Advertisement

Pediatric Nephrology

, Volume 30, Issue 6, pp 873–879 | Cite as

Acidosis: progression of chronic kidney disease and quality of life

  • Ione de-Brito Ashurst
  • Emma O’Lone
  • Tarun Kaushik
  • Kieran McCafferty
  • Muhammad M. YaqoobEmail author
Review

Abstract

Metabolic acidosis (MA) is relatively common in patients with chronic kidney disease (CKD) particularly in stages 4 and 5. It is assumed to play a contributory role in the development of several complications including bone disease, skeletal muscle wasting, altered protein synthesis, and degradation. Recent evidence also suggests that even mild acidosis might play a role in progressive glomerular filtration rate loss. Experimental and clinical studies suggest that correction of acidosis by alkali therapy attenuates these complications and improves quality of life. Despite several recent small and single-center studies supporting this notion, more robust evidence is required with regard to the long-term benefits of alkali therapy, type of alkali supplements, and the optimal level of serum bicarbonate.

References

  1. 1.
    Jeffrey A, Kurtz I (2005) Metabolic acidosis of CKD: diagnosis, clinical characteristics, and treatment. Am J Kidney Dis 45:978–993CrossRefGoogle Scholar
  2. 2.
    Mitch WE (1997) Influence of metabolic acidosis on nutrition. Am J Kidney Dis 29:16–18CrossRefGoogle Scholar
  3. 3.
    Verove C, Maisonneuve N, El Azouzi A, Boldron A, Azar R (2002) Effect of the correction of metabolic acidosis on Nutritional status in elderly patients with chronic renal failure. J Ren Nutr 12:224–228CrossRefPubMedGoogle Scholar
  4. 4.
    Ballmer PE, McNurlan MA, Hulter HN, Anderso SE, Garlick PJ, Krapf K (1995) Chronic metabolic acidosis decreases albumin synthesis and induces negative nitrogen balance in humans. J Clin Invest 95:39–40CrossRefPubMedCentralPubMedGoogle Scholar
  5. 5.
    Mitch WE, Du J, Bailey J, Price SR (1999) Mechanisms causing muscle proteolysis in uraemia: the influence on insulin and cytokines. Miner Electrolyte Metab 25:216–219CrossRefPubMedGoogle Scholar
  6. 6.
    Löfberg E, Wernerman J, Anderstam B, Bergström J (1997) Correction of acidosis in dialysis patients increases branched chain and total essential amino acid levels in muscle. Clin Nephrol 48:230–237PubMedGoogle Scholar
  7. 7.
    Bailey JL, Wang X, England BK, Price SR, Ding X, Mitch WE (1996) The acidosis of chronic renal failure activates muscle proteolysis in rats by augmenting transcription of genes encoding proteins of the ATP-dependent ubiquitin-proteasome pathway. J Clin Invest 97:1447–1453CrossRefPubMedCentralPubMedGoogle Scholar
  8. 8.
    Graham KA, Reaich D, Channon SM, Downie S, Gilmour E, Passlick-Deetjen J, Goodship THJ (1996) Correction of acidosis in CAPD decreases whole body protein degradation. Kidney Int 49:1396–1400CrossRefPubMedGoogle Scholar
  9. 9.
    Graham KA, Reaich D, Channon SM, Downie S, Goodship THJ (1997) Correction of acidosis in haemodialysis decreases whole body protein degradation. J Am Soc Nephrol 8:632–637PubMedGoogle Scholar
  10. 10.
    Williams AJ, Dittmer ID, McArley A, Clarke J (1997) High bicarbonate dialysate in haemodialysis patients: effects on acidosis and nutritional status. Nephrol Dial Transplant 12:2633–2637CrossRefPubMedGoogle Scholar
  11. 11.
    Kooman JP, Deutz NE, Zijlmans P, Wall Bake A, Den A, Gerlag P, Van Hooff F, Leunissen K (1997) The influence of bicarbonate supplementation on plasma levels of branched chain amino acids in haemodialysis patients with metabolic acidosis. Nephrol Dial Transplant 12:2397–2401CrossRefPubMedGoogle Scholar
  12. 12.
    Dou L, Brunet P, Dignat-George F, Sampol J, Berland Y (1998) Effect of uremia and haemodialysis on soluble L-selectin and leukocyte surface CD11b and L selectin. Am J Kidney Dis 31:67–73CrossRefPubMedGoogle Scholar
  13. 13.
    Gadola L, Noboa O, Marquez MN (2004) Calcium citrate ameliorates the progression of chronic renal injury. Kidney Int 65:1224–1230CrossRefPubMedGoogle Scholar
  14. 14.
    Nath KA, Hostetter MK, Hostetter TH (1985) Pathophysiology of chronic tubulo-interstitial disease in rats. Interactions of dietary acid load, ammonia, and complement component C3. J Clin Invest 76:667–675CrossRefPubMedCentralPubMedGoogle Scholar
  15. 15.
    Torres VE, Cowley BD, Branden MG, Yoshida I, Gattone VH (2001) Long-term ammonium chloride or sodium bicarbonate treatment in two models of polycystic kidney disease. Exp Nephrol 9:171–180CrossRefPubMedGoogle Scholar
