Pediatric Nephrology

, Volume 29, Issue 4, pp 757–766

Vesicoureteric reflux and reflux nephropathy: from mouse models to childhood disease

  • Marie-Lyne Fillion
  • Christine L. Watt
  • Indra R. Gupta


Vesicoureteric reflux (VUR) is a common congenital urinary tract defect that predisposes children to recurrent kidney infections. Kidney infections can result in renal scarring or reflux nephropathy defined by the presence of chronic tubulo-interstitial inflammation and fibrosis that is a frequent cause of end-stage renal failure. The discovery of mouse models with VUR and with reflux nephropathy has provided new opportunities to understand the pathogenesis of these conditions and may provide insight on the genes and the associated phenotypes that need to be examined in human studies.


Vesicoureteric reflux Mouse models Reflux nephropathy Children 


  1. 1.
    Williams G, Fletcher JT, Alexander SI, Craig JC (2008) Vesicoureteral reflux. J Am Soc Nephrol 19:847–862PubMedCrossRefGoogle Scholar
  2. 2.
    Greenbaum LA, Mesrobian HG (2006) Vesicoureteral reflux. Pediatr Clin N Am 53:413–427, viCrossRefGoogle Scholar
  3. 3.
    Darge K (2002) Diagnosis of vesicoureteral reflux with ultrasonography. Pediatr Nephrol 17:52–60PubMedCrossRefGoogle Scholar
  4. 4.
    Canadian Organ Replacement Register (CORR) (2011) CORR annual report—treatment of end-stage organ failure in Canada, 2000 to 2009. Available at: http://securecihica/free_products/2011_CORR_Annual_Report_final_epdf
  5. 5.
    North American Pediatric Renal Trials and Collaborative Studies (NAPRTCS) (2011) NAPRTCS annual report, 2011. Available at: http://webemmescom/study/ped/annlrept/annualrept2011pdf
  6. 6.
    Craig JC, Irwig LM, Knight JF, Roy LP (2000) Does treatment of vesicoureteric reflux in childhood prevent end-stage renal disease attributable to reflux nephropathy? Pediatrics 105:1236–1241PubMedCrossRefGoogle Scholar
  7. 7.
    Schreuder MF, Nauta J (2007) Prenatal programming of nephron number and blood pressure. Kidney Int 72:265–268PubMedCrossRefGoogle Scholar
  8. 8.
    Saxen L (1987) Organogenesis of the kidney. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  9. 9.
    Murawski IJ, Myburgh DB, Favor J, Gupta IR (2007) Vesico-ureteric reflux and urinary tract development in the Pax21Neu+/− mouse. Am J Physiol Ren Physiol 293:F1736–F1745CrossRefGoogle Scholar
  10. 10.
    Costantini F (2012) Genetic controls and cellular behaviors in branching morphogenesis of the renal collecting system. Wiley Interdisc Rev Dev Biol 1:693–713CrossRefGoogle Scholar
  11. 11.
    Bouchard M (2004) Transcriptional control of kidney development. Differentiation 72:295–306PubMedCrossRefGoogle Scholar
  12. 12.
    Majumdar A, Vainio S, Kispert A, McMahon J, McMahon AP (2003) Wnt11 and Ret/Gdnf pathways cooperate in regulating ureteric branching during metanephric kidney development. Development 130:3175–3185PubMedCrossRefGoogle Scholar
  13. 13.
    Hains D, Sims-Lucas S, Kish K, Saha M, McHugh K, Bates CM (2008) Role of fibroblast growth factor receptor 2 in kidney mesenchyme. Pediatr Res 64:592–598PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Basson MA, Akbulut S, Watson-Johnson J, Simon R, Carroll TJ, Shakya R, Gross I, Martin GR, Lufkin T, McMahon AP, Wilson PD, Costantini FD, Mason IJ, Licht JD (2005) Sprouty1 is a critical regulator of GDNF/RET-mediated kidney induction. Dev Cell 8:229–239PubMedCrossRefGoogle Scholar
  15. 15.
