Pediatric Nephrology

, Volume 29, Issue 4, pp 609–620 | Cite as

Renin–angiotensin system in ureteric bud branching morphogenesis: implications for kidney disease

Review

Abstract

Failure of normal branching morphogenesis of the ureteric bud (UB), a key ontogenic process that controls organogenesis of the metanephric kidney, leads to congenital anomalies of the kidney and urinary tract (CAKUT), the leading cause of end-stage kidney disease in children. Recent studies have revealed a central role of the renin–angiotensin system (RAS), the cardinal regulator of blood pressure and fluid/electrolyte homeostasis, in the control of normal kidney development. Mice or humans with mutations in the RAS genes exhibit a spectrum of CAKUT which includes renal medullary hypoplasia, hydronephrosis, renal hypodysplasia, duplicated renal collecting system and renal tubular dysgenesis. Emerging evidence indicates that severe hypoplasia of the inner medulla and papilla observed in angiotensinogen (Agt)- or angiotensin (Ang) II AT1receptor (AT1R)-deficient mice is due to aberrant UB branching morphogenesis resulting from disrupted RAS signaling. Lack of the prorenin receptor (PRR) in the UB in mice causes reduced UB branching, resulting in decreased nephron endowment, marked kidney hypoplasia, urinary concentrating and acidification defects. This review provides a mechanistic rational supporting the hypothesis that aberrant signaling of the intrarenal RAS during distinct stages of metanephric kidney development contributes to the pathogenesis of the broad phenotypic spectrum of CAKUT. As aberrant RAS signaling impairs normal renal development, these findings advocate caution for the use of RAS inhibitors in early infancy and further underscore a need to avoid their use during pregnancy and to identify the types of molecular processes that can be targeted for clinical intervention.

Keywords

Kidney development Ureteric bud Renin–angiotensin Prorenin receptor Cakut 

References

  1. 1.
    Reidy KJ, Rosenblum ND (2009) Cell and molecular biology of kidney development. Semin Nephrol 29:321–337PubMedCentralPubMedGoogle Scholar
  2. 2.
    Dressler GR (2008) Epigenetics, development, and the kidney. J Am Soc Nephrol 19:2060–2067PubMedGoogle Scholar
  3. 3.
    Costantini F, Kopan R (2010) Patterning a complex organ: Branching morphogenesis and nephron segmentation in kidney development. Dev Cell 18:698–712PubMedCentralPubMedGoogle Scholar
  4. 4.
    North American Pediatric Renal Trials and Collaborative Studies (2010) NAPRTCS 2010 annual report. Available at: https://web.emmes.com/study/ped/annlrept/2010_Report.pdf
  5. 5.
    Nagata M, Tanimoto K, Fukamizu A, Kon Y, Sugiyama F, Yagami K, Murakami K, Watanabe T (1996) Nephrogenesis and renovascular development in angiotensinogen-deficient mice. Lab Invest 75:745–753PubMedGoogle Scholar
  6. 6.
    Niimura F, Labosky PA, Kakuchi J, Okubo S, Yoshida H, Oikawa T, Ichiki T, Naftilan AJ, Fogo A, Inagami T (1995) Gene targeting in mice reveals a requirement for angiotensin in the development and maintenance of kidney morphology and growth factor regulation. J Clin Invest 96:2947–2954PubMedCentralPubMedGoogle Scholar
  7. 7.
    Takahashi N, Lopez ML, Co Whig JE, Jr TMA, Hatada T, Riggs E, Lee G, Gomez RA, Kim HS, Smithies O (2005) Ren1c homozygous null mice are hypotensive and polyuric, but heterozygotes are indistinguishable from wild-type. J Am Soc Nephrol 16:125–132PubMedGoogle Scholar
  8. 8.
    Esther CR Jr, Howard TE, Marino EM, Goddard JM, Capecchi MR, Bernstein KE (1996) Mice lacking angiotensin-converting enzyme have low blood pressure, renal pathology, and reduced male fertility. Lab Invest 7:953–965Google Scholar
  9. 9.
    Oliverio MI, Kim HS, Ito M, Le T, Audoly L, Best CF, Hiller S, Kluckman K, Maeda N, Smithies O, Coffman TM (1998) Reduced growth, abnormal kidney structure, and type 2 (AT2) angiotensin receptor-mediated blood pressure regulation in mice lacking both AT1A and AT1B receptors for angiotensin II. Proc Natl Acad Sci USA 95:15496–15501PubMedGoogle Scholar
  10. 10.
