Pediatric Nephrology

, Volume 29, Issue 9, pp 1589–1598 | Cite as

Kidney size and function in a multi-ethnic population-based cohort of school-age children

  • Hanneke Bakker
  • Marjolein N. Kooijman
  • Albert J. van der Heijden
  • Albert Hofman
  • Oscar H. Franco
  • H. Rob Taal
  • Vincent W. V. Jaddoe
Original Article

Abstract

Background

Subclinical impaired kidney growth and function in childhood may lead to kidney diseases and high blood pressure in adulthood. We assessed the cross-sectional associations of childhood characteristics with kidney size and function in a multi-ethnic cohort.

Methods

This study was embedded in a population-based cohort study of 6,397 children with a median age of 6.0 years.Kidney volume, creatinine and cystatin C blood levels, microalbuminuria and blood pressure were measured, and glomerular filtration rate (GFR) was estimated.

Results

Childhood anthropometrics were positively associated with kidney volume, creatinine level and blood pressure (all p < 0.05). We observed ethnic differences in all kidney size and function measures (all p < 0.05). Children with smaller kidneys had higher creatinine and cystatin C blood levels, leading to a lower estimated GFR [difference 5.68 ml/min/1.73 m2 (95 % confidence interval 5.14–6.12) per 1 standard deviation increase in kidney volume]. Larger kidney volume was associated with an increased risk of microalbuminuria.

Conclusions

Childhood kidney volume and function are influenced by body mass index and ethnicity. Kidney volume is related with kidney function but not with blood pressure. These results may help to identify individuals at risk for kidney disease in an early stage.

Keywords

Anthropometrics Ethnicity Kidney volume Kidney function Blood pressure 

Notes

Acknowledgments

The Generation R study is being conducted by the Erasmus Medical Center in close collaboration with the School of Law and Faculty of Social Sciences of Erasmus University Rotterdam; the Municipal Health Service Rotterdam area, Rotterdam; the Rotterdam Homecare Foundation, Rotterdam; the Stichting Trombosedienst & Artsenlaboratorium Rijnmond, Rotterdam. We gratefully acknowledge the contributions of general practitioners, hospitals, midwives and pharmacies in Rotterdam.

Funding sources

The Generation R Study has been made possible by financial support from the Erasmus Medical Center, Rotterdam; Erasmus University Rotterdam and from The Netherlands Organization for Health Research and Development (ZonMw). Additional support was provided by a grant from the Dutch Kidney Foundation (C08.2251). Vincent Jaddoe received an additional VIDI grant from the Netherlands Orgzanization of Scientific Research. Oscar H. Franco works in ErasmusAGE, a center for aging research across the life course funded by Nestlé Nutrition (Nestec Ltd.), Metagenics Inc. and AXA. Nestlé Nutrition (Nestec Ltd.), Metagenics Inc. and AXA had no role in the design and conduct of the study, in the collection, management, analysis and interpretation of the data and in the preparation, review or approval of the manuscript.

Supplementary material

467_2014_2793_MOESM1_ESM.doc (132 kb)
ESM 1 (DOC 132 kb)
467_2014_2793_MOESM2_ESM.doc (27 kb)
ESM 2 (DOC 27 kb)
467_2014_2793_MOESM3_ESM.doc (40 kb)
ESM 3 (DOC 39 kb)
467_2014_2793_MOESM4_ESM.doc (32 kb)
ESM 4 (DOC 32 kb)