    Kume T, Deng K, Hogan BL (2000) Murine forkhead/winged helix genes Foxc1 (Mf1) and Foxc2 (Mfh1) are required for the early organogenesis of the kidney and urinary tract. Development 127:1387–1395PubMedGoogle Scholar
  16. 16.
    Grieshammer U, Le M, Plump AS, Wang F, Tessier-Lavigne M, Martin GR (2004) SLIT2-mediated ROBO2 signaling restricts kidney induction to a single site. Dev Cell 6:709–717PubMedCrossRefGoogle Scholar
  17. 17.
    Puri P, Gosemann JH, Darlow J, Barton DE (2011) Genetics of vesicoureteral reflux. Nat Rev Urol 8:539–552PubMedCrossRefGoogle Scholar
  18. 18.
    Mackie GG, Stephens FD (1975) Duplex kidneys: a correlation of renal dysplasia with position of the ureteral orifice. J Urol 114:274–280PubMedGoogle Scholar
  19. 19.
    Pope JC, Brock JW 3rd, Adams MC, Stephens FD, Ichikawa I (1999) How they begin and how they end: classic and new theories for the development and deterioration of congenital anomalies of the kidney and urinary tract, CAKUT. J Am Soc Nephrol 10:2018–2028PubMedGoogle Scholar
  20. 20.
    Murawski IJ, Watt CL, Gupta IR (2011) Vesico-ureteric reflux: using mouse models to understand a common congenital urinary tract defect. Pediatr Nephrol 26:1513–1522PubMedCrossRefGoogle Scholar
  21. 21.
    Aoki Y, Mori S, Kitajima K, Yokoyama O, Kanamaru H, Okada K, Yokota Y (2004) Id2 haploinsufficiency in mice leads to congenital hydronephrosis resembling that in humans. Genes Cells 9:1287–1296PubMedCrossRefGoogle Scholar
  22. 22.
    Chang CP, McDill BW, Neilson JR, Joist HE, Epstein JA, Crabtree GR, Chen F (2004) Calcineurin is required in urinary tract mesenchyme for the development of the pyeloureteral peristaltic machinery. J Clin Invest 113:1051–1058PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Yu J, Carroll TJ, McMahon AP (2002) Sonic hedgehog regulates proliferation and differentiation of mesenchymal cells in the mouse metanephric kidney. Development 129:5301–5312PubMedGoogle Scholar
  24. 24.
    Iizuka-Kogo A, Ishidao T, Akiyama T, Senda T (2007) Abnormal development of urogenital organs in Dlgh1-deficient mice. Development 134:1799–1807PubMedCrossRefGoogle Scholar
  25. 25.
    Airik R, Trowe MO, Foik A, Farin HF, Petry M, Schuster-Gossler K, Schweizer M, Scherer G, Kist R, Kispert A (2010) Hydroureternephrosis due to loss of Sox9-regulated smooth muscle cell differentiation of the ureteric mesenchyme. Hum Mol Genet 19:4918–4929PubMedCrossRefGoogle Scholar
  26. 26.
    Caubit X, Lye CM, Martin E, Core N, Long DA, Vola C, Jenkins D, Garratt AN, Skaer H, Woolf AS, Fasano L (2008) Teashirt 3 is necessary for ureteral smooth muscle differentiation downstream of SHH and BMP4. Development 135:3301–3310PubMedCrossRefGoogle Scholar
  27. 27.
    Brenner-Anantharam A, Cebrian C, Guillaume R, Hurtado R, Sun TT, Herzlinger D (2007) Tailbud-derived mesenchyme promotes urinary tract segmentation via BMP4 signaling. Development 134:1967–1975PubMedCrossRefGoogle Scholar
  28. 28.