    Tsuchida S, Matsusaka T, Chen X, Okubo S, Niimura F, Nishimura H, Fogo A, Utsunomiya H, Inagami T, Ichikawa I (1998) Murine double nullizygotes of the angiotensin type 1A and 1B receptor genes duplicate severe abnormal phenotypes of angiotensinogen nullizygotes. J Clin Invest 101:755–760PubMedCentralPubMedGoogle Scholar
  11. 11.
    Miyazaki Y, Tsuchida S, Fogo A, Ichikawa I (1999) The renal lesions that develop in neonatal mice during angiotensin inhibition mimic obstructive nephropathy. Kidney Int 55:1683–1695PubMedGoogle Scholar
  12. 12.
    Wolf G, Thaiss F, Schoeppe W, Stahl RA (1992) Angiotensin II-induced proliferation of cultured murine mesangial cells: inhibitory role of atrial natriuretic peptide. J Am Soc Nephrol 3:1270–1278PubMedGoogle Scholar
  13. 13.
    Goto M, Mukoyama M, Suga S, Matsumoto T, Nakagawa M, Ishibashi R, Kasahara M, Sugawara A, Tanaka I, Nakao K (1997) Growth-dependent induction of angiotensin II type 2 receptor in rat mesangial cells. Hypertension 30:358–362PubMedGoogle Scholar
  14. 14.
    Nguyen G, Delarue F, Burcklé C, Bouzhir L, Giller T, Sraer JD (2002) Pivotal role of the renin/prorenin receptor in angiotensin II production and cellular responses to renin. J Clin Invest 109:1417–1427PubMedCentralPubMedGoogle Scholar
  15. 15.
    Cousin C, Bracquart D, Contrepas A, Corvol P, Muller L, Nguyen G (2009) Soluble form of the (pro)renin receptor generated by intracellular cleavage by furin is secreted in plasma. Hypertension 53:1077–1082PubMedGoogle Scholar
  16. 16.
    Santos RA, Simoes E, Silva AC, Maric C, Silva DM, Machado RP, de Buhr I, Heringer-Walther S, Pinheiro SV, Lopes MT, Bader M, Mendes EP, Lemos VS, Campagnole-Santos MJ, Schultheiss HP, Speth R, Walther T (2003) Angiotensin-(1–7) is an endogenous ligand for the G protein-coupled receptor Mas. Proc Natl Acad Sci USA 100:8258–8263PubMedGoogle Scholar
  17. 17.
    Darby IA, Sernia C (1995) In situ hybridization and immunohistochemistry of renal angiotensinogen in neonatal and adult rat kidneys. Cell Tissue Res 281:197–206PubMedGoogle Scholar
  18. 18.
    Niimura F, Okubo S, Fogo A, Ichikawa I (1997) Temporal and spatial expression pattern of the angiotensinogen gene in mice and rats. Am J Physiol 272:R142–R147PubMedGoogle Scholar
  19. 19.
    Prieto M, Dipp S, Meleg-Smith S, El-Dahr SS (2001) Ureteric bud derivatives express angiotensinogen and AT1 receptors. Physiol Genomics 6:29–37PubMedGoogle Scholar
  20. 20.
    Iosipiv IV, Schroeder M (2003) A role for angiotensin II AT1 receptors in ureteric bud cell branching. Am J Physiol 285:F199–F207Google Scholar
  21. 21.
    Schutz S, Le Moullec J-M, Corvol P, Gasc JM (1996) Early expression of all the components of the renin–angiotensin sytem in human development. Am J Pathol 149:2067–2079PubMedGoogle Scholar
  22. 22.
    Jones CA, Sigmund CD, McGowan RA, Kane-Haas CM, Gross KW (1990) Expression of murine renin genes during fetal development. Mol Endocrinol 4:375–383PubMedGoogle Scholar
  23. 23.
    Gomez RA, Lynch KR, Sturgill BC, Elwood JP, Chevalier RL, Carey RM, Peach MJ (1989) Distribution of renin mRNA and its protein in the developing kidney. Am J Physiol 257:F850–F858PubMedGoogle Scholar
  24. 24.
    Song R, Preston G, Yosypiv IV (2013) Ontogeny of the prorenin receptor. Pediatr Res 74:5–10Google Scholar
  25. 25.
    Song R, Preston G, Ichihara A, Yosypiv IV (2013) Deletion of the prorenin receptor from the ureteric bud causes renal hypodysplasia. PLoS ONE 8:e63835PubMedCentralPubMedGoogle Scholar
  26. 26.
    Jung FF, Bouyounes B, Barrio R, Tang SS, Diamant D, Ingelfinger JR (1993) Angiotensin converting enzyme in renal ontogeny: Hypothesis for multiple roles. Pediatr Nephrol 7:834–840PubMedGoogle Scholar
  27. 27.
    Mounier F, Hinglais N, Sich M, Gros F, Lacoste M, Deris Y, Alhenc-Gelas F, Gubler MC (1987) Ontogenesis of angiotensin-I converting enzyme in human kidney. Kidney Int 32:684–690PubMedGoogle Scholar
  28. 28.
    Kakuchi J, Ichiki T, Kiyama S, Hogan BL, Fogo A, Inagami T, Ichikawa I (1995) Developmental expression of renal angiotensin II receptor genes in the mouse. Kidney Int 47:140–147PubMedGoogle Scholar
  29. 29.
    Garcia-Villalba P, Denkers ND, Wittwer CT, Hoff C, Nelson RD, Mauch TJ (2003) Real-time PCR quantification of AT1 and AT2 angiotensin receptor mRNA expression in the developing rat kidney. Nephron Exp Nephrol 94:e154–e159PubMedGoogle Scholar
  30. 30.
    Song R, Spera M, Garrett C, El-Dahr SS, Yosypiv IV (2010) Angiotensin II AT2 receptor regulates ureteric bud morphogenesis. Am J Physiol 298:F807–F817Google Scholar
  31. 31.
    O’Rahilly R, Müller F (2010) Developmental stages in human embryos: Revised and new measurements. Cells Tissues Organs 192:73–84PubMedGoogle Scholar
  32. 32.
    Yosipiv IV, Dipp S, El-Dahr SS (1994) Ontogeny of somatic angiotensin-converting enzyme. Hypertension 23:369–374PubMedGoogle Scholar
  33. 33.
    Miyazaki Y, Tsuchida S, Nishimura H, Pope JC IV, Harris RC, McKanna JM, Inagami T, Hogan BL, Fogo A, Ichikawa I (1998) Angiotensin induces the urinary peristaltic machinery during the perinatal period. J Clin Invest 102:1489–1497PubMedCentralPubMedGoogle Scholar
  34. 34.
    Friberg P, Sundelin B, Bohman SO, Bobik A, Nilsson H, Wickman A, Gustafsson H, Petersen J, Adams MA (1994) renin–angiotensin system in neonatal rats: Induction of a renal abnormality in response to ACE inhibition or angiotensin II antagonism. Kidney Int 45:485–492PubMedGoogle Scholar
  35. 35.
    Guron G, Adams MA, Sundelin B, Friberg P (1997) Neonatal angiotensin-converting enzyme inhibition in the rat induces persistent abnormalities in renal function and histology. Hypertension 29:91–97PubMedGoogle Scholar
  36. 36.
    Madsen K, Marcussen N, Pedersen M, Kjaersgaard G, Facemire C, Coffman TM, Jensen BL (2010) Angiotensin II promotes development of the renal microcirculation through AT1 receptors. J Am Soc Nephrol 21:448–459PubMedGoogle Scholar
  37. 37.
    Guron G, Marcussen N, Nilsson A, Sundelin B, Friberg P (1999) Postnatal time frame for renal vulnerability to enalapril in rats. J Am Soc Nephrol 10:1550–1560PubMedGoogle Scholar
  38. 38.
    Oshima Y, Kinouchi K, Ichihara A, Sakoda M, Kurauchi-Mito A, Bokuda K, Narita T, Kurosawa H, Sun-Wada GH, Wada Y, Yamada T, Takemoto M, Saleem MA, Quaggin SE, Itoh H (2011) Prorenin receptor is essential for normal podocyte structure and function. J Am Soc Nephrol 22:2203–2212PubMedGoogle Scholar
  39. 39.
    Riediger F, Quack I, Qadri F, Hartleben B, Park JK, Potthoff SA, Sohn D, Sihn G, Rousselle A, Fokuhl V, Maschke U, Purfürst B, Schneider W, Rump LC, Luft FC, Dechend R, Bader M, Huber TB, Nguyen G, Muller DN (2011) Prorenin receptor is essential for podocyte autophagy and survival. J Am Soc Nephrol 22:2193–2202PubMedGoogle Scholar
  40. 40.