References

  1. 1.
    Singh GR, Hoy WE (2004) Kidney volume, blood pressure, and albuminuria: findings in an Australian aboriginal community. Am J Kidney Dis 43:254–259PubMedCrossRefGoogle Scholar
  2. 2.
    White SL, Perkovic V, Cass A, Chang CL, Poulter NR, Spector T, Haysom L, Craig JC, Salmi IA, Chadban SJ, Huxley RR (2009) Is low birth weight an antecedent of CKD in later life? A systematic review of observational studies. Am J Kidney Dis 54:248–261PubMedCrossRefGoogle Scholar
  3. 3.
    Luyckx VA, Brenner BM (2010) The clinical importance of nephron mass. J Am Soc Nephrol 21:898–910PubMedCrossRefGoogle Scholar
  4. 4.
    Brenner BM, Chertow GM (1994) Congenital oligonephropathy and the etiology of adult hypertension and progressive renal injury. Am J Kidney Dis 23:171–175PubMedCrossRefGoogle Scholar
  5. 5.
    Chen X, Wang Y (2008) Tracking of blood pressure from childhood to adulthood: a systematic review and meta-regression analysis. Circulation 117:3171–3180PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Singh A, Satchell SC (2011) Microalbuminuria: causes and implications. Pediatr Nephrol 26:1957–1965PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Cignarelli M, Lamacchia O (2007) Obesity and kidney disease. Nutr Metab Cardiovasc Dis 17:757–762PubMedCrossRefGoogle Scholar
  8. 8.
    Jaddoe VW, van Duijn CM, Franco OH, van der Heijden AJ, van Iizendoorn MH, de Jongste JC, van der Lugt A, Mackenbach JP, Moll HA, Raat H, Rivadeneira F, Steegers EA, Tiemeier H, Uitterlinden AG, Verhulst FC, Hofman A (2012) The Generation R Study: design and cohort update 2012. Eur J Epidemiol 27:739–756PubMedCrossRefGoogle Scholar
  9. 9.
    Statistics Netherlands (2003) Migrants in the Netherlands, 2003. Statistics Netherlands, The HagueGoogle Scholar
  10. 10.
    Jaddoe VW, Mackenbach JP, Moll HA, Steegers EA, Tiemeier H, Verhulst FC, Witteman JC, Hofman A (2006) The Generation R Study: design and cohort profile. Eur J Epidemiol 21:475–484PubMedCrossRefGoogle Scholar
  11. 11.
    Troe EJ, Raat H, Jaddoe VW, Hofman A, Looman CW, Moll HA, Steegers EA, Verhulst FC, Witteman JC, Mackenbach JP (2007) Explaining differences in birthweight between ethnic populations. The Generation R Study. BJOG 114:1557–1565PubMedCrossRefGoogle Scholar
  12. 12.
    Geelhoed JJ, Taal HR, Steegers EA, Arends LR, Lequin M, Moll HA, Hofman A, van der Heijden AJ, Jaddoe VW (2010) Kidney growth curves in healthy children from the third trimester of pregnancy until the age of two years. The Generation R Study. Pediatr Nephrol 25:289–298PubMedCrossRefGoogle Scholar
  13. 13.
    Geelhoed JJ, Kleyburg-Linkers VE, Snijders SP, Lequin M, Nauta J, Steegers EA, van der Heijden AJ, Jaddoe VW (2009) Reliability of renal ultrasound measurements in children. Pediatr Nephrol 24:1345–1353PubMedCrossRefGoogle Scholar
  14. 14.
    Schwartz GJ, Munoz A, Schneider MF, Mak RH, Kaskel F, Warady BA, Furth SL (2009) New equations to estimate GFR in children with CKD. J Am Soc Nephrol 20:629–637PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Donaghue KC, Chiarelli F, Trotta D, Allgrove J, Dahl-Jorgensen K; International Society for P, Adolescent D (2007) ISPAD Clinical Practice Consensus Guidelines 2006–2007. Microvascular and macrovascular complications. Pediatr Diabetes 8:163-170Google Scholar
  16. 16.
    Wong SN, Tz Sung RY, Leung LC (2006) Validation of three oscillometric blood pressure devices against auscultatory mercury sphygmomanometer in children. Blood Press Monit 11:281–291PubMedCrossRefGoogle Scholar