    Trowe MO, Airik R, Weiss AC, Farin HF, Foik AB, Bettenhausen E, Schuster-Gossler K, Taketo MM, Kispert A (2012) Canonical Wnt signaling regulates smooth muscle precursor development in the mouse ureter. Development 139:3099–3108PubMedCrossRefGoogle Scholar
  29. 29.
    Bohnenpoll T, Bettenhausen E, Weiss AC, Foik AB, Trowe MO, Blank P, Airik R, Kispert A (2013) Tbx18 expression demarcates multipotent precursor populations in the developing urogenital system but is exclusively required within the ureteric mesenchymal lineage to suppress a renal stromal fate. Dev Biol 380:25–36PubMedCrossRefGoogle Scholar
  30. 30.
    Airik R, Bussen M, Singh MK, Petry M, Kispert A (2006) Tbx18 regulates the development of the ureteral mesenchyme. J Clin Invest 116:663–674PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Hurtado R, Bub G, Herzlinger D (2010) The pelvis-kidney junction contains HCN3, a hyperpolarization-activated cation channel that triggers ureter peristalsis. Kidney Int 77:500–508PubMedCrossRefGoogle Scholar
  32. 32.
    Uetani N, Bertozzi K, Chagnon MJ, Hendriks W, Tremblay ML, Bouchard M (2009) Maturation of ureter-bladder connection in mice is controlled by LAR family receptor protein tyrosine phosphatases. J Clin Invest 119:924–935PubMedCentralPubMedGoogle Scholar
  33. 33.
    Batourina E, Tsai S, Lambert S, Sprenkle P, Viana R, Dutta S, Hensle T, Wang F, Niederreither K, McMahon AP, Carroll TJ, Mendelsohn CL (2005) Apoptosis induced by vitamin A signaling is crucial for connecting the ureters to the bladder. Nat Genet 37:1082–1089PubMedCrossRefGoogle Scholar
  34. 34.
    Chia I, Grote D, Marcotte M, Batourina E, Mendelsohn C, Bouchard M (2011) Nephric duct insertion is a crucial step in urinary tract maturation that is regulated by a Gata3-Raldh2-Ret molecular network in mice. Development 138:2089–2097PubMedCrossRefGoogle Scholar
  35. 35.
    Viana R, Batourina E, Huang H, Dressler GR, Kobayashi A, Behringer RR, Shapiro E, Hensle T, Lambert S, Mendelsohn C (2007) The development of the bladder trigone, the center of the anti-reflux mechanism. Development 134:3763–3769PubMedCrossRefGoogle Scholar
  36. 36.
    Tanagho EA, Pugh RC (1963) The anatomy and function of the ureterovesical junction. Br J Urol 35:151–165PubMedCrossRefGoogle Scholar
  37. 37.
    Kaefer M, Curran M, Treves ST, Bauer S, Hendren WH, Peters CA, Atala A, Diamond D, Retik A (2000) Sibling vesicoureteral reflux in multiple gestation births. Pediatrics 105:800–804PubMedCrossRefGoogle Scholar
  38. 38.
    Muroya K, Hasegawa T, Ito Y, Nagai T, Isotani H, Iwata Y, Yamamoto K, Fujimoto S, Seishu S, Fukushima Y, Hasegawa Y, Ogata T (2001) GATA3 abnormalities and the phenotypic spectrum of HDR syndrome. J Med Genet 38:374–380PubMedCrossRefGoogle Scholar
  39. 39.
    Nishimura H, Yerkes E, Hohenfellner K, Miyazaki Y, Ma J, Hunley TE, Yoshida H, Ichiki T, Threadgill D, Phillips JA 3rd, Hogan BM, Fogo A, Brock JW 3rd, Inagami T, Ichikawa I (1999) Role of the angiotensin type 2 receptor gene in congenital anomalies of the kidney and urinary tract, CAKUT, of mice and men. Mol Cell 3:1–10PubMedCrossRefGoogle Scholar
  40. 40.