  16. 16.
    Halperin ML, Ethier JH, Kamel KS (1989) Ammonium excretion in chronic metabolic acidosis: benefits and risks. Am J Kidney Dis 14:267–271CrossRefPubMedGoogle Scholar
  17. 17.
    Tanner GA, Tanner JA (2000) Citrate therapy for polycystic kidney disease in rats. Kidney Int 58:1859–1869CrossRefPubMedGoogle Scholar
  18. 18.
    Phisitkul S, Hacker C, Simoni J, Tran RM, Wesson DE (2008) Dietary protein causes a decline in the glomerular filtration rate of the remnant kidney mediated by metabolic acidosis and endothelin receptors. Kidney Int 73:192–199CrossRefPubMedGoogle Scholar
  19. 19.
    Throssel D, Brown J, Harris KP, Walls J (1995) Metabolic acidosis does not contribute to chronic renal injury in the rat. Clin Sci 89:643–650Google Scholar
  20. 20.
    Jara A, Felsenfeld AJ, Bover J, Kleeman CR (2000) Chronic metabolic acidosis in azotemic rats on a high phosphate diet halts the progression of renal disease. Kidney Int 58:1023–1032CrossRefPubMedGoogle Scholar
  21. 21.
    Jara A, Chacon C, Ibaceta M, Valdivieso A, Felsenfeld AJ (2004) Effect of ammonium chloride and dietary phosphorus in the azotaemic rat. II. Kidney hypertrophy and calcium deposition. Nephrol Dial Transplant 19:1993–1998CrossRefPubMedGoogle Scholar
  22. 22.
    Lyon DM, Dunlop DM, Steward CP (1931) The alkaline treatment of chronic nephritis. Lancet 218:1009–1013CrossRefGoogle Scholar
  23. 23.
    Rustom R, Grime JS, Costigan M, Maltby P, Hughes A, Taylor W, Shenkin A, Critchley M, Bone JM (1998) Oral sodium bicarbonate reduces proximal renal tubular peptide catabolism, ammoniogenesis, and tubular damage in renal patients. Ren Fail 20:371–382CrossRefPubMedGoogle Scholar
  24. 24.
    Shah SN, Abramowitz M, Hostetter TH, Melamed ML (2009) Serum bicarbonate levels and the progression of kidney disease: a cohort study. Am J Kidney Dis 54:270–277CrossRefPubMedCentralPubMedGoogle Scholar
  25. 25.
    De-Brito Ashurst I, Varagunam M, Raftery MJ, Yaqoob MM (2009) Bicarbonate supplementation slows progression of CKD and improves nutritional status. J Am Soc Nephrol 20:2075–2084CrossRefPubMedCentralPubMedGoogle Scholar
  26. 26.
    Phisitkul S, Khanna A, Simoni J, Broglio K, Sheather S, Rajab MH, Wesson DE (2010) Amelioration of metabolic acidosis in patients with low GFR reduced kidney endothelin production and kidney injury, and better preserved GFR. Kidney Int 77:617–623CrossRefPubMedGoogle Scholar
  27. 27.
    Mahajan A, Simoni J, Sheather SJ, Broglio KR, Rajab MH, Wesson DE (2010) Daily oral sodium bicarbonate preserves glomerular filtration rate by slowing its decline in early hypertensive nephropathy. Kidney Int 78:303–309CrossRefPubMedGoogle Scholar
  28. 28.
    Abramowitz MK, Melamed ML, Bauer C, Raff AC, Hostetter TH (2013) Effects of oral sodium bicarbonate in patients with CKD. Clin J Am Soc Nephrol 8:714–720CrossRefPubMedCentralPubMedGoogle Scholar
  29. 29.
    Susantitaphong P, Sewaralthahab K, Balk EM, Jaber BL, Madias NE (2012) Short- and long-term effects of alkali therapy in chronic kidney disease: a systematic review. Am J Nephrol 35:540–547CrossRefPubMedCentralPubMedGoogle Scholar
  30. 30.
    Husted FC, Nolph KD, Maher JF (1975) NaHCO3 and NaC1 tolerance in chronic renal failure. J Clin Invest 56:414–419CrossRefPubMedCentralPubMedGoogle Scholar
  31. 31.
    Kraut JA (2000) Disturbances of acid–base balance and bone disease in end-stage renal disease. Semin Dial 13:261–265CrossRefPubMedGoogle Scholar
  32. 32.
    McSherry E, Morris RC Jr (1978) Attainment and maintenance of normal stature with alkali therapy in infants and children with classic renal tubular acidosis. J Clin Invest 61:509–527CrossRefPubMedCentralPubMedGoogle Scholar
  33. 33.
    KDOQI Work Group (2009) KDOQI clinical practice guideline for nutrition in children with CKD: 2008 update. Executive summary. Am J Kidney Dis 53 [3 Suppl 2]:S11–S104Google Scholar

Copyright information

© IPNA 2014

Authors and Affiliations

  • Ione de-Brito Ashurst
    • 1
  • Emma O’Lone
    • 1
  • Tarun Kaushik
    • 1
  • Kieran McCafferty
    • 1
  • Muhammad M. Yaqoob
    • 1
    • 2
    Email author
  1. 1.Department of Renal Medicine and TransplantationBarts Health NHS Trust, Cardiovascular Biological Research Unit and William Harvey Research InstituteLondonUK
  2. 2.Royal London HospitalLondonUK

Personalised recommendations