Advertisement

Pediatric Nephrology

, Volume 30, Issue 2, pp 199–209 | Cite as

Macrophage-mediated injury and repair after ischemic kidney injury

  • Sarah C. HuenEmail author
  • Lloyd G. Cantley
Review

Abstract

Acute ischemic kidney injury is a common complication in hospitalized patients. No treatment is yet available for augmenting kidney repair or preventing progressive kidney fibrosis. Animal models of acute kidney injury demonstrate that activation of the innate immune system plays a major role in the systemic response to ischemia/reperfusion injury. Macrophage depletion studies suggest that macrophages, key participants in the innate immune response, augment the initial injury after reperfusion but also promote tubular repair and contribute to long-term kidney fibrosis after ischemic injury. The distinct functional outcomes seen following macrophage depletion at different time points after ischemia/reperfusion injury suggest heterogeneity in macrophage activation states. Identifying the pathways that regulate the transitions of macrophage activation is thus critical for understanding the mechanisms that govern both macrophage-mediated injury and repair in the postischemic kidney. This review examines our understanding of the complex and intricately controlled pathways that determine monocyte recruitment, macrophage activation, and macrophage effector functions after renal ischemia/reperfusion injury. Careful delineation of repair and resolution pathways could provide therapeutic targets for the development of effective treatments to offer patients with acute kidney injury.

Keywords

Macrophage activation Ischemia/reperfusion Acute kidney injury Repair 

Notes

Acknowledgements

We acknowledge funding from the National Institutes of Health (DK93771) to L. G. Cantley. S. C. Huen was supported by the National Institute of Diabetes and Digestive and Kidney Diseases Institutional Training Grant (T32-DK007276) and by the American Heart Association (13FTF17070000).