    Yang Y, Letendre J, Houle A, Richter A (2008) RET Gly691Ser mutation is associated with primary vesicoureteral reflux in the French-Canadian population from Quebec. Hum Mutat 29:695–702PubMedCrossRefGoogle Scholar
  41. 41.
    Sanyanusin P, Schimmenti LA, McNoe LA, Ward TA, Pierpont ME, Sullivan MJ, Dobyns WB, Eccles MR (1995) Mutation of the PAX2 gene in a family with optic nerve colobomas, renal anomalies and vesicoureteral reflux. Nat Genet 9:358–364PubMedCrossRefGoogle Scholar
  42. 42.
    Jenkins D, Bitner-Glindzicz M, Malcolm S, Hu CC, Allison J, Winyard PJ, Gullett AM, Thomas DF, Belk RA, Feather SA, Sun TT, Woolf AS (2005) De novo uroplakin 111a heterozygous mutations cause renal adysplasia leading to severe kidney failure. J Am Soc Nephrol 16:2141–2149PubMedCrossRefGoogle Scholar
  43. 43.
    Jenkins D, Bitner-Glindzicz M, Malcolm S, Allison J, de Bruyn R, Flanagan S, Thomas DF, Belk RA, Feather SA, Bingham C, Southgate J, Woolf AS (2006) Mutation analyses of Uroplakin II in children with renal tract malformations. Nephrol Dial Transplant 21:3415–3421PubMedCrossRefGoogle Scholar
  44. 44.
    Mackintosh P, Almarhoos G, Heath DA (1989) HLA linkage with familial vesicoureteral reflux and familial pelvi-ureteric junction obstruction. Tissue Antigens 34:185–189PubMedCrossRefGoogle Scholar
  45. 45.
    Rigoli L, Chimenz R, di Bella C, Cavallaro E, Caruso R, Briuglia S, Fede C, Salpietro CD (2004) Angiotensin-converting enzyme and angiotensin type 2 receptor gene genotype distributions in Italian children with congenital uropathies. Pediatr Res 56:988–993PubMedCrossRefGoogle Scholar
  46. 46.
    Yim HE, Bae IS, Yoo KH, Hong YS, Lee JW (2007) Genetic control of VEGF and TGF-beta1 gene polymorphisms in childhood urinary tract infection and vesicoureteral reflux. Pediatr Res 62:183–187PubMedCrossRefGoogle Scholar
  47. 47.
    Lu W, van Eerde AM, Fan X, Quintero-Rivera F, Kulkarni S, Ferguson H, Kim HG, Fan Y, Xi Q, Li QG, Sanlaville D, Andrews W, Sundaresan V, Bi W, Yan J, Giltay JC, Wijmenga C, de Jong TP, Feather SA, Woolf AS, Rao Y, Lupski JR, Eccles MR, Quade BJ, Gusella JF, Morton CC, Maas RL (2007) Disruption of ROBO2 is associated with urinary tract anomalies and confers risk of vesicoureteral reflux. Am J Hum Genet 80:616–632PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Bertoli-Avella AM, Conte ML, Punzo F, de Graaf BM, Lama G, La Manna A, Polito C, Grassia C, Nobili B, Rambaldi PF, Oostra BA, Perrotta S (2008) ROBO2 gene variants are associated with familial vesicoureteral reflux. J Am Soc Nephrol 19:825–831PubMedCrossRefGoogle Scholar
  49. 49.
    Dobson MG, Darlow JM, Hunziker M, Green AJ, Barton DE, Puri P (2013) Heterozygous non-synonymous ROBO2 variants are unlikely to be sufficient to cause familial vesicoureteric reflux. Kidney Int 84:327–337PubMedCrossRefGoogle Scholar
  50. 50.