    Stegbauer J, Gurley SB, Sparks MA, Woznowski M, Kohan DE, Yan M, Lehrich RW, Coffman TM (2011) AT1 receptors in the collecting duct directly modulate the concentration of urine. J Am Soc Nephrol 22:2237–2246PubMedGoogle Scholar
  41. 41.
    Song R, Preston G, Khalili A, El-Dahr SS, Yosypiv IV (2012) Angiotensin II regulates growth of the developing papillas ex vivo. Am J Physiol 302:F1112–F1120Google Scholar
  42. 42.
    Oshima K, Miyazaki Y, Brock JW, Adams MC, Ichikawa I, Pope JC (2001) Angiotensin type II receptor expression and ureteral budding. J Urol 166:1848–1852PubMedGoogle Scholar
  43. 43.
    Kriz W (1981) Structural organization of the renal medulla: comparative and functional aspects. Am J Physiol 241:R3–R16PubMedGoogle Scholar
  44. 44.
    Oliverio MI, Delnomdedieu M, Best CF, Li P, Morris M, Callahan MF, Johnson GA, Smithies O, Coffman TM (2000) Abnormal water metabolism in mice lacking the type 1A receptor for ANG II. Am J Physiol 278:F75–82Google Scholar
  45. 45.
    Brooks HL, Allred AJ, Beutler KT, Coffman TM, Knepper MA (2002) Targeted proteomic profiling of renal Na(+) transporter and channel abundances in angiotensin II type 1a receptor knockout mice. Hypertension 39:470–473PubMedGoogle Scholar
  46. 46.
    Li XC, Shao Y, Zhuo JL (2012) AT1a receptor signaling is required for basal and water deprivation-induced urine concentration in AT1a receptor-deficient mice. Am J Physiol Renal Physiol 303:F746–F756PubMedGoogle Scholar
  47. 47.
    Weiner ID, New AR, Milton AE, Tisher CC (1995) Regulation of luminal alkalinization and acidification in the cortical collecting duct by angiotensin II. Am J Physiol 269:F730–F738PubMedGoogle Scholar
  48. 48.
    Tojo A, Tisher CC, Madsen KM (1994) Angiotensin II regulates H(+)-ATPase activity in rat cortical collecting duct. Am J Physiol 267:F1045–F1051PubMedGoogle Scholar
  49. 49.
    Advani A, Kelly DJ, Cox AJ, White KE, Advani SL, Thai K, Connelly KA, Yuen D, Trogadis J, Herzenberg AM, Kuliszewski MA, Leong-Poi H, Gilbert RE (2009) The (Pro) renin receptor site-specific and functional linkage to the vacuolar H(+)-ATPase in the Kidney. Hypertension 54:261–269PubMedGoogle Scholar
  50. 50.
    Gonzalez AA, Lara LS, Luffman C, Seth DM, Prieto MC (2011) Soluble form of the (pro)renin receptor is augmented in the collecting duct and urine of chronic angiotensin II-dependent hypertensive rats. Hypertension 57:859–864PubMedCentralPubMedGoogle Scholar
  51. 51.
    Cruciat CM, Ohkawara B, Acebron SP, Karaulanov E, Reinhard C, Ingelfinger D, Boutros M, Niehrs C (2010) Requirement of prorenin receptor and vacuolar H(+)-ATPase-mediated acidification for Wnt signaling. Science 327:459–463PubMedGoogle Scholar
  52. 52.
    Stover EH, Borthwick KJ, Bavalia C, Eady N, Fritz DM, Rungroj N, Giersch AB, Morton CC, Axon PR, Akil I, Al-Sabban EA, Baguley DM, Bianca S, Bakkaloglu A, Bircan Z, Chauveau D, Clermont MJ, Guala A, Hulton SA, Kroes H, Li Volti G, Mir S, Mocan H, Nayir A, Ozen S, Rodriguez Soriano J, Sanjad SA, Tasic V, Taylor CM, Topaloglu R, Smith AN, Karet FE (2002) Novel ATP6V1B1 and ATP6V0A4 mutations in autosomal recessive distal renal tubular acidosis with new evidence for hearing loss. J Med Genet 39:796–803PubMedGoogle Scholar
  53. 53.
    Lopez ML, Pentz ES, Robert B, Abrahamson DR, Gomez RA (2001) Embryonic origin and lineage of juxtaglomerular cells. Am J Physiol 281:F345–F356Google Scholar
  54. 54.
    Song R, Preston G, Yosypiv IV (2011) Angiotensin II stimulates in vitro branching morphogenesis of the isolated ureteric bud. Mech Dev 128:359–367PubMedCentralPubMedGoogle Scholar
  55. 55.
    Yoshikawa A, Aizaki Y, Kusano K, Kishi F, Susumu T, Iida S, Ishiura S, Nishimura S, Shichiri M, Senbonmatsu T (2011) The (pro)renin receptor is cleaved by ADAM19 in the Golgi leading to its secretion into extracellular space. Hypertens Res 34:599–605PubMedGoogle Scholar
  56. 56.
    Schaefer C (2003) Angiotensin II-receptor-antagonists: Further evidence of fetotoxicity but not teratogenicity. Part A Clin Mol Teratol Birth Defects Res 67:591–594Google Scholar
  57. 57.
    Tabacova S, Little R, Tsong Y, Vega A, Kimmel CA (2003) Adverse pregnancy outcomes associated with maternal enalapril antihypertensive treatment. Pharmacoepidemiol Drug Saf 12:633–646PubMedGoogle Scholar
  58. 58.
    Gribouval O, Gonzales M, Neuhaus T (2005) Mutations in genes in the renin–angiotensin system are associated with autosomal recessive renal tubular dysgenesis. Nat Genet 37:964–968PubMedGoogle Scholar
  59. 59.
    Gribouval O, Morinière V, Pawtowski A, Arrondel C, Sallinen SL, Saloranta C, Clericuzio C, Viot G, Tantau J, Blesson S, Cloarec S, Machet MC, Chitayat D, Thauvin C, Laurent N, Sampson JR, Bernstein JA, Clemenson A, Prieur F, Daniel L, Levy-Mozziconacci A, Lachlan K, Alessandri JL, Cartault F, Rivière JP, Picard N, Baumann C, Delezoide AL, Belar Ortega M, Chassaing N, Labrune P, Yu S, Firth H, Wellesley D, Bitzan M, Alfares A, Braverman N, Krogh L, Tolmie J, Gaspar H, Doray B, Majore S, Bonneau D, Triau S, Loirat C, David A, Bartholdi D, Peleg A, Brackman D, Stone R, DeBerardinis R, Corvol P, Michaud A (2012) Spectrum of mutations in the renin–angiotensin system genes in autosomal recessive renal tubular dysgenesis. Hum Mutat 33:316–326PubMedGoogle Scholar
  60. 60.
    Uematsu M, Sakamoto O, Nishio T, Ohura T, Matsuda T, Inagaki T, Abe T, Okamura K, Kondo Y, Tsuchiya S (2006) A case surviving for over a year of renal tubular dysgenesis with compound heterozygous angiotensinogen gene mutations. Am J Med Genet Part A 140:2355–2360PubMedGoogle Scholar
  61. 61.
    Uematsu M, Sakamoto O, Ohura T, Shimizu N, Satomura K, Tsuchiya S (2009) A further case of renal tubular dysgenesis surviving the neonatal period. Eur J Pediatr 168:207–209PubMedGoogle Scholar
  62. 62.
    Lacoste M, Cai Y, Guicharnaud L, Mounier F, Dumez Y, Bouvier R, Dijoud F, Gonzales M, Chatten J, Delezoide AL, Daniel L, Joubert M, Laurent N, Aziza J, Sellami T, Amar HB, Jarnet C, Frances AM, Daïkha-Dahmane F, Coulomb A, Neuhaus TJ, Foliguet B, Chenal P, Marcorelles P, Gasc JM, Corvol P, Gubler MC (2006) Renal tubular dysgenesis, a not uncommon autosomal recessive disorder leading to oligohydramnios: Role of the renin–angiotensin system. J Am Soc Nephrol 17:2253–2263PubMedGoogle Scholar
  63. 63.
    Zingg-Schenk A, Bacchetta J, Corvol P, Michaud A, Stallmach T, Cochat P, Gribouval O, Gubler MC, Neuhaus TJ (2008) Inherited renal tubular dysgenesis: The first patients surviving the neonatal period. Eur J Pediatr 167:311–316PubMedGoogle Scholar
  64. 64.
    Nishimura H, Yerkes E, Hohenfellner K, Miyazaki Y, Ma J, Hunley TE, Yoshida H, Ichiki T, Threadgill D, Phillips JA 3rd, Hogan BM, Fogo A, Brock JW 3rd (1999) Role of the angiotensin type 2 receptor gene in congenital anomalies of the kidney and urinary tract, CAKUT, of mice and men. Mol Cell 3:1–10PubMedGoogle Scholar
  65. 65.
    Hahn H, Ku SE, Kim KS, Park YS, Yoon CH, Cheong HI (2005) Implication of genetic variations in congenital obstructive nephropathy. Pediatr Nephrol 20:1541–1544PubMedGoogle Scholar
  66. 66.
    Rigoli L, Chimenz R, di Bella C, Cavallaro E, Caruso R, Briuglia S, Fede C, Salpietro CD (2004) Angiotensin-converting enzyme and angiotensin type 2 receptor gene genotype distributions in Italian children with congenital uropathies. Pediatr Res 56:988–993PubMedGoogle Scholar
  67. 67.
    Stanković A, Zivković M, Kostić M, Atanacković J, Krstić Z, Alavantić D (2010) Expression profiling of the AT2R mRNA in affected tissue from children with CAKUT. Clin Biochem 43:71–75PubMedGoogle Scholar
  68. 68.
    Cordell HJ, Darlay R, Charoen P, Stewart A, Gullett AM, Lambert HJ, Malcolm S, Feather SA, Goodship TH, Woolf AS, Kenda RB, Goodship JA, UK VUR Study (2010) Whole-genome linkage and association scan in primary, nonsyndromic vesicoureteric reflux. J Am Soc Nephrol 21:113–123PubMedGoogle Scholar
  69. 69.
    Peruzzi L, Lombardo F, Amore A, Merlini E, Restagno G, Silvestro L, PapaliaT CR (2005) Low renin–angiotensin system activity gene polymorphism and dysplasia associated with posterior urethral valves. J Urol 174:713–717PubMedGoogle Scholar
  70. 70.
    Song R, Van Buren T, Yosypiv IV (2010) Histone deacetylases are critical regulators of the renin–angiotensin system during ureteric bud branching morphogenesis. Pediatr Res 67:573–578PubMedCentralPubMedGoogle Scholar
  71. 71.
    Zhang SL, Moini B, Ingelfinger JR (2004) Angiotensin II increases Pax-2 expression in fetal kidney cells via the AT2 receptor. J Am Soc Nephrol 15:1452–1465PubMedGoogle Scholar
  72. 72.
    Yosypiv IV, Boh MK, Spera M, El-Dahr SS (2008) Down regulation of Spry-1, an inhibitor of GDNF/Ret, as a mechanism for angiotensin II-induced ureteric bud branching. Kidney Int 74:1287–1293PubMedCentralPubMedGoogle Scholar
  73. 73.
    Basson MA, Akbulut S, Watson-Johnson J, Simon R, Carroll TJ, Shakya R, Gross I, Martin GR, Lufkin T, McMahon AP, Wilson PD, Costantini FD, Mason IJ, Licht JD (2005) Sprouty1 is a critical regulator of GDNF/RET-mediated kidney induction. Dev Cell 8:229–239PubMedGoogle Scholar
  74. 74.
    Basson MA, Watson-Johnson J, Shakya R, Akbulut S, Hyink D, Costantini FD, Wilson PD, Mason IJ, Licht JD (2006) Branching morphogenesis of the ureteric epithelium during kidney development is coordinated by the opposing functions of GDNF and Sprouty1. Dev Biol 299:466–477PubMedGoogle Scholar
  75. 75.
    Chatterjee R, Ramos E, Hoffman M, VanWinkle J, Martin DR, Davis TK, Hoshi M, Hmiel SP, Beck A, Hruska K, Coplen D, Liapis H, Mitra R, Druley T, Austin P (2012) Traditional and targeted exome sequencing reveals common, rare and novel functional deleterious variants in RET-signaling complex in a cohort of living US patients with urinary tract malformations. Hum Genet Nov 131(11):1725–38Google Scholar
  76. 76.
    Skinner MA, Safford SD, Reeves JG, Jackson ME, Freemerman AJ (2008) Renal aplasia in humans is associated with RET mutations. Am J Hum Genet 82:344–351PubMedCentralPubMedGoogle Scholar
  77. 77.
    Porteous S, Torban E, Cho NP, Cunliffe H, Chua L, McNoe L, Ward T, Souza C, Gus P, Giugliani R, Sato T, Yun K, Favor J, Sicotte M, Goodyer P, Eccles M (2000) Primary renal hypoplasia in humans and mice with PAX2 mutations: Evidence of increased apoptosis in fetal kidneys of Pax2(1Neu) +/− mutant mice. Hum Mol Genet 9:1–11PubMedGoogle Scholar
  78. 78.
    Buechling T, Bartscherer K, Ohkawara B, Chaudhary V, Spirohn K, Niehrs C, Boutros M (2010) Wnt/frizzled signaling requires dPRR, the drosophila homolog of the prorenin receptor. Curr Biol 20:1263–1268PubMedGoogle Scholar
  79. 79.
    Karner CM, Chirumamilla R, Aoki S, Igarashi P, Wallingford JB, Carroll TJ (2009) Wnt9b signaling regulates planar cell polarity and kidney tubule morphogenesis. Nat Genet 41:793–799PubMedCentralPubMedGoogle Scholar
  80. 80.
    Yu J, Carroll TJ, Rajagopal J, Kobayashi A, Ren Q, McMahon AP (2009) A Wnt7b-dependent pathway regulates the orientation of epithelial cell division and establishes the cortico-medullary axis of the mammalian kidney. Development 136:161–171PubMedGoogle Scholar
  81. 81.
    Carroll TJ, Park JS, Hayashi S, Majumdar A, McMahon AP (2005) Wnt9b plays a central role in the regulation of mesenchymal to epithelial transitions underlying organogenesis of the mammalian urogenital system. Dev Cell 9:283–292PubMedGoogle Scholar
  82. 82.
    Lin Y, Liu A, Zhang S, Ruusunen T, Kreidberg JA, Peltoketo H, Drummond I, Vainio S (2001) Induction of ureter branching as a response to Wnt-2b signaling during early kidney organogenesis. Dev Dyn 222:26–39PubMedGoogle Scholar
  83. 83.
    Lange C, Prenninger S, Knuckles P, Taylor V, Levin M, Calegari F (2011) The H(+) vacuolar ATPase maintains neural stem cells in the developing mouse cortex. Stem Cells Dev 20:843–850PubMedGoogle Scholar
  84. 84.
    Jeong HW, Jeon US, Koo BK, Kim WY, Im SK, Shin J, Cho Y, Kim J, Kong YY (2009) Inactivation of Notch signaling in the renal collecting duct causes nephrogenic diabetes insipidus in mice. J Clin Invest 119:3290–3300PubMedCentralPubMedGoogle Scholar
  85. 85.
    Hermle T, Guida MC, Beck S, Helmstädter S, Simons M (2013) Drosophila ATP6AP2/VhaPRR functions both as a novel planar cell polarity core protein and a regulator of endosomal trafficking. EMBO J 32:245–259PubMedGoogle Scholar
  86. 86.
    Yan Y, Denef N, Schüpbach T (2009) The vacuolar proton pump, V-ATPase, is required for notch signaling and endosomal trafficking in Drosophila. Dev Cell 17:387–402PubMedCentralPubMedGoogle Scholar
  87. 87.
    Schefe JH, Menk M, Reinemund J, Effertz K, Hobbs RM, Pandolfi PP, Ruiz P, Unger T, Funke-Kaiser H (2006) A novel signal transduction cascade involving direct physical interaction of the renin/prorenin receptor with the transcription factor promyelocytic zinc finger protein. Circ Res 99:1355–1366PubMedGoogle Scholar
  88. 88.
    Song R, Spera M, Garrett C, Yosypiv IV (2010) Angiotensin II-induced activation of c-Ret signaling is critical in ureteric bud branching morphogenesis. Mech Dev 127:21–27PubMedCentralPubMedGoogle Scholar
  89. 89.
    Schmidt-Ott KM, Masckauchan TN, Chen X, Hirsh BJ, Sarkar A, Yang J, Paragas N, Wallace VA, Dufort D, Pavlidis P, Jagla B, Kitajewski J, Barasch J (2007) βeta-catenin/TCF/Lef controls a differentiation-associated transcriptional program in renal epithelial progenitors. Development 134:3177–90PubMedGoogle Scholar
  90. 90.
    Filipponi D, Hobbs RM, Ottolenghi S, Rossi P, Jannini EA, Pandolfi PP, Dolci S (2007) Repression of kit expression by Plzf in germ cells. Mol Cell Biol 27:6770–6781PubMedCentralPubMedGoogle Scholar
  91. 91.
    Spinello I, Quaranta MT, Pasquini L, Pelosi E, Petrucci E, Pagliuca A, Castelli G, Mariani G, Diverio D, Foà R, Testa U, Labbaye C (2009) PLZF-mediated control on c-kit expression in CD34(+) cells and early erythropoiesis. Oncogene 28:2276–88PubMedGoogle Scholar
  92. 92.
    Jain S, Knoten A, Hoshi M, Wang H, Vohra B, Heuckeroth RO, Milbrandt J (2010) Organotypic specificity of key RET adaptor-docking sites in the pathogenesis of neurocristopathies and renal malformations in mice. J Clin Invest 120:778–790PubMedCentralPubMedGoogle Scholar
  93. 93.
    Besset V, Scott RP, Ibáñez CF (2000) Signaling complexes and protein-protein interactions involved in the activation of the Ras and phosphatidylinositol 3-kinase pathways by the c-Ret receptor tyrosine kinase. J Biol Chem 275:39159–39166PubMedGoogle Scholar
  94. 94.
    Hoshi M, Batourina E, Mendelsohn C, Jain S (2012) Novel mechanisms of early upper and lower urinary tract patterning regulated by RetY1015 docking tyrosine in mice. Development 139:2405–2415PubMedGoogle Scholar
  95. 95.
    Tang MJ, Cai Y, Tsai SJ, Wang YK, Dressler GR (2002) Ureteric bud outgrowth in response to RET activation is mediated by phosphatidylinositol 3-kinase. Dev Biol 243:128–136PubMedGoogle Scholar
  96. 96.
    Kim D, Dressler GR (2007) PTEN modulates GDNF/RET mediated chemotaxis and branching morphogenesis in the developing kidney. Dev Biol 307:290–299PubMedCentralPubMedGoogle Scholar
  97. 97.
    Fisher CE, Michael L, Barnett MW, Davies JA (2001) Erk MAP kinase regulates branching morphogenesis in the developing mouse kidney. Development 128:4329–4338PubMedGoogle Scholar
  98. 98.
    Yosypiv IV, Schroeder M, El-Dahr SS (2006) AT1R-EGFR crosstalk regulates ureteric bud branching morphogenesis. J Am Soc Nephrol 17:1005–1014PubMedGoogle Scholar
  99. 99.
    Michael L, Davies JA (2004) Pattern and regulation of cell proliferation during murine ureteric bud development. J Anat 204:241–255PubMedGoogle Scholar
  100. 100.
    Dziarmaga A, Eccles M, Goodyer P (2006) Suppression of ureteric bud apoptosis rescues nephron endowment and adult renal function in Pax2 mutant mice. J Am Soc Nephrol 17:1568–1575PubMedGoogle Scholar
  101. 101.
    Kuure S, Chi X, Lu B, Costantini F (2010) The transcription factors Etv4 and Etv5 mediate formation of the ureteric bud tip domain during kidney development. Development 137:1975–1979PubMedGoogle Scholar
  102. 102.
    Patel SR, Kim D, Levitan I, Dressler GR (2007) The BRCT-domain containing protein PTIP links PAX2 to a histone H3, lysine 4 methyltransferase complex. Dev Cell 13:580–592PubMedCentralPubMedGoogle Scholar
  103. 103.
    Chen S, Bellew C, Yao X, Stefkova J, Dipp S, Saifudeen Z, Bachvarov D, El-Dahr SS (2011) Histone deacetylase (HDAC) activity is critical for embryonic kidney gene expression, growth, and differentiation. J Biol Chem 286:32775–32789PubMedGoogle Scholar
  104. 104.
    Gomez RA, Pentz ES, Jin X, Cordaillat M, Sequeira Lopez ML (2009) CBP and p300 are essential for renin cell identity and morphological integrity of the kidney. Am J Physiol 296:H1255–H1262Google Scholar
  105. 105.
    Norwood VF, Craig MR, Harris JM, Gomez RA (1997) Differential expression of angiotensin II receptors during early renal morphogenesis. Am J Physiol 272:R662–R668PubMedGoogle Scholar

Copyright information

© IPNA 2013

Authors and Affiliations

  1. 1.Section of Pediatric Nephrology, Department of Pediatrics, Hypertension and Renal Center of ExcellenceTulane University Health Sciences CenterNew OrleansUSA

Personalised recommendations