor A, Hosseini SM, Parving HH, Rossing P, Tarnow L, Ladenvall C, Alhenc-Gelas F, Lefebvre P, Rigalleau V, Roussel R, Tregouet DA, Maestroni A, Maestroni S, Falhammar H, Gu T, Mollsten A, Cimponeriu D, Ioana M, Mota M, Mota E, Serafinceanu C, Stavarachi M, Hanson RL, Nelson RG, Kretzler M, Colhoun HM, Panduru NM, Gu HF, Brismar K, Zerbini G, Hadjadj S, Marre M, Groop L, Lajer M, Bull SB, Waggott D, Paterson AD, Savage DA, Bain SC, Martin F, Hirschhorn JN, Godson C, Florez JC, Groop PH, Maxwell AP (2012) New susceptibility loci associated with kidney disease in type 1 diabetes. PLoS Genet 8, e1002921CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Boger CA, Sedor JR (2012) GWAS of diabetic nephropathy: is the GENIE out of the bottle? PLoS Genet 8, e1002989CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Ramanan VK, Shen L, Moore JH, Saykin AJ (2012) Pathway analysis of genomic data: concepts, methods, and prospects for future development. Trends Genet 28:323–332CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Chasman DI, Fuchsberger C, Pattaro C, Teumer A, Boger CA, Endlich K, Olden M, Chen MH, Tin A, Taliun D, Li M, Gao X, Gorski M, Yang Q, Hundertmark C, Foster MC, O'Seaghdha CM, Glazer N, Isaacs A, Liu CT, Smith AV, O'Connell JR, Struchalin M, Tanaka T, Li G, Johnson AD, Gierman HJ, Feitosa MF, Hwang SJ, Atkinson EJ, Lohman K, Cornelis MC, Johansson A, Tonjes A, Dehghan A, Lambert JC, Holliday EG, Sorice R, Kutalik Z, Lehtimaki T, Esko T, Deshmukh H, Ulivi S, Chu AY, Murgia F, Trompet S, Imboden M, Coassin S, Pistis G, Harris TB, Launer LJ, Aspelund T, Eiriksdottir G, Mitchell BD, Boerwinkle E, Schmidt H, Cavalieri M, Rao M, Hu F, Demirkan A, Oostra BA, de Andrade M, Turner ST, Ding J, Andrews JS, Freedman BI, Giulianini F, Koenig W, Illig T, Meisinger C, Gieger C, Zgaga L, Zemunik T, Boban M, Minelli C, Wheeler HE, Igl W, Zaboli G, Wild SH, Wright AF, Campbell H, Ellinghaus D, Nothlings U, Jacobs G, Biffar R, Ernst F, Homuth G, Kroemer HK, Nauck M, Stracke S, Volker U, Volzke H, Kovacs P, Stumvoll M, Magi R, Hofman A, Uitterlinden AG, Rivadeneira F, Aulchenko YS, Polasek O, Hastie N, Vitart V, Helmer C, Wang JJ, Stengel B, Ruggiero D, Bergmann S, Kahonen M, Viikari J, Nikopensius T, Province M, Ketkar S, Colhoun H, Doney A, Robino A, Kramer BK, Portas L, Ford I, Buckley BM, Adam M, Thun GA, Paulweber B, Haun M, Sala C, Mitchell P, Ciullo M, Kim SK, Vollenweider P, Raitakari O, Metspalu A, Palmer C, Gasparini P, Pirastu M, Jukema JW, Probst-Hensch NM, Kronenberg F, Toniolo D, Gudnason V, Shuldiner AR, Coresh J, Schmidt R, Ferrucci L, Siscovick DS, van Duijn CM, Borecki IB, Kardia SL, Liu Y, Curhan GC, Rudan I, Gyllensten U, Wilson JF, Franke A, Pramstaller PP, Rettig R, Prokopenko I, Witteman J, Hayward C, Ridker PM, Parsa A, Bochud M, Heid IM, Kao WH, Fox CS, Köttgen A (2012) Integration of genome-wide association studies with biological knowledge identifies six novel genes related to kidney function. Hum Mol Genet 21:5329–5343CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Bulik-Sullivan BK, Sullivan PF (2012) The authorship network of genome-wide association studies. Nat Genet 44:113CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    McGuire AL, Basford M, Dressler LG, Fullerton SM, Koenig BA, Li R, McCarty CA, Ramos E, Smith ME, Somkin CP, Waudby C, Wolf WA, Clayton EW (2011) Ethical and practical challenges of sharing data from genome-wide association studies: the eMERGE Consortium experience. Genome Res 21:1001–1007CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© IPNA 2015

Authors and Affiliations

  • Jayanta Gupta
    • 1
  • Peter A. Kanetsky
    • 2
  • Matthias Wuttke
    • 3
  • Anna Köttgen
    • 3
  • Franz Schaefer
    • 4
  • Craig S. Wong
    • 5
    Email author
  1. 1.Department of Biomedical SciencesTexas Tech University Health Sciences CenterEl PasoUSA
  2. 2.Department of Cancer EpidemiologyH. Lee Moffitt Cancer Center and Research InstituteTampaUSA
  3. 3.Renal DivisionMedical Center - University of FreiburgFreiburgGermany
  4. 4.Pediatric Nephrology DivisionUniversity of HeidelbergHeidelbergGermany
  5. 5.Department of Pediatrics, Division of NephrologyUniversity of New Mexico Children’s HospitalAlbuquerqueUSA

Personalised recommendations