    Gimelli S, Caridi G, Beri S, McCracken K, Bocciardi R, Zordan P, Dagnino M, Fiorio P, Murer L, Benetti E, Zuffardi O, Giorda R, Wells JM, Gimelli G, Ghiggeri GM (2010) Mutations in SOX17 are associated with congenital anomalies of the kidney and the urinary tract. Hum Mutat 31:1352–1359PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Sanna-Cherchi S, Sampogna RV, Papeta N, Burgess KE, Nees SN, Perry BJ, Choi M, Bodria M, Liu Y, Weng PL, Lozanovski VJ, Verbitsky M, Lugani F, Sterken R, Paragas N, Caridi G, Carrea A, Dagnino M, Materna-Kiryluk A, Santamaria G, Murtas C, Ristoska-Bojkovska N, Izzi C, Kacak N, Bianco B, Giberti S, Gigante M, Piaggio G, Gesualdo L, Kosuljandic Vukic D, Vukojevic K, Saraga-Babic M, Saraga M, Gucev Z, Allegri L, Latos-Bielenska A, Casu D, State M, Scolari F, Ravazzolo R, Kiryluk K, Al-Awqati Q, D’Agati VD, Drummond IA, Tasic V, Lifton RP, Ghiggeri GM, Gharavi AG (2013) Mutations in DSTYK and dominant urinary tract malformations. N Engl J Med 369:621–629PubMedCrossRefGoogle Scholar
  52. 52.
    Weng PL, Sanna-Cherchi S, Hensle T, Shapiro E, Werzberger A, Caridi G, Izzi C, Konka A, Reese AC, Cheng R, Werzberger S, Schlussel RN, Burk RD, Lee JH, Ravazzolo R, Scolari F, Ghiggeri GM, Glassberg K, Gharavi AG (2009) A recessive gene for primary vesicoureteral reflux maps to chromosome 12p11-q13. J Am Soc Nephrol 20:1633–1640PubMedCrossRefGoogle Scholar
  53. 53.
    van Eerde AM, Duran K, van Riel E, de Kovel CG, Koeleman BP, Knoers NV, Renkema KY, van der Horst HJ, Bokenkamp A, van Hagen JM, van den Berg LH, Wolffenbuttel KP, van den Hoek J, Feitz WF, de Jong TP, Giltay JC, Wijmenga C (2012) Genes in the ureteric budding pathway: association study on vesico-ureteral reflux patients. PloS One 7:e31327PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Feather SA, Malcolm S, Woolf AS, Wright V, Blaydon D, Reid CJ, Flinter FA, Proesmans W, Devriendt K, Carter J, Warwicker P, Goodship TH, Goodship JA (2000) Primary, nonsyndromic vesicoureteric reflux and its nephropathy is genetically heterogeneous, with a locus on chromosome 1. Am J Hum Genet 66:1420–1425PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Cordell HJ, Darlay R, Charoen P, Stewart A, Gullett AM, Lambert HJ, Malcolm S, Feather SA, Goodship TH, Woolf AS, Kenda RB, Goodship JA (2010) Whole-genome linkage and association scan in primary, nonsyndromic vesicoureteric reflux. J Am Soc Nephrol 21:113–123PubMedCrossRefGoogle Scholar
  56. 56.
    van Eerde AM, Koeleman BP, van de Kamp JM, de Jong TP, Wijmenga C, Giltay JC (2007) Linkage study of 14 candidate genes and loci in four large Dutch families with vesico-ureteral reflux. Pediatr Nephrol 22:1129–1133PubMedCentralPubMedCrossRefGoogle Scholar
  57. 57.
    Conte ML, Bertoli-Avella AM, de Graaf BM, Punzo F, Lama G, La Manna A, Grassia C, Rambaldi PF, Oostra BA, Perrotta S (2008) A genome search for primary vesicoureteral reflux shows further evidence for genetic heterogeneity. Pediatr Nephrol 23:587–595PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    Sanna-Cherchi S, Reese A, Hensle T, Caridi G, Izzi C, Kim YY, Konka A, Murer L, Scolari F, Ravazzolo R, Ghiggeri GM, Gharavi AG (2005) Familial vesicoureteral reflux: testing replication of linkage in seven new multigenerational kindreds. J Am Soc Nephrol 16:1781–1787PubMedCrossRefGoogle Scholar
  59. 59.