References

  1. 1.
    Sutton TA, Mang HE, Campos SB, Sandoval RM, Yoder MC, Molitoris BA (2003) Injury of the renal microvascular endothelium alters barrier function after ischemia. Am J Physiol Renal Physiol 285:F191–F198PubMedGoogle Scholar
  2. 2.
    Li L, Huang L, Sung S-SJ, Lobo PI, Brown MG, Gregg RK, Engelhard VH, Okusa MD (2007) NKT cell activation mediates neutrophil IFN-gamma production and renal ischemia-reperfusion injury. J Immunol 178:5899–5911PubMedCrossRefGoogle Scholar
  3. 3.
    Kaufmann SHE (2008) Immunology’s foundation: the 100-year anniversary of the Nobel Prize to Paul Ehrlich and Elie Metchnikoff. Nat Immunol 9:705–712PubMedCrossRefGoogle Scholar
  4. 4.
    Pollard JW (2009) Trophic macrophages in development and disease. Nat Rev Immunol 9:259–270PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Wynn TA, Chawla A, Pollard JW (2013) Macrophage biology in development, homeostasis and disease. Nature 496:445–455PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Shi C, Pamer EG (2011) Monocyte recruitment during infection and inflammation. Nat Rev Immunol 11:762–774PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Satpathy AT, Wu X, Albring JC, Murphy KM (2012) Re (de) fining the dendritic cell lineage. Nat Immunol 13:1145–1154PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Kawakami T, Lichtnekert J, Thompson LJ, Karna P, Bouabe H, Hohl TM, Heinecke JW, Ziegler SF, Nelson PJ, Duffield JS (2013) Resident renal mononuclear phagocytes comprise five discrete populations with distinct phenotypes and functions. J Immunol 191:3358–3372PubMedCrossRefGoogle Scholar
  9. 9.
    Bradford BM, Sester DP, Hume DA, Mabbott NA (2011) Defining the anatomical localisation of subsets of the murine mononuclear phagocyte system using integrin alpha X (Itgax, CD11c) and colony stimulating factor 1 receptor (Csf1r, CD115) expression fails to discriminate dendritic cells from macrophages. Immunobiology 216:1228–1237PubMedCrossRefGoogle Scholar
  10. 10.
    Gordon S (2003) Alternative activation of macrophages. Nat Rev Immunol 3:23–35PubMedCrossRefGoogle Scholar
  11. 11.
    Rauch I, Müller M, Decker T (2013) The regulation of inflammation by interferons and their STATs. JAK-STAT 2:e23820PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Medzhitov R, Janeway C (2000) Innate immune recognition: mechanisms and pathways. Immunol Rev 173:89–97PubMedCrossRefGoogle Scholar
  13. 13.
    Zhang X, Mosser DM (2008) Macrophage activation by endogenous danger signals. J Pathol 214:161–178PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Mosser DM (2003) The many faces of macrophage activation. J Leukoc Biol 73:209–212PubMedCrossRefGoogle Scholar
  15. 15.
    Lawrence T, Natoli G (2011) Transcriptional regulation of macrophage polarization: enabling diversity with identity. Nat Rev Immunol 11:750–761PubMedCrossRefGoogle Scholar
  16. 16.
    Arnold L, Henry A, Poron F, Baba-Amer Y, van Rooijen N, Plonquet A, Gherardi RK, Chazaud B (2007) Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. J Exp Med 204:1057–1069PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Martinez FO, Helming L, Gordon S (2009) Alternative activation of macrophages: an immunologic functional perspective. Annu Rev Immunol 27:451–483PubMedCrossRefGoogle Scholar
  18. 18.
    Takeda K, Tanaka T, Shi W, Matsumoto M, Minami M, Kashiwamura S, Nakanishi K, Yoshida N, Kishimoto T, Akira S (1996) Essential role of Stat6 in IL-4 signalling. Nature 380:627–630PubMedCrossRefGoogle Scholar
  19. 19.
    Odegaard JI, Ricardo-Gonzalez RR, Goforth MH, Morel CR, Subramanian V, Mukundan L, Red Eagle A, Vats D, Brombacher F, Ferrante AW, Chawla A (2007) Macrophage-specific PPARgamma controls alternative activation and improves insulin resistance. Nature 447:1116–1120PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Liao X, Sharma N, Kapadia F, Zhou G, Lu Y, Hong H, Paruchuri K, Mahabeleshwar GH, Dalmas E, Venteclef N, Flask CA, Kim J, Doreian BW, Lu KQ, Kaestner KH, Hamik A, Clément K, Jain MK (2011) Krüppel-like factor 4 regulates macrophage polarization. J Clin Invest 121:2736–2749PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Szanto A, Balint BL, Nagy ZS, Barta E, Dezso B, Pap A, Szeles L, Poliska S, Oros M, Evans RM, Barak Y, Schwabe J, Nagy L (2010) STAT6 transcription factor is a facilitator of the nuclear receptor PPARγ-regulated gene expression in macrophages and dendritic cells. Immunity 33:699–712PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Huang JT, Welch JS, Ricote M, Binder CJ, Willson TM, Kelly C, Witztum JL, Funk CD, Conrad D, Glass CK (1999) Interleukin-4-dependent production of PPAR-gamma ligands in macrophages by 12/15-lipoxygenase. Nature 400:378–382PubMedCrossRefGoogle Scholar