  17. 17.
    Bacchetta J, Cochat P, Rognant N, Ranchin B, Hadj-Aissa A, Dubourg L (2011) Which creatinine and cystatin C equations can be reliably used in children? Clin J Am Soc Nephrol 6:552–560PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Rademacher ER, Sinaiko AR (2009) Albuminuria in children. Curr Opin Nephrol Hypertens 18:246–251PubMedCrossRefGoogle Scholar
  19. 19.
    Lawlor DA, Najman JM, Sterne J, Williams GM, Ebrahim S, Davey Smith G (2004) Associations of parental, birth, and early life characteristics with systolic blood pressure at 5 years of age: findings from the Mater-University study of pregnancy and its outcomes. Circulation 110:2417–2423PubMedCrossRefGoogle Scholar
  20. 20.
    Bakker J, Olree M, Kaatee R, de Lange EE, Moons KG, Beutler JJ, Beek FJ (1999) Renal volume measurements: accuracy and repeatability of US compared with that of MR imaging. Radiology 211:623–628PubMedCrossRefGoogle Scholar
  21. 21.
    Keller G, Zimmer G, Mall G, Ritz E, Amann K (2003) Nephron number in patients with primary hypertension. N Engl J Med 348:101–108PubMedCrossRefGoogle Scholar
  22. 22.
    Ingelfinger JR, Nuyt AM (2012) Impact of fetal programming, birth weight, and infant feeding on later hypertension. J Clin Hypertens (Greenwich) 14:365–371CrossRefGoogle Scholar
  23. 23.
    Hinchliffe SA, Sargent PH, Howard CV, Chan YF, van Velzen D (1991) Human intrauterine renal growth expressed in absolute number of glomeruli assessed by the disector method and Cavalieri principle. Lab Invest 64:777–784PubMedGoogle Scholar
  24. 24.
    Manalich R, Reyes L, Herrera M, Melendi C, Fundora I (2000) Relationship between weight at birth and the number and size of renal glomeruli in humans: a histomorphometric study. Kidney Int 58:770–773PubMedCrossRefGoogle Scholar
  25. 25.
    Zhang Z, Quinlan J, Hoy W, Hughson MD, Lemire M, Hudson T, Hueber PA, Benjamin A, Roy A, Pascuet E, Goodyer M, Raju C, Houghton F, Bertram J, Goodyer P (2008) A common RET variant is associated with reduced newborn kidney size and function. J Am Soc Nephrol 19:2027–2034PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Hoy WE, Bertram JF, Denton RD, Zimanyi M, Samuel T, Hughson MD (2008) Nephron number, glomerular volume, renal disease and hypertension. Curr Opin Nephrol Hypertens 17:258–265PubMedCrossRefGoogle Scholar
  27. 27.
    Stevens LA, Coresh J, Greene T, Levey AS (2006) Assessing kidney function–measured and estimated glomerular filtration rate. N Engl J Med 354:2473–2483PubMedCrossRefGoogle Scholar
  28. 28.
    Filler G, Bokenkamp A, Hofmann W, Le Bricon T, Martinez-Bru C, Grubb A (2005) Cystatin C as a marker of GFR—history, indications, and future research. Clin Biochem 38:1–8PubMedCrossRefGoogle Scholar
  29. 29.
    Groesbeck D, Kottgen A, Parekh R, Selvin E, Schwartz GJ, Coresh J, Furth S (2008) Age, gender, and race effects on cystatin C levels in US adolescents. Clin J Am Soc Nephrol 3:1777–1785PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Inker LA, Schmid CH, Tighiouart H, Eckfeldt JH, Feldman HI, Greene T, Kusek JW, Manzi J, Van Lente F, Zhang YL, Coresh J, Levey AS, Investigators C-E (2012) Estimating glomerular filtration rate from serum creatinine and cystatin C. N Engl J Med 367:20–29PubMedCrossRefGoogle Scholar
  31. 31.
    Cha RH, Lee CS, Lim YH, Kim H, Lee SH, Yu KS, Kim YS (2010) Clinical usefulness of serum cystatin C and the pertinent estimation of glomerular filtration rate based on cystatin C. Nephrol (Carlton) 15:768–776CrossRefGoogle Scholar
  32. 32.
    Fadrowski JJ, Neu AM, Schwartz GJ, Furth SL (2011) Pediatric GFR estimating equations applied to adolescents in the general population. Clin J Am Soc Nephrol 6:1427–1435Google Scholar
  33. 33.
    de Jong PE, Curhan GC (2006) Screening, monitoring, and treatment of albuminuria: Public health perspectives. J Am Soc Nephrol 17:2120–2126PubMedCrossRefGoogle Scholar
  34. 34.
    Miller WG, Bruns DE, Hortin GL, Sandberg S, Aakre KM, McQueen MJ, Itoh Y, Lieske JC, Seccombe DW, Jones G, Bunk DM, Curhan GC, Narva AS, and on behalf of the National Kidney Disease Education Program–IFCC Working Group on Standardization of Albumin in Urine (2009) Current issues in measurement and reporting of urinary albumin excretion. Clin Chem 55:24–38Google Scholar
  35. 35.
    Myers MG, McInnis NH, Fodor GJ, Leenen FH (2008) Comparison between an automated and manual sphygmomanometer in a population survey. Am J Hypertens 21:280–283PubMedCrossRefGoogle Scholar
  36. 36.
    Nguyen S, Hsu CY (2007) Excess weight as a risk factor for kidney failure. Curr Opin Nephrol Hypertens 16:71–76PubMedCrossRefGoogle Scholar
  37. 37.
    Lawlor DA, Benfield L, Logue J, Tilling K, Howe LD, Fraser A, Cherry L, Watt P, Ness AR, Davey Smith G, Sattar N (2010) Association between general and central adiposity in childhood, and change in these, with cardiovascular risk factors in adolescence: prospective cohort study. BMJ 341:c6224PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Paradis G, Lambert M, O'Loughlin J, Lavallee C, Aubin J, Delvin E, Levy E, Hanley JA (2004) Blood pressure and adiposity in children and adolescents. Circulation 110:1832–1838PubMedCrossRefGoogle Scholar
  39. 39.
    Savino A, Pelliccia P, Giannini C, de Giorgis T, Cataldo I, Chiarelli F, Mohn A (2011) Implications for kidney disease in obese children and adolescents. Pediatr Nephrol 26:749–758PubMedCrossRefGoogle Scholar
  40. 40.
    Kramer H, Palmas W, Kestenbaum B, Cushman M, Allison M, Astor B, Shlipak M (2008) Chronic kidney disease prevalence estimates among racial/ethnic groups: the Multi-Ethnic Study of Atherosclerosis. Clin J Am Soc Nephrol 3:1391–1397PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    van den Born BJ, Koopmans RP, Groeneveld JO, van Montfrans GA (2006) Ethnic disparities in the incidence, presentation and complications of malignant hypertension. J Hypertens 24:2299–2304PubMedCrossRefGoogle Scholar
  42. 42.
    Agyemang C, Ujcic-Voortman J, Uitenbroek D, Foets M, Droomers M (2006) Prevalence and management of hypertension among Turkish, Moroccan and native Dutch ethnic groups in Amsterdam, the Netherlands: The Amsterdam Health Monitor Survey. J Hypertens 24:2169–2176PubMedCrossRefGoogle Scholar
  43. 43.
    Muntner P, He J, Cutler JA, Wildman RP, Whelton PK (2004) Trends in blood pressure among children and adolescents. JAMA 291:2107–2113PubMedCrossRefGoogle Scholar
  44. 44.
    Harding S, Whitrow M, Lenguerrand E, Maynard M, Teyhan A, Cruickshank JK, Der G (2010) Emergence of ethnic differences in blood pressure in adolescence: the determinants of adolescent social well-being and health study. Hypertension 55:1063–1069PubMedCrossRefGoogle Scholar
  45. 45.
    Trachtenberg F, Barregard L (2007) The effect of age, sex, and race on urinary markers of kidney damage in children. Am J Kidney Dis 50:938–945PubMedCrossRefGoogle Scholar
  46. 46.