    Murawski IJ, Maina RW, Malo D, Guay-Woodford LM, Gros P, Fujiwara M, Morgan K, Gupta IR (2010) The C3H/HeJ inbred mouse is a model of vesico-ureteric reflux with a susceptibility locus on chromosome 12. Kidney Int 78:269–278PubMedCrossRefGoogle Scholar
  60. 60.
    Murawski IJ, Watt CL, Gupta IR (2012) Assessing urinary tract defects in mice: methods to detect the presence of vesicoureteric reflux and urinary tract obstruction. Methods Mol Biol 886:351–362PubMedCrossRefGoogle Scholar
  61. 61.
    Srinivas S, Wu Z, Chen CM, D’Agati V, Costantini F (1999) Dominant effects of RET receptor misexpression and ligand-independent RET signaling on ureteric bud development. Development 126:1375–1386PubMedGoogle Scholar
  62. 62.
    Yu OH, Murawski IJ, Myburgh DB, Gupta IR (2004) Overexpression of RET leads to vesicoureteric reflux in mice. Am J Physiol Ren Physiol 287:F1123–F1130CrossRefGoogle Scholar
  63. 63.
    Dressler GR, Deutsch U, Chowdhury K, Nornes HO, Gruss P (1990) Pax2, a new murine paired-box-containing gene and its expression in the developing excretory system. Development 109:787–795PubMedGoogle Scholar
  64. 64.
    Bower M, Salomon R, Allanson J, Antignac C, Benedicenti F, Benetti E, Binenbaum G, Jensen UB, Cochat P, DeCramer S, Dixon J, Drouin R, Falk MJ, Feret H, Gise R, Hunter A, Johnson K, Kumar R, Lavocat MP, Martin L, Moriniere V, Mowat D, Murer L, Nguyen HT, Peretz-Amit G, Pierce E, Place E, Rodig N, Salerno A, Sastry S, Sato T, Sayer JA, Schaafsma GC, Shoemaker L, Stockton DW, Tan WH, Tenconi R, Vanhille P, Vats A, Wang X, Warman B, Weleber RG, White SM, Wilson-Brackett C, Zand DJ, Eccles M, Schimmenti LA, Heidet L (2012) Update of PAX2 mutations in renal coloboma syndrome and establishment of a locus-specific database. Hum Mutat 33:457–466PubMedCrossRefGoogle Scholar
  65. 65.
    Favor J, Sandulache R, Neuhauser-Klaus A, Pretsch W, Chatterjee B, Senft E, Wurst W, Blanquet V, Grimes P, Sporle R, Schughart K (1996) The mouse Pax2(1Neu) mutation is identical to a human PAX2 mutation in a family with renal-coloboma syndrome and results in developmental defects of the brain, ear, eye, and kidney. Proc Natl Acad Sci USA 93:13870–13875PubMedCrossRefGoogle Scholar
  66. 66.
    Hains DS, Sims-Lucas S, Carpenter A, Saha M, Murawski I, Kish K, Gupta I, McHugh K, Bates CM (2010) High incidence of vesicoureteral reflux in mice with Fgfr2 deletion in kidney mesenchyma. J Urol 183:2077–2084PubMedCentralPubMedCrossRefGoogle Scholar
  67. 67.
    Walker KA, Sims-Lucas S, Di Giovanni VE, Schaefer C, Sunseri WM, Novitskaya T, de Caestecker MP, Chen F, Bates CM (2013) Deletion of fibroblast growth factor receptor 2 from the peri-Wolffian duct stroma leads to ureteric induction abnormalities and vesicoureteral reflux. PloS One 8:e56062PubMedCentralPubMedCrossRefGoogle Scholar
  68. 68.
    Sims-Lucas S, Argyropoulos C, Kish K, McHugh K, Bertram JF, Quigley R, Bates CM (2009) Three-dimensional imaging reveals ureteric and mesenchymal defects in Fgfr2-mutant kidneys. J Am Soc Nephrol 20:2525–2533PubMedCrossRefGoogle Scholar
  69. 69.
    Seyedzadeh A, Kompani F, Esmailie E, Samadzadeh S, Farshchi B (2008) High-grade vesicoureteral reflux in Pfeiffer syndrome. Urol J 5:200–202PubMedGoogle Scholar
  70. 70.
    Wang H, Li Q, Liu J, Mendelsohn C, Salant DJ, Lu W (2011) Noninvasive assessment of antenatal hydronephrosis in mice reveals a critical role for Robo2 in maintaining anti-reflux mechanism. PloS One 6:e24763PubMedCentralPubMedCrossRefGoogle Scholar
  71. 71.
    Pedersen A, Skjong C, Shawlot W (2005) Lim 1 is required for nephric duct extension and ureteric bud morphogenesis. Dev Biol 288:571–581PubMedCrossRefGoogle Scholar
  72. 72.
    Hu P, Deng FM, Liang FX, Hu CM, Auerbach AB, Shapiro E, Wu XR, Kachar B, Sun TT (2000) Ablation of uroplakin III gene results in small urothelial plaques, urothelial leakage, and vesicoureteral reflux. J Cell Biol 151:961–972PubMedCrossRefGoogle Scholar
  73. 73.
    Kong XT, Deng FM, Hu P, Liang FX, Zhou G, Auerbach AB, Genieser N, Nelson PK, Robbins ES, Shapiro E, Kachar B, Sun TT (2004) Roles of uroplakins in plaque formation, umbrella cell enlargement, and urinary tract diseases. J Cell Biol 167:1195–1204PubMedCrossRefGoogle Scholar
  74. 74.
    Campbell M (2002) Campbell’s urology. Saunders Harcourt Publishing, PhiladelphiaGoogle Scholar
  75. 75.
    Heptinstall RH (1998) Urinary tract infection, pyelonephritis, reflux nephropathy. In: Jennette JC, Olson JL, Schwartz MM, Silva FG (eds) Heptinstall’s pathology of the kidney, 5th edn. Page 746, Lippincott-Raven, PhiladelphiaGoogle Scholar
  76. 76.
    Mattoo TK (2011) Vesicoureteral reflux and reflux nephropathy. Adv Chron Kidney Dis 18:348–354CrossRefGoogle Scholar
  77. 77.
    Ransley PG, Risdon RA (1978) Reflux and renal scarring. Br J Radiol 14:1–34Google Scholar
  78. 78.
    Torres VE, Kramer SA, Holley KE, Johnson CM, Hartman GW, Kallenius G, Svenson SB (1985) Interaction of multiple risk factors in the pathogenesis of experimental reflux nephropathy in the pig. J Urol 133:131–135PubMedGoogle Scholar
  79. 79.
    Bowen SE, Watt CL, Murawski IJ, Gupta IR, Abraham SN (2013) Interplay between vesicoureteric reflux and kidney infection in the development of reflux nephropathy in mice. Dis Model Mech 6:934–941PubMedCentralPubMedCrossRefGoogle Scholar
  80. 80.
    Ragnarsdottir B, Lutay N, Gronberg-Hernandez J, Koves B, Svanborg C (2011) Genetics of innate immunity and UTI susceptibility. Nat Rev Urol 8:449–468PubMedCrossRefGoogle Scholar

Copyright information

© IPNA 2014

Authors and Affiliations

  • Marie-Lyne Fillion
    • 1
  • Christine L. Watt
    • 1
  • Indra R. Gupta
    • 1
    • 2
    • 3
  1. 1.Department of Human GeneticsMcGill UniversityMontrealCanada
  2. 2.Department of Pediatrics, Division of NephrologyMontreal Children’s Hospital–McGill UniversityMontrealCanada
  3. 3.Research Institute of McGill University Health CentreMontrealCanada

Personalised recommendations