Pediatric Nephrology

, Volume 28, Issue 11, pp 2207–2215 | Cite as

FGF23 and mineral metabolism in the early post-renal transplantation period

  • Katherine Wesseling-Perry
  • Renata C. Pereira
  • Eileen Tsai
  • Robert Ettenger
  • Harald Jüppner
  • Isidro B. Salusky
Original Article

Abstract

Background

The relationship between fibroblast growth factor 23 (FGF23) and vitamin D production and catabolism post-renal transplantation has not been characterized.

Methods

Circulating creatinine, calcium, phosphorus, albumin, parathyroid hormone, FGF23, and 1,25(OH)2 vitamin D (calcitriol) values were obtained pre-transplantation, daily post-operatively for 5 days, and at 6 months post-transplantation in 44 patients aged 16.4 ± 0.4 years undergoing renal transplantation at UCLA from 1 August 2005 through to 30 April 2007. 25(OH) Vitamin D and 24,25(OH)2 vitamin D concentrations were obtained at baseline and on post-operative days 5 and 180, and urinary concentrations of creatinine, phosphorus, and FGF23 were measured on post-operative days 1, 3, 5, and 180.

Results

Circulating phosphate concentrations declined more rapidly and the fractional excretion of phosphorus was higher in the first week post-transplantation in subjects with higher FGF23 values. Fractional excretion of FGF23 was low at all time-points. Circulating 1,25(OH)2 vitamin D levels rose more rapidly and were consistently higher in patients with lower FGF23 values; however, 25(OH) vitamin D and 24,25(OH)2 vitamin D values were unrelated to FGF23 concentrations.

Conclusions

Inhibition of renal 1α-hydroxylase, rather than stimulation of 24-hydroxylase, may primarily contribute to the relationship between FGF23 values and calcitriol. The rapid decline in FGF23 levels post-transplantation in our patient cohort was not mediated solely by the filtration of intact FGF23 by the new kidney.

Keywords

FGF23 PTH Vitamin D Renal transplantation Phosphorus 

Notes

Acknowledgments

This work was supported in part by USPHS grants DK-67563, DK-35423, DK-51081, DK-073039, DK-080984, UL1 RR-033176 and UL1TR000124, PO1 DK11794, and by funds from the Casey Lee Ball Foundation. The authors would like to thank Barbara Gales and Georgina Ramos for their invaluable help in sample collection and storage for the current study.

Disclosure

H Jüppner is named on a patent describing the FGF-23 assay that was used in this study. None of the other authors of this paper have any financial interest in the information contained in this manuscript.

References

  1. 1.
    Gutierrez O, Isakova T, Rhee E, Shah A, Holmes J, Collerone G, Jüppner H, Wolf M (2005) Fibroblast growth factor-23 mitigates hyperphosphatemia but accentuates calcitriol deficiency in chronic kidney disease. J Am Soc Nephrol 16:2205–2215PubMedCrossRefGoogle Scholar
  2. 2.
    Wesseling-Perry K, Pereira RC, Wang H, Elashoff RM, Sahney S, Gales B, Juppner H, Salusky IB (2009) Relationship between plasma FGF-23 concentