Pediatric Nephrology

, Volume 29, Issue 4, pp 505–511 | Cite as

Polycystin-1 cleavage and the regulation of transcriptional pathways

  • David Merrick
  • Claudia A. Bertuccio
  • Hannah C. Chapin
  • Mark Lal
  • Veronique Chauvet
  • Michael J. Caplan


Autosomal dominant polycystic kidney disease (ADPKD) is the most common genetic cause of end-stage renal disease, affecting approximately 1 in 1,000 people. The disease is characterized by the development of numerous large fluid-filled renal cysts over the course of decades. These cysts compress the surrounding renal parenchyma and impair its function. Mutations in two genes are responsible for ADPKD. The protein products of both of these genes, polycystin-1 and polycystin-2, localize to the primary cilium and participate in a wide variety of signaling pathways. Polycystin-1 undergoes several proteolytic cleavages that produce fragments which manifest biological activities. Recent results suggest that the production of polycystin-1 cleavage fragments is necessary and sufficient to account for at least some, although certainly not all, of the physiological functions of the parent protein.


Autosomal dominant polycystic kidney disease Transcription Proliferation Apoptosis Wnt CHOP Proteolytic cleavage 



The authors wish to thank all of the members of the Caplan laboratory past and present for helpful discussions and valuable input. Work from the authors’ laboratory that was discussed in this review was supported by Department of Defense Peer Reviewed Medical Research Program grant number W81XWH-10-1-0504 and by NIH grant P30 DK090744.


  1. 1.
    Calvet JP, Grantham JJ (2001) The genetics and physiology of polycystic kidney disease. Semin Nephrol 21:107–123PubMedCrossRefGoogle Scholar
  2. 2.
    Takiar V, Caplan MJ (2011) Polycystic kidney disease: pathogenesis and potential therapies. Biochim Biophys Acta 1812:1337–4133Google Scholar
  3. 3.
    Harris PC, Torres VE (2009) Polycystic kidney disease. Annu Rev Med 60:321–337PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Gabow PA (1993) Autosomal dominant polycystic kidney disease. N Engl J Med 329:332–342PubMedCrossRefGoogle Scholar
  5. 5.
    Qian F, Watnick TJ, Onuchic LF, Germino GG (1996) The molecular basis of focal cyst formation in human autosomal dominant polycystic kidney disease type I. Cell 87:979–987PubMedCrossRefGoogle Scholar
  6. 6.
    Bastos AP, Piontek K, Silva AM, Martini D, Menezes LF, Fonseca JM, Fonseca II, Germino GG, Onuchic LF (2009) Pkd1 haploinsufficiency increases renal damage and induces microcyst formation following ischemia/reperfusion. J Am Soc Nephrol 20:2389–2402PubMedCrossRefGoogle Scholar
  7. 7.
    Takakura A, Contrino L, Zhou X, Bonventre JV, Sun Y, Humphreys BD, Zhou J (2009) Renal injury is a third hit promoting rapid development of adult polycystic kidney disease. Hum Mol Genet 18:2523–2531PubMedCrossRefGoogle Scholar
  8. 8.
    Harris PC, Germino G, Klinger K, Landes G, van Adelsberg J (1995) The PKD1 gene product. Nat Med 1:493PubMedCrossRefGoogle Scholar
  9. 9.
    Nims N, Vassmer D, Maser RL (2003) Transmembrane domain analysis of polycystin-1, the product of the polycystic kidney disease-1 (PKD1) gene: evidence for 11 membrane-spanning domains. Biochemistry 42:13035–13048PubMedCrossRefGoogle Scholar
  10. 10.
    Hughes J, Ward CJ, Peral B, Aspinwall R, Clark K, San Millan JL, Gamble V, Harris PC (1995) The polycystic kidney disease 1 (PKD1) gene encodes a novel protein with multiple cell recognition domains. Nat Genet 10:151–160PubMedCrossRefGoogle Scholar
  11. 11.
    Lohning C, Pohlschmidt M, Glucksmann-Kuis MA, Duyk G, Bork P, Schneider MO, Reeders ST, Frischauf AM (1996) Structural motifs of the PKD1 protein. Nephrol Dial Transplant 11[Suppl 6]:2–4PubMedCrossRefGoogle Scholar
  12. 12.
    Ibraghimov-Beskrovnaya O, Bukanov NO, Donohue LC, Dackowski WR, Klinger KW, Landes GM (2000) Strong homophilic interactions of the Ig-like domains of polycystin-1, the protein product of an autosomal dominant polycystic kidney disease gene, PKD1. Hum Mol Genet 9:1641–1649PubMedCrossRefGoogle Scholar
  13. 13.
    Streets AJ, Newby LJ, O’Hare MJ, Bukanov NO, Ibraghimov-Beskrovnaya O, Ong AC (2003) Functional analysis of PKD1 transgenic lines reveals a direct role for polycystin-1 in mediating cell–cell adhesion. J Am Soc Nephrol 14:1804–1815PubMedCrossRefGoogle Scholar
  14. 14.
    Streets AJ, Wagner BE, Harris PC, Ward CJ, Ong AC (2009) Homophilic and heterophilic polycystin 1 interactions regulate E-cadherin recruitment and junction assembly in MDCK cells. J Cell Sci 122:1410–1417PubMedCrossRefGoogle Scholar
  15. 15.
    Babich V, Zeng WZ, Yeh BI, Ibraghimov-Beskrovnaya O, Cai Y, Somlo S, Huang CL (2004) The N-terminal extracellular domain is required for polycystin-1-dependent channel activity. J Biol Chem 279:25582–25589PubMedCrossRefGoogle Scholar
  16. 16.
    van Adelsberg J (1999) Peptides from the PKD repeats of polycystin, the PKD1 gene product, modulate pattern formation in the developing kidney. Dev Genet 24:299–308PubMedCrossRefGoogle Scholar
  17. 17.
    Patel A, Honore E (2010) Polycystins and renovascular mechanosensory transduction. Nat Rev Nephrol 6:530–538Google Scholar
  18. 18.
    Huang AL, Chen X, Hoon MA, Chandrashekar J, Guo W, Trankner D, Ryba NJ, Zuker CS (2006) The cells and logic for mammalian sour taste detection. Nature 442:934–938PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Kawaguchi H, Yamanaka A, Uchida K, Shibasaki K, Sokabe T, Maruyama Y, Yanagawa Y, Murakami S, Tominaga M (2010) Activation of polycystic kidney disease-2-like 1 (PKD2L1)-PKD1L3 complex by acid in mouse taste cells. J Biol Chem 285:17277–17281PubMedCrossRefGoogle Scholar
  20. 20.
    Ishimaru Y, Inada H, Kubota M, Zhuang H, Tominaga M, Matsunami H (2006) Transient receptor potential family members PKD1L3 and PKD2L1 form a candidate sour taste receptor. Proc Natl Acad Sci USA 103:12569–12574PubMedCrossRefGoogle Scholar
  21. 21.
    Puri S, Magenheimer BS, Maser RL, Ryan EM, Zien CA, Walker DD, Wallace DP, Hempson SJ, Calvet JP (2004) Polycystin-1 activates the calcineurin/NFAT (nuclear factor of activated T-cells) signaling pathway. J Biol Chem 279:55455–55464PubMedCrossRefGoogle Scholar
  22. 22.
    Kim E, Arnould T, Sellin LK, Benzing T, Fan MJ, Gruning W, Sokol SY, Drummond I, Walz G (1999) The polycystic kidney disease 1 gene product modulates Wnt signaling. J Biol Chem 274:4947–4953PubMedCrossRefGoogle Scholar
  23. 23.
    Le NH, van der Bent P, Huls G, van de Wetering M, Loghman-Adham M, Ong AC, Calvet JP, Clevers H, Breuning MH, van Dam H, Peters DJ (2004) Aberrant polycystin-1 expression results in modification of activator protein-1 activity, whereas Wnt signaling remains unaffected. J Biol Chem 279:27472–27481PubMedCrossRefGoogle Scholar
  24. 24.
    Parnell SC, Magenheimer BS, Maser RL, Zien CA, Frischauf AM, Calvet JP (2002) Polycystin-1 activation of c-Jun N-terminal kinase and AP-1 is mediated by heterotrimeric G proteins. J Biol Chem 277:19566–19572PubMedCrossRefGoogle Scholar
  25. 25.
    Kim E, Arnould T, Sellin L, Benzing T, Comella N, Kocher O, Tsiokas L, Sukhatme VP, Walz G (1999) Interaction between RGS7 and polycystin. Proc Natl Acad Sci USA 96:6371–6376PubMedCrossRefGoogle Scholar
  26. 26.
    Arnould T, Kim E, Tsiokas L, Jochimsen F, Gruning W, Chang JD, Walz G (1998) The polycystic kidney disease 1 gene product mediates protein kinase C alpha-dependent and c-Jun N-terminal kinase-dependent activation of the transcription factor AP-1. J Biol Chem 273:6013–6018PubMedCrossRefGoogle Scholar
  27. 27.
    Bhunia AK, Piontek K, Boletta A, Liu L, Qian F, Xu PN, Germino FJ, Germino GG (2002) PKD1 induces p21(waf1) and regulation of the cell cycle via direct activation of the JAK-STAT signaling pathway in a process requiring PKD2. Cell 109:157–168PubMedCrossRefGoogle Scholar
  28. 28.
    Talbot JJ, Shillingford JM, Vasanth S, Doerr N, Mukherjee S, Kinter MT, Watnick T, Weimbs T (2011) Polycystin-1 regulates STAT activity by a dual mechanism. Proc Natl Acad Sci USA 108:7985–7990PubMedCrossRefGoogle Scholar
  29. 29.
    Boletta A, Qian F, Onuchic LF, Bhunia AK, Phakdeekitcharoen B, Hanaoka K, Guggino W, Monaco L, Germino GG (2000) Polycystin-1, the gene product of PKD1, induces resistance to apoptosis and spontaneous tubulogenesis in MDCK cells. Mol Cell 6:1267–1273PubMedCrossRefGoogle Scholar
  30. 30.
    Sutters M, Yamaguchi T, Maser RL, Magenheimer BS, St John PL, Abrahamson DR, Grantham JJ, Calvet JP (2001) Polycystin-1 transforms the cAMP growth-responsive phenotype of —1 cells. Kidney Int 60:484–494PubMedCrossRefGoogle Scholar
  31. 31.
    Mochizuki T, Wu G, Hayashi T, Xenophontos SL, Veldhuisen B, Saris JJ, Reynolds DM, Cai Y, Gabow PA, Pierides A, Kimberling WJ, Breuning MH, Deltas CC, Peters DJ, Somlo S (1996) PKD2, a gene for polycystic kidney disease that encodes an integral membrane protein. Science 272:1339–1342PubMedCrossRefGoogle Scholar
  32. 32.
    Cai Y, Maeda Y, Cedzich A, Torres VE, Wu G, Hayashi T, Mochizuki T, Park JH, Witzgall R, Somlo S (1999) Identification and characterization of polycystin-2, the PKD2 gene product. J Biol Chem 274:28557–28565PubMedCrossRefGoogle Scholar
  33. 33.
    Gonzalez-Perrett S, Kim K, Ibarra C, Damiano AE, Zotta E, Batelli M, Harris PC, Reisin IL, Arnaout MA, Cantiello HF (2001) Polycystin-2, the protein mutated in autosomal dominant polycystic kidney disease (ADPKD), is a Ca2+-permeable nonselective cation channel. Proc Natl Acad Sci USA 98:1182–1187PubMedCrossRefGoogle Scholar
  34. 34.
    Tsiokas L, Arnould T, Zhu C, Kim E, Walz G, Sukhatme VP (1999) Specific association of the gene product of PKD2 with the TRPC1 channel. Proc Natl Acad Sci USA 96:3934–3939PubMedCrossRefGoogle Scholar
  35. 35.
    Nauli SM, Alenghat FJ, Luo Y, Williams E, Vassilev P, Li X, Elia AE, Lu W, Brown EM, Quinn SJ, Ingber DE, Zhou J (2003) Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat Genet 33:129–137PubMedCrossRefGoogle Scholar
  36. 36.
    Qian F, Germino FJ, Cai Y, Zhang X, Somlo S, Germino GG (1997) PKD1 interacts with PKD2 through a probable coiled-coil domain. Nat Genet 16:179–183PubMedCrossRefGoogle Scholar
  37. 37.
    Tsiokas L, Kim E, Arnould T, Sukhatme VP, Walz G (1997) Homo- and heterodimeric interactions between the gene products of PKD1 and PKD2. Proc Natl Acad Sci USA 94:6965–6970PubMedCrossRefGoogle Scholar
  38. 38.
    Newby LJ, Streets AJ, Zhao Y, Harris PC, Ward CJ, Ong AC (2002) Identification, characterization, and localization of a novel kidney polycystin-1-polycystin-2 complex. J Biol Chem 277:20763–20773PubMedCrossRefGoogle Scholar
  39. 39.
    Delmas P, Nomura H, Li X, Lakkis M, Luo Y, Segal Y, Fernandez-Fernandez JM, Harris P, Frischauf AM, Brown DA, Zhou J (2002) Constitutive activation of G-proteins by polycystin-1 is antagonized by polycystin-2. J Biol Chem 277:11276–11283PubMedCrossRefGoogle Scholar
  40. 40.
    Arnould T, Sellin L, Benzing T, Tsiokas L, Cohen HT, Kim E, Walz G (1999) Cellular activation triggered by the autosomal dominant polycystic kidney disease gene product PKD2. Mol Cell Biol 19:3423–3434PubMedCentralPubMedGoogle Scholar
  41. 41.
    Chapin HC, Caplan MJ (2010) The cell biology of polycystic kidney disease. J Cell Biol 191:701–710PubMedCrossRefGoogle Scholar
  42. 42.
    Yoder BK, Hou X, Guay-Woodford LM (2002) The polycystic kidney disease proteins, polycystin-1, polycystin-2, polaris, and cystin, are co-localized in renal cilia. J Am Soc Nephrol 13:2508–2516PubMedCrossRefGoogle Scholar
  43. 43.
    Pazour GJ, Witman GB (2003) The vertebrate primary cilium is a sensory organelle. Curr Opin Cell Biol 15:105–110PubMedCrossRefGoogle Scholar
  44. 44.
    Hogan MC, Manganelli L, Woollard JR, Masyuk AI, Masyuk TV, Tammachote R, Huang BQ, Leontovich AA, Beito TG, Madden BJ, Charlesworth MC, Torres VE, LaRusso NF, Harris PC, Ward CJ (2009) Characterization of PKD protein-positive exosome-like vesicles. J Am Soc Nephrol 20:278–288PubMedCrossRefGoogle Scholar
  45. 45.
    Tobin JL, Beales PL (2009) The nonmotile ciliopathies. Genet Med 11:386–402PubMedCrossRefGoogle Scholar
  46. 46.
    Badano JL, Mitsuma N, Beales PL, Katsanis N (2006) The ciliopathies: an emerging class of human genetic disorders. Annu Rev Genomics Hum Genet 7:125–148PubMedCrossRefGoogle Scholar
  47. 47.
    Woodward OM, Li Y, Yu S, Greenwell P, Wodarczyk C, Boletta A, Guggino WB, Qian F (2010) Identification of a polycystin-1 cleavage product, P100, that regulates store operated Ca entry through interactions with STIM1. PLoS One 5:e12305PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Qian F, Boletta A, Bhunia AK, Xu H, Liu L, Ahrabi AK, Watnick TJ, Zhou F, Germino GG (2002) Cleavage of polycystin-1 requires the receptor for egg jelly domain and is disrupted by human autosomal-dominant polycystic kidney disease 1-associated mutations. Proc Natl Acad Sci USA 99:16981–16986PubMedCrossRefGoogle Scholar
  49. 49.
    Chapin HC, Rajendran V, Caplan MJ (2010) Polycystin-1 surface localization is stimulated by polycystin-2 and cleavage at the G Protein-coupled receptor proteolytic site. Mol Biol Cell 21:4338–4348PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Wei W, Hackmann K, Xu H, Germino G, Qian F (2007) Characterization of cis-autoproteolysis of polycystin-1, the product of human polycystic kidney disease 1 gene. J Biol Chem 282:21729–21737PubMedCrossRefGoogle Scholar
  51. 51.
    Yu S, Hackmann K, Gao J, He X, Piontek K, Garcia-Gonzalez MA, Menezes LF, Xu H, Germino GG, Zuo J, Qian F (2007) Essential role of cleavage of polycystin-1 at G protein-coupled receptor proteolytic site for kidney tubular structure. Proc Natl Acad Sci USA 104:18688–18693PubMedCrossRefGoogle Scholar
  52. 52.
    Xu C, Rossetti S, Jiang L, Harris PC, Brown-Glaberman U, Wandinger-Ness A, Bacallao R, Alper SL (2007) Human ADPKD primary cyst epithelial cells with a novel, single codon deletion in the PKD1 gene exhibit defective ciliary polycystin localization and loss of flow-induced Ca2+ signaling. Am J Physiol Renal Physiol 292:F930–F945PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Chauvet V, Tian X, Husson H, Grimm DH, Wang T, Hiesberger T, Igarashi P, Bennett AM, Ibraghimov-Beskrovnaya O, Somlo S, Caplan MJ (2004) Mechanical stimuli induce cleavage and nuclear translocation of the polycystin-1 C terminus. J Clin Invest 114:1433–1443PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Bertuccio CA, Chapin HC, Cai Y, Mistry K, Chauvet V, Somlo S, Caplan MJ (2009) Polycystin-1 C-terminal cleavage is modulated by polycystin-2 expression. J Biol Chem 284:21011–21026PubMedCrossRefGoogle Scholar
  55. 55.
    Low SH, Vasanth S, Larson CH, Mukherjee S, Sharma N, Kinter MT, Kane ME, Obara T, Weimbs T (2006) Polycystin-1, STAT6, and P100 function in a pathway that transduces ciliary mechanosensation and is activated in polycystic kidney disease. Dev Cell 10:57–69PubMedCrossRefGoogle Scholar
  56. 56.
    Rechsteiner M, Rogers SW (1996) PEST sequences and regulation by proteolysis. Trends Biochem Sci 21:267–271PubMedCrossRefGoogle Scholar
  57. 57.
    Merrick D, Chapin H, Baggs JE, Yu Z, Somlo S, Sun Z, Hogenesch JB, Caplan MJ (2012) The gamma-secretase cleavage product of polycystin-1 regulates TCF and CHOP-mediated transcriptional activation through a p300-dependent mechanism. Dev Cell 22:197–210PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    Goilav B (2011) Apoptosis in polycystic kidney disease. Biochim Biophys Acta 1812:1272–1280PubMedCrossRefGoogle Scholar
  59. 59.
    Lal B, Kapoor AK, Agrawal PK, Asthana OP, Srimal RC (2000) Role of curcumin in idiopathic inflammatory orbital pseudotumours. Phytother Res 14:443–447PubMedCrossRefGoogle Scholar
  60. 60.
    Daugherty RL, Gottardi CJ (2007) Phospho-regulation of Beta-catenin adhesion and signaling functions. Physiology (Bethesda) 22:303–309CrossRefGoogle Scholar
  61. 61.
    Li J, Sutter C, Parker D, Blauwkamp T, Fang M, Cadigan K (2007) CBP/p300 are bimodal regulators of Wnt signaling. EMBO J 26:2284–2294PubMedCrossRefGoogle Scholar
  62. 62.
    Wang X, Lawson B, Brewer J, Zinszner H, Sanjay A, Mi L, Boorstein R, Kreibich G, Hendershot L, Ron D (1996) Signals from the stressed endoplasmic reticulum induce C/EBP-homologous protein (CHOP/GADD153). Mol Cell Biol 16:4273–4280PubMedCentralPubMedGoogle Scholar
  63. 63.
    Maytin E, Ubeda M, Lin J, Habener J (2001) Stress-inducible transcription factor CHOP/gadd153 induces apoptosis in mammalian cells via p38 kinase-dependent and -independent mechanisms. Exp Cell Res 267:193–204PubMedCrossRefGoogle Scholar
  64. 64.
    Kopito R (2000) Aggresomes, inclusion bodies and protein aggregation. Trends Cell Biol 10:524–530PubMedCrossRefGoogle Scholar
  65. 65.
    Harding H, Calfon M, Urano F, Novoa I, Ron D (2002) Transcriptional and translational control in the mammalian unfolded protein response. Annu Rev Cell Dev Biol 18:575–599PubMedCrossRefGoogle Scholar
  66. 66.
    Wiertz E, Jones T, Sun L, Bogyo M, Geuze H, Ploegh H (1996) The human cytomegalovirus US11 gene product dislocates MHC class I heavy chains from the endoplasmic reticulum to the cytosol. Cell 84:769–779PubMedCrossRefGoogle Scholar
  67. 67.
    Nakatsukasa K, Brodsky J (2008) The recognition and retrotranslocation of misfolded proteins from the endoplasmic reticulum. Traffic 9:861–870PubMedCentralPubMedCrossRefGoogle Scholar
  68. 68.
    Ferri K, Kroemer G (2001) Organelle-specific initiation of cell death pathways. Nat Cell Biol 3:E255–E263PubMedCrossRefGoogle Scholar
  69. 69.
    Nakagawa T, Zhu H, Morishima N, Li E, Xu J, Yankner B, Yuan J (2000) Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature 403:98–103PubMedCrossRefGoogle Scholar
  70. 70.
    Ubeda M, Wang X, Zinszner H, Wu I, Habener J, Ron D (1996) Stress-induced binding of the transcriptional factor CHOP to a novel DNA control element. Mol Cell Biol 16:1479–1489PubMedCentralPubMedGoogle Scholar
  71. 71.
    Ron D, Habener J (1992) CHOP, a novel developmentally regulated nuclear protein that dimerizes with transcription factors C/EBP and LAP and functions as a dominant-negative inhibitor of gene transcription. Genes Dev 6:439–453PubMedCrossRefGoogle Scholar
  72. 72.
    Matsumoto M, Minami M, Takeda K, Sakao Y, Akira S (1996) Ectopic expression of CHOP (GADD153) induces apoptosis in M1 myeloblastic leukemia cells. FEBS Lett 395:143–147PubMedCrossRefGoogle Scholar
  73. 73.
    Oyadomari S, Koizumi A, Takeda K, Gotoh T, Akira S, Araki E, Mori M (2002) Targeted disruption of the Chop gene delays endoplasmic reticulum stress-mediated diabetes. J Clin Invest 109:525–532PubMedCentralPubMedCrossRefGoogle Scholar
  74. 74.
    Ohoka N, Hattori T, Kitagawa M, Onozaki K, Hayashi H (2007) Critical and functional regulation of CHOP (C/EBP homologous protein) through the N-terminal portion. J Biol Chem 282:35687–35694PubMedCrossRefGoogle Scholar
  75. 75.
    Mangos S, Lam PY, Zhao A, Liu Y, Mudumana S, Vasilyev A, Liu A, Drummond IA (2010) The ADPKD genes pkd1a/b and pkd2 regulate extracellular matrix formation. Dis Model Mech 3:354–365PubMedCentralPubMedCrossRefGoogle Scholar
  76. 76.
    Arslanova D, Yang T, Xu X, Wong ST, Augelli-Szafran CE, Xia W (2010) Phenotypic analysis of images of zebrafish treated with Alzheimer’s gamma-secretase inhibitors. BMC Biotechnol 10:24PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© IPNA 2013

Authors and Affiliations

  • David Merrick
    • 1
  • Claudia A. Bertuccio
    • 1
  • Hannah C. Chapin
    • 1
  • Mark Lal
    • 1
  • Veronique Chauvet
    • 1
  • Michael J. Caplan
    • 1
  1. 1.Department of Cellular and Molecular PhysiologyYale University School of MedicineNew HavenUSA

Personalised recommendations