  23. 23.
    Lehtonen A, Veckman V, Nikula T, Lahesmaa R, Kinnunen L, Matikainen S, Julkunen I (2005) Differential expression of IFN regulatory factor 4 gene in human monocyte-derived dendritic cells and macrophages. J Immunol 175:6570–6579PubMedCrossRefGoogle Scholar
  24. 24.
    Satoh T, Takeuchi O, Vandenbon A, Yasuda K, Tanaka Y, Kumagai Y, Miyake T, Matsushita K, Okazaki T, Saitoh T, Honma K, Matsuyama T, Yui K, Tsujimura T, Standley DM, Nakanishi K, Nakai K, Akira S (2010) The Jmjd3-Irf4 axis regulates M2 macrophage polarization and host responses against helminth infection. Nat Immunol 11:936–944PubMedCrossRefGoogle Scholar
  25. 25.
    Morris SM (2009) Recent advances in arginine metabolism: roles and regulation of the arginases. Br J Pharmacol 157:922–930PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Filardy AA, Pires DR, Nunes MP, Takiya CM, Freire-de-Lima CG, Ribeiro-Gomes FL, DosReis GA (2010) Proinflammatory clearance of apoptotic neutrophils induces an IL-12lowIL-10high regulatory phenotype in macrophages. J Immunol 185:2044–2050PubMedCrossRefGoogle Scholar
  27. 27.
    Fadok VA, Bratton DL, Konowal A, Freed PW, Westcott JY, Henson PM (1998) Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF. J Clin Invest 101:890–898PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M (2004) The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 25:677–686PubMedCrossRefGoogle Scholar
  29. 29.
    Sica A, Mantovani A (2012) Macrophage plasticity and polarization: in vivo veritas. J Clin Invest 122:787–795PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Lichtnekert J, Kawakami T, Parks WC, Duffield JS (2013) Changes in macrophage phenotype as the immune response evolves. Curr Opin Pharmacol 13:555–564PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Li L, Huang L, Sung S-SJ, Vergis AL, Rosin DL, Rose CE, Lobo PI, Okusa MD (2008) The chemokine receptors CCR2 and CX3CR1 mediate monocyte/macrophage trafficking in kidney ischemia-reperfusion injury. Kidney Int 74:1526–1537PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Furuichi K, Wada T, Iwata Y, Kitagawa K, Kobayashi K-I, Hashimoto H, Ishiwata Y, Asano M, Wang H, Matsushima K, Takeya M, Kuziel WA, Mukaida N, Yokoyama H (2003) CCR2 signaling contributes to ischemia-reperfusion injury in kidney. J Am Soc Nephrol 14:2503–2515PubMedCrossRefGoogle Scholar
  33. 33.
    Furuichi K, Gao J-L, Murphy PM (2006) Chemokine receptor CX3CR1 regulates renal interstitial fibrosis after ischemia-reperfusion injury. Am J Pathol 169:372–387PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Furuichi K, Gao J-L, Horuk R, Wada T, Kaneko S, Murphy PM (2008) Chemokine receptor CCR1 regulates inflammatory cell infiltration after renal ischemia-reperfusion injury. J Immunol 181:8670–8676PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Ko GJ, Linfert D, Jang HR, Higbee E, Watkins T, Cheadle C, Liu M, Racusen L, Grigoryev DN, Rabb H (2012) Transcriptional analysis of infiltrating T cells in kidney ischemia-reperfusion injury reveals a pathophysiological role for CCR5. Am J Physiol Renal Physiol 302:F762–F773PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Day Y-J, Huang L, Ye H, Linden J, Okusa MD (2005) Renal ischemia-reperfusion injury and adenosine 2A receptor-mediated tissue protection: role of macrophages. Am J Physiol Renal Physiol 288:F722–F731PubMedCrossRefGoogle Scholar
  37. 37.
    Jo S-K, Sung S-A, Cho W-Y, Go K-J, Kim H-K (2006) Macrophages contribute to the initiation of ischaemic acute renal failure in rats. Nephrol Dial Transplant 21:1231–1239PubMedCrossRefGoogle Scholar
  38. 38.
    Lee S, Huen S, Nishio H, Nishio S, Lee HK, Choi B-S, Ruhrberg C, Cantley LG (2011) Distinct macrophage phenotypes contribute to kidney injury and repair. J Am Soc Nephrol 22:317–326PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Vinuesa E, Hotter G, Jung M, Herrero-Fresneda I, Torras J, Sola A (2008) Macrophage involvement in the kidney repair phase after ischaemia/reperfusion injury. J Pathol 214:104–113PubMedCrossRefGoogle Scholar
  40. 40.
    Ferenbach DA, Sheldrake TA, Dhaliwal K, Kipari TMJ, Marson LP, Kluth DC, Hughes J (2012) Macrophage/monocyte depletion by clodronate, but not diphtheria toxin, improves renal ischemia/reperfusion injury in mice. Kidney Int 82:928–933PubMedCrossRefGoogle Scholar
  41. 41.
    Lu L, Faubel S, He Z, Andres-Hernando A, Jani A, Kedl R, Edelstein CL (2012) Depletion of macrophages and dendritic cells in ischemic acute kidney injury. Am J Nephrol 35:181–190PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Li L, Okusa MD (2010) Macrophages, Dendritic Cells, and Kidney Ischemia-Reperfusion Injury. Semin Nephrol 30:268–277PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Bajwa A, Huang L, Ye H, Dondeti K, Song S, Rosin DL, Lynch KR, Lobo PI, Li L, Okusa MD (2012) Dendritic cell sphingosine 1-phosphate receptor-3 regulates Th1-Th2 polarity in kidney ischemia-reperfusion injury. J Immunol 189:2584–2596PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Pacher P, Beckman JS, Liaudet L (2007) Nitric oxide and peroxynitrite in health and disease. Physiol Rev 87:315–424PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Leemans JC, Stokman G, Claessen N, Rouschop KM, Teske GJD, Kirschning CJ, Akira S, van der Poll T, Weening JJ, Florquin S (2005) Renal-associated TLR2 mediates ischemia/reperfusion injury in the kidney. J Clin Invest 115:2894–2903PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Wu H, Chen G, Wyburn KR, Yin J, Bertolino P, Eris JM, Alexander SI, Sharland AF, Chadban SJ (2007) TLR4 activation mediates kidney ischemia/reperfusion injury. J Clin Invest 117:2847–2859PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Lech M, Avila-Ferrufino A, Allam R, Segerer S, Khandoga A, Krombach F, Garlanda C, Mantovani A, Anders H-J (2009) Resident dendritic cells prevent postischemic acute renal failure by help of single Ig IL-1 receptor-related protein. J Immunol 183:4109–4118PubMedCrossRefGoogle Scholar
  48. 48.
    Li L, Huang L, Ye H, Song SP, Bajwa A, Lee SJ, Moser EK, Jaworska K, Kinsey GR, Day YJ, Linden J, Lobo PI, Rosin DL, Okusa MD (2012) Dendritic cells tolerized with adenosine AAR agonist attenuate acute kidney injury. J Clin Invest 122:3931–3942PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Jang H-S, Kim J, Park Y-K, Park KM (2008) Infiltrated macrophages contribute to recovery after ischemic injury but not to ischemic preconditioning in kidneys. Transplantation 85:447–455PubMedCrossRefGoogle Scholar
  50. 50.
    Lin S-L, Li B, Rao S, Yeo E-J, Hudson TE, Nowlin BT, Pei H, Chen L, Zheng JJ, Carroll TJ, Pollard JW, McMahon AP, Lang RA, Duffield JS (2010) Macrophage Wnt7b is critical for kidney repair and regeneration. Proc Natl Acad Sci U S A 107:4194–4199PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Alikhan MA, Jones CV, Williams TM, Beckhouse AG, Fletcher AL, Kett MM, Sakkal S, Samuel CS, Ramsay RG, Deane JA, Wells CA, Little MH, Hume DA, Ricardo SD (2011) Colony-stimulating factor-1 promotes kidney growth and repair via alteration of macrophage responses. Am J Pathol 179:1243–1256PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Menke J, Iwata Y, Rabacal WA, Basu R, Yeung YG, Humphreys BD, Wada T, Schwarting A, Stanley ER, Kelley VR (2009) CSF-1 signals directly to renal tubular epithelial cells to mediate repair in mice. J Clin Invest 119:2330–2342PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Yokota N, Burne-Taney M, Racusen L, Rabb H (2003) Contrasting roles for STAT4 and STAT6 signal transduction pathways in murine renal ischemia-reperfusion injury. Am J Physiol Renal Physiol 285:F319–F325PubMedCrossRefGoogle Scholar
  54. 54.
    Huen SC, Cantley LG (2011) Renal Tubular Cells Induce Early Pro-Inflammatory and Late Alternative Activation in Macrophages [Abstract] Poster presented at American Society of Nephrology Kidney Week J Am Soc Nephrol 22:367AGoogle Scholar
  55. 55.
    Eguchi J, Kong X, Tenta M, Wang X, Kang S, Rosen ED (2013) Interferon regulatory factor 4 regulates obesity-induced inflammation through regulation of adipose tissue macrophage polarization. Diabetes 62:3394–3403PubMedCentralPubMedCrossRefGoogle Scholar
  56. 56.
    Lassen S, Lech M, Römmele C, Mittruecker H-W, Mak TW, Anders H-J (2010) Ischemia reperfusion induces IFN regulatory factor 4 in renal dendritic cells, which suppresses postischemic inflammation and prevents acute renal failure. J Immunol 185:1976–1983PubMedCrossRefGoogle Scholar
  57. 57.
