Advertisement

Pediatric Nephrology

, Volume 29, Issue 11, pp 2139–2146 | Cite as

Methylmalonic acidemia: A megamitochondrial disorder affecting the kidney

  • Zsuzsanna K. Zsengellér
  • Nika Aljinovic
  • Lisa A. Teot
  • Mark Korson
  • Nancy Rodig
  • Jennifer L. Sloan
  • Charles P. Venditti
  • Gerard T. Berry
  • Seymour Rosen
Original Article

Abstract

Background

Classical (or isolated) methylmalonic acidemia (MMA) is a heterogeneous inborn error of metabolism most typically caused by mutations in the vitamin B12-dependent enzyme methylmalonyl-CoA mutase (MUT). With the improved survival of individuals with MMA, chronic kidney disease has become recognized as part of the disorder. The precise description of renal pathology in MMA remains uncertain.

Methods

Light microscopy, histochemical, and ultrastructural studies were performed on the native kidney obtained from a 19-year-old patient with mut MMA who developed end stage renal disease and underwent a combined liver–kidney transplantation.

Results

The light microscopy study of the renal parenchyma in the MMA kidney revealed extensive interstitial fibrosis, chronic inflammation, and tubular atrophy. Intact proximal tubules were distinguished by the widespread formation of large, circular, pale mitochondria with diminished cristae. Histochemical preparations showed a reduction of cytochrome c oxidase and NADH activities, and the electron microscopy analysis demonstrated loss of cytochrome c enzyme activity in these enlarged mitochondria.

Conclusions

Our results demonstrate that the renal pathology of MMA is characterized by megamitochondria formation in the proximal tubules in concert with electron transport chain dysfunction. Our findings suggest therapies that target mitochondrial function as a treatment for the chronic kidney disease of MMA.

Keywords

Methylmalonic acidemia Methylmalonyl-CoA mutase Megamitochondria Cytochrome c oxidase End stage renal disease Functional electron microscopy Vitamin B12 

Notes

Acknowledgments

We thank Ms. Lena Ellezian for cryosectioning and electron microscopy processing at Department of Pathology at BIDMC. We also thank Ms. Andrea Calhoun at the Electron Microscopy Core Laboratory of BIDMC for her assistance with the COX–electron microscopy study.

Supplementary material

467_2014_2847_MOESM1_ESM.pdf (82 kb)
Supplemental Fig 1 The chromatogram tracings depict heterozygous changes in the either exon 3 or exon 11 in the MUT gene from a control (top) compared to the patient (below). The nucleotide change and corresponding amino acid substitution are listed as well. (PDF 82 kb)