    Olden M, Teumer A, Bochud M, Pattaro C, Kottgen A, Turner ST, Rettig R, Chen MH, Dehghan A, Bastardot F, Schmidt R, Vollenweider P, Schunkert H, Reilly MP, Fornage M, Launer LJ, Verwoert GC, Mitchell GF, Bis JC, O'Donnell CJ, Cheng CY, Sim X, Siscovick DS, Coresh J, Kao WH, Fox CS, O'Seaghdha CM, AortaGen CCECIMTIN, Consortia CK (2013) Overlap between common genetic polymorphisms underpinning kidney traits and cardiovascular disease phenotypes: the CKDGen Consortium. Am J Kidney Dis 61:889–898PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Pattaro C, Kottgen A, Teumer A, Garnaas M, Boger CA, Fuchsberger C, Olden M, Chen MH, Tin A, Taliun D, Li M, Gao X, Gorski M, Yang Q, Hundertmark C, Foster MC, O'Seaghdha CM, Glazer N, Isaacs A, Liu CT, Smith AV, O'Connell JR, Struchalin M, Tanaka T, Li G, Johnson AD, Gierman HJ, Feitosa M, Hwang SJ, Atkinson EJ, Lohman K, Cornelis MC, Johansson A, Tonjes A, Dehghan A, Chouraki V, Holliday EG, Sorice R, Kutalik Z, Lehtimaki T, Esko T, Deshmukh H, Ulivi S, Chu AY, Murgia F, Trompet S, Imboden M, Kollerits B, Pistis G, Consortium CA, Consortium I, Consortium CA, Wellcome Trust Case Control C, Harris TB, Launer LJ, Aspelund T, Eiriksdottir G, Mitchell BD, Boerwinkle E, Schmidt H, Cavalieri M, Rao M, Hu FB, Demirkan A, Oostra BA, de Andrade M, Turner ST, Ding J, Andrews JS, Freedman BI, Koenig W, Illig T, Doring A, Wichmann HE, Kolcic I, Zemunik T, Boban M, Minelli C, Wheeler HE, Igl W, Zaboli G, Wild SH, Wright AF, Campbell H, Ellinghaus D, Nothlings U, Jacobs G, Biffar R, Endlich K, Ernst F, Homuth G, Kroemer HK, Nauck M, Stracke S, Volker U, Volzke H, Kovacs P, Stumvoll M, Magi R, Hofman A, Uitterlinden AG, Rivadeneira F, Aulchenko YS, Polasek O, Hastie N, Vitart V, Helmer C, Wang JJ, Ruggiero D, Bergmann S, Kahonen M, Viikari J, Nikopensius T, Province M, Ketkar S, Colhoun H, Doney A, Robino A, Giulianini F, Kramer BK, Portas L, Ford I, Buckley BM, Adam M, Thun GA, Paulweber B, Haun M, Sala C, Metzger M, Mitchell P, Ciullo M, Kim SK, Vollenweider P, Raitakari O, Metspalu A, Palmer C, Gasparini P, Pirastu M, Jukema JW, Probst-Hensch NM, Kronenberg F, Toniolo D, Gudnason V, Shuldiner AR, Coresh J, Schmidt R, Ferrucci L, Siscovick DS, van Duijn CM, Borecki I, Kardia SL, Liu Y, Curhan GC, Rudan I, Gyllensten U, Wilson JF, Franke A, Pramstaller PP, Rettig R, Prokopenko I, Witteman JC, Hayward C, Ridker P, Parsa A, Bochud M, Heid IM, Goessling W, Chasman DI, Kao WH, Fox CS (2012) Genome-wide association and functional follow-up reveals new loci for kidney function. PLoS Genet 8:e1002584CrossRefGoogle Scholar
  48. 48.
    Di Zazzo G, Stringini G, Matteucci MC, Muraca M, Malena S, Emma F (2011) Serum creatinine levels are significantly influenced by renal size in the normal pediatric population. Clin J Am Soc Nephrol 6:107–113PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Adibi A, Adibi I, Khosravi P (2007) Do kidney sizes in ultrasonography correlate to glomerular filtration rate in healthy children? Australas Radiol 51:555–559PubMedCrossRefGoogle Scholar

Copyright information

© IPNA 2014

Authors and Affiliations

  • Hanneke Bakker
    • 1
    • 2
    • 3
  • Marjolein N. Kooijman
    • 1
  • Albert J. van der Heijden
    • 3
  • Albert Hofman
    • 2
  • Oscar H. Franco
    • 2
  • H. Rob Taal
    • 2
    • 3
  • Vincent W. V. Jaddoe
    • 1
    • 2
    • 3
    • 4
  1. 1.The Generation R Study GroupErasmus Medical CenterRotterdamThe Netherlands
  2. 2.Department of EpidemiologyErasmus Medical CenterRotterdamThe Netherlands
  3. 3.Department of PediatricsErasmus Medical CenterRotterdamThe Netherlands
  4. 4.The Generation R Study Group (Na-2915)Erasmus Medical CenterRotterdamThe Netherlands

Personalised recommendations