    Sutton TA, Hato T, Mai E, Yoshimoto M, Kuehl S, Anderson M, Mang H, Plotkin Z, Chan RJ, Dagher PC (2013) p53 is renoprotective after ischemic kidney injury by reducing inflammation. J Am Soc Nephrol 24:113–124PubMedCrossRefGoogle Scholar
  58. 58.
    Pesce JT, Ramalingam TR, Mentink-Kane MM, Wilson MS, El Kasmi KC, Smith AM, Thompson RW, Cheever AW, Murray PJ, Wynn TA (2009) Arginase-1-expressing macrophages suppress Th2 cytokine-driven inflammation and fibrosis. PLoS Pathog 5:e1000371PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.
    Miller SB, Martin DR, Kissane J, Hammerman MR (1992) Insulin-like growth factor I accelerates recovery from ischemic acute tubular necrosis in the rat. Proc Natl Acad Sci U S A 89:11876–11880PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Schmidt IM, Hall IE, Kale S, Lee S, He CH, Lee Y, Chupp GL, Moeckel GW, Lee CG, Elias JA, Parikh CR, Cantley LG (2013) Chitinase-like protein Brp-39/YKL-40 modulates the renal response to ischemic injury and predicts delayed allograft function. J Am Soc Nephrol 24:309–319PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    Ferenbach DA, Nkejabega NCJ, McKay J, Choudhary AK, Vernon MA, Beesley MF, Clay S, Conway BC, Marson LP, Kluth DC, Hughes J (2011) The induction of macrophage hemeoxygenase-1 is protective during acute kidney injury in aging mice. Kidney Int 79:966–976PubMedCrossRefGoogle Scholar
  62. 62.
    Ferenbach DA, Ramdas V, Spencer N, Marson L, Anegon I, Hughes J, Kluth DC (2010) Macrophages expressing heme oxygenase-1 improve renal function in ischemia/reperfusion injury. Mol Ther 18:1706–1713PubMedCentralPubMedCrossRefGoogle Scholar
  63. 63.
    Jung M, Sola A, Hughes J, Kluth DC, Vinuesa E, Viñas JL, Pérez-Ladaga A, Hotter G (2012) Infusion of IL-10-expressing cells protects against renal ischemia through induction of lipocalin-2. Kidney Int 81:969–982PubMedCrossRefGoogle Scholar
  64. 64.
    Mori K, Lee HT, Rapoport D, Drexler IR, Foster K, Yang J, Schmidt-Ott KM, Chen X, Li JY, Weiss S, Mishra J, Cheema FH, Markowitz G, Suganami T, Sawai K, Mukoyama M, Kunis C, D'Agati V, Devarajan P, Barasch J (2005) Endocytic delivery of lipocalin-siderophore-iron complex rescues the kidney from ischemia-reperfusion injury. J Clin Invest 115:610–621PubMedCentralPubMedCrossRefGoogle Scholar
  65. 65.
    Ranganathan PV, Jayakumar C, Ramesh G (2013) Netrin-1-treated macrophages protect the kidney against ischemia-reperfusion injury and suppress inflammation by inducing M2 polarization. Am J Physiol Renal Physiol 304:F948–F957PubMedCentralPubMedCrossRefGoogle Scholar
  66. 66.
    Sean Eardley K, Cockwell P (2005) Macrophages and progressive tubulointerstitial disease. Kidney Int 68:437–455PubMedCrossRefGoogle Scholar
  67. 67.
    Ko GJ, Boo C-S, Jo S-K, Cho WY, Kim HK (2008) Macrophages contribute to the development of renal fibrosis following ischaemia/reperfusion-induced acute kidney injury. Nephrol Dial Transplant 23:842–852PubMedCrossRefGoogle Scholar
  68. 68.
    Duffield JS, Lupher M, Thannickal VJ, Wynn TA (2013) Host responses in tissue repair and fibrosis. Annu Rev Pathol Mech Dis 8:241–276CrossRefGoogle Scholar
  69. 69.
    Boor P, Ostendorf T, Floege J (2010) Renal fibrosis: novel insights into mechanisms and therapeutic targets. Nat Rev Nephrol 6:643–656PubMedCrossRefGoogle Scholar
  70. 70.
    Huen SC, Moeckel GW, Cantley LG (2013) Macrophage-specific deletion of transforming growth factor-β1 does not prevent renal fibrosis after severe ischemia-reperfusion or obstructive injury. Am J Physiol Renal Physiol 305:F477–F484PubMedCentralPubMedCrossRefGoogle Scholar
  71. 71.
    Campanholle G, Mittelsteadt K, Nakagawa S, Kobayashi A, Lin S-L, Gharib SA, Heinecke JW, Hamerman JA, Altemeier WA, Duffield JS (2013) TLR-2/TLR-4 TREM-1 signaling pathway is dispensable in inflammatory myeloid cells during sterile kidney injury. PLoS ONE 8:e68640PubMedCentralPubMedCrossRefGoogle Scholar
  72. 72.
    Castaño AP, Lin S-L, Surowy T, Nowlin BT, Turlapati SA, Patel T, Singh A, Li S, Lupher ML, Duffield JS (2009) Serum amyloid P inhibits fibrosis through Fc gamma R-dependent monocyte-macrophage regulation in vivo. Sci Transl Med 1:5ra13Google Scholar

Copyright information

© IPNA 2014

Authors and Affiliations

  1. 1.Department of Medicine, Section of NephrologyYale UniversityNew HavenUSA
  2. 2.Yale University School of MedicineNew HavenUSA

Personalised recommendations