References

  1. 1.
    Manoli I, Venditti CP (2005, update 2010). Methylmalonic acidemia. In: Pagon RA, Bird TD, Dolan CR et al (eds) GeneReviews™. University of Washington, Seattle. Available at: 1993 http://www.ncbi.nlm. nih.gov/books/NBK1231/
  2. 2.
    Matsui SM, Mahoney MJ, Rosenberg LE (1983) The natural history of the inherited methylmalonic acidemias. N Engl J Med 308:857–861PubMedCrossRefGoogle Scholar
  3. 3.
    Nicolaides P, Leonard J, Surtees R (1998) Neurological outcome of methylmalonic acidaemia. Arch Dis Child 78: 1508–512Google Scholar
  4. 4.
    van der Meer SB, Poggi F, Spada M, Bonnefont JP, Ogier H, Hubert P, Depondt E, Rapoport D, Rabier D, Charpentier C, ParvyP BJ, Kamoun P, Saudubray JM (1994) Clinical outcome of long-term management of patients with vitamin B12-unresponsive methylmalonic acidemia. J Pediatr 125(6 Pt 1):903–908PubMedCrossRefGoogle Scholar
  5. 5.
    Horster F, Baumgartner MR, Viardot C, Suormala T, Burgard P, Fowler B, Hoffmann GF, Garbade SF, Kölker S, Baumgartner ER (2007) Long-term outcome in methylmalonic acidurias is influenced by the underlying defect (mut0, mut-, cblA, cblB). Pediatr Res 2:225–230CrossRefGoogle Scholar
  6. 6.
    Walter JH, Michalski A, Wilson WM, Leonard JV, Barratt TM, Dillon MJ (1989) Chronic renal failure in methylmalonic acidaemia. Eur J Pediatr 148:344–348PubMedCrossRefGoogle Scholar
  7. 7.
    Baumgarter ER, Viardot C (1995) Long-term follow-up of 77 patients with isolated methylmalonic acidaemia. J Inherit Metab Dis 18:138–142PubMedCrossRefGoogle Scholar
  8. 8.
    Oberholzer VG, Levin B, Burgess EA, Young WF (1967) Methylmalonic aciduria. An inborn error of metabolism leading to chronic metabolic acidosis. Arch Dis Child 42:492–504PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Cosson MA, Benoist JF, Touati G, Déchaux M, Royer N, Grandin L, Jais JP, Boddaert N, Barbier V, Desguerre I, Campeau PM, Rabier D, Valayannopoulos V, Niaudet P, de Lonlay P (2009) Long-term outcome in methylmalonic aciduria: a series of 30 French patients. Mol Genet Metab 97:172–178PubMedCrossRefGoogle Scholar
  10. 10.
    Kruszka PS, Manoli I, Sloan JL, Kopp JB, Venditti CP (2013) Renal growth in isolated methylmalonic acidemia. Genet Med 15(12):990–996. doi: 10.1038/gim.2013.42
  11. 11.
    Molteni KH, Oberley TD, Wolff JA, Friedman AL (1991) Progressive renal insufficiency in methylmalonic acidemia. Pediatr Nephrol 5:323–326PubMedCrossRefGoogle Scholar
  12. 12.
    Rutledge SL, Geraghty M, Mroczek E, Rosenblatt D, Kohout E (1993) Tubulointerstitial nephritis in methylmalonic acidemia. Pediatr Nephrol 7:81–82PubMedCrossRefGoogle Scholar
  13. 13.
    Chandler RJ, Zerfas PM, Shanske S, Sloan J, Hoffmann V, DiMauro S, Venditti CP (2009) Mitochondrial dysfunction in mut methylmalonic acidemia. FASEB J 23:1252–61PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Tandler B, Krahenbuhl S, Brass EP (1991) Unusual mitochondria in the hepatocytes of rats treated with a vitamin B12 analogue. Anat Rec 231:1–6PubMedCrossRefGoogle Scholar
  15. 15.
    Stabler SP, Brass EP, Marcell PD, Allen RH (1991) Inhibition of cobalamin-dependent enzymes by cobalamin analogues in rats. J Clin Invest 87:1422–1430PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Krahenbuhl S, Chang M, Brass EP, Hoppel CL (1991) Decreased activities of ubiquinol:ferricytochrome c oxidoreductase (complex III) and ferrocytochrome c:oxygen oxidoreductase (complex IV) in liver mitochondria from rats with hydroxycobalamin [c-lactam]-induced methylmalonic aciduria. J Biol Chem 266:20998–21003PubMedGoogle Scholar
  17. 17.
    Hershey SJ, Simon TW, Baste C (1975) Histochemical localization of cytochrome oxidase in gastric mucosa. J Histochem Cytochem 4:271–282CrossRefGoogle Scholar
  18. 18.
    Dubowitz V (1985) Muscle biopsy: A practical approach, 2nd edn. Lavenham Press, Lavenham, SuffolkGoogle Scholar
  19. 19.
    Lebrecht D, Setzer B, Rohrbach R, Walker UA (2004) Mitochondrial DNA and its respiratory chain products are defective in doxorubicin nephrosis. Nephrol Dial Transplant 19:329–336PubMedCrossRefGoogle Scholar
  20. 20.
    Seligman AM, Karnovsky MJ, Wasserkrug HL, Hanker JS (1968) Nondroplet ultrastructural demonstration of cytochrome oxidase activity with a polymerizing osmiophilic reagent, diaminobenzidine (DAB). J Cell Biol 1:1–14CrossRefGoogle Scholar
  21. 21.
    Anderson WA, Bara G, Seligman AM (1975) The ultrastructural localization of cytochrome oxidase via cytochrome. J Histochem Cytochem 1:13–20CrossRefGoogle Scholar
  22. 22.
    Bertoni-Freddari C, Fattoretti P, Casoli T, Di Stefano G, Solazzi M, Gracciotti N, Pompei P (2001) Mapping of mitochondrial metabolic competence by cytochrome oxidase and succinic dehydrogenase cytochemistry. J Histochem Cytochem 9:1191–1192CrossRefGoogle Scholar
  23. 23.
    Zsengellér ZK, Ellezian L, Brown D, Horváth B, Mukhopadhyay P, Kalyanaraman B, Parikh SM, Karumanchi SA, Stillman IE, Pacher P (2012) Cisplatin nephrotoxicity involves mitochondrial injury with impaired tubular mitochondrial enzyme activity. J Histochem Cytochem 7:521–529Google Scholar
  24. 24.
    Worgan LC, Niles K, Tirone JC, Hofmann A, Verner A, Sammak A, Kucic T, Lepage P, Rosenblatt DS (2006) Spectrum of mutations in mut methylmalonic acidemia and identification of a common Hispanic mutation and haplotype. Hum Mutat 1:31–43CrossRefGoogle Scholar
  25. 25.
    Lempp TJ, Suormala T, Siegenthaler R, Baumgartner ER, Fowler B, Steinmann B, Baumgartner MR (2007) Mutation and biochemical analysis of 19 probands with mut0 and 13 with mut- methylmalonic aciduria: identification of seven novel mutations. Mol Genet Metab 3:284–290CrossRefGoogle Scholar
  26. 26.
    Fuchshuber A, Mucha B, Baumgartner ER, Vollmer M, Hildebrandt F (2000) mut0 methylmalonic acidemia: eleven novel mutations of the methylmalonyl CoA mutase including a deletion-insertion mutation. Hum Mutat 2:179Google Scholar
  27. 27.
    Crane AM, Ledley FD (1994) Clustering of mutations in methylmalonyl CoA mutase associated with mut- methylmalonic acidemia. Am J Hum Genet 1:42–50Google Scholar
  28. 28.
    Manoli I, Sysola JR, Lib L, Houillier P, Garone C, Wang C, Zerfas PM, Cusmano-Ozog K, Young S, Trived Niraj S, Cheng J, Sloan J, Chandler R, Abu-Asab M, Tsokos M, Elkahloun A, Rosen S, Enns G, Berry G, Hoffmann V, DiMauro S, Schnermann J, Venditti CP (2013) Targeting proximal tubule mitochondrial dysfunction attenuates the renal disease of methylmalonic acidemia. Proc Natl Acad Sci USA 110:13552–13557PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Suzuki T, Furusato M, Takasaki S, Ishikawa E (1975) Giant mitochondria in the epithelial cells of the proximal convoluted tubules of diseased human kidneys. Lab Invest 33:578–590PubMedGoogle Scholar
  30. 30.
    Mihatsch MJ, Ryffel B, Hermle M, Brunner FP, Thiel G (1986) Morphology of cyclosporine nephrotoxicity in the rat. Clin Nephrol 25[Suppl 1]:S2–8PubMedGoogle Scholar
  31. 31.
    Herlitz LC, Mohan S, Stokes MB, Radhakrishnan J, D'Agati VD, Markowitz GS (2010) Tenofovir nephrotoxicity: acute tubular necrosis with distinctive clinical, pathological, and mitochondrial abnormalities. Kidney Int 78:1171–1177PubMedCrossRefGoogle Scholar
  32. 32.
    Kitano A, Nishiyama S, Miike T, Hattori S, Ohtani Y, Matsuda I (1986) Mitochondrial cytopathy with lactic acidosis, carnitine deficiency and DeToni-Fanconi-Debré syndrome. Brain Dev 8:289–295PubMedCrossRefGoogle Scholar
  33. 33.
    Davis RL, Sue CM (2011) The genetics of mitochondrial disease. Semin Neurol 31:519–530PubMedCrossRefGoogle Scholar
  34. 34.
    Wakabayashi T (2002) Megamitochondria formation—physiology and pathology. J Cell Mol Med 6:497–538PubMedCrossRefGoogle Scholar
  35. 35.
    Hayasaka K, Metoki K, Satoh T, Narisawa K, Tada K, Kawakami T, Matsuo N, Aoki T (1982) Comparison of cytosolic and mitochondrial enzyme alterations in the livers of propionic or methylmalonic acidemia: a reduction of cytochrome oxidase activity. Tohoku J Exp Med 137:329–334PubMedCrossRefGoogle Scholar
  36. 36.
    de Keyzer Y, Valayannopoulos V, Benoist JF, Batteux F, Lacaille F, Hubert L, Chrétien D, Chadefeaux-Vekemans B, Niaudet P, Touati G, Munnich A, de Lonlay P (2009) Multiple OXPHOS deficiency in the liver, kidney, heart, and skeletal muscle of patients with methylmalonic aciduria and propionic aciduria. Pediatr Res 66:91–95PubMedCrossRefGoogle Scholar

Copyright information

© IPNA 2014

Authors and Affiliations

  • Zsuzsanna K. Zsengellér
    • 1
    • 2
  • Nika Aljinovic
    • 2
  • Lisa A. Teot
    • 3
  • Mark Korson
    • 4
  • Nancy Rodig
    • 5
  • Jennifer L. Sloan
    • 6
  • Charles P. Venditti
    • 6
  • Gerard T. Berry
    • 7
  • Seymour Rosen
    • 2
    • 3
  1. 1.Molecular MedicineBeth Israel Deaconess Medical Center–Harvard Medical SchoolBostonUSA
  2. 2.Pathology DepartmentBeth Israel Deaconess Medical Center–Harvard Medical SchoolBostonUSA
  3. 3.Pathology DepartmentBoston Children’s Hospital–Harvard Medical School,BostonUSA
  4. 4.Tufts University School of MedicineBostonUSA
  5. 5.Division of NephrologyBoston Children’s Hospital–Harvard Medical SchoolBostonUSA
  6. 6.Organic Acid Research Section, Genetics and Molecular Biology Branch, National Human Genome Research InstituteNational Institutes of HealthBethesdaUSA
  7. 7.Manton Center for Orphan Disease ResearchBoston Children’s Hospital–Harvard Medical SchoolBostonUSA

Personalised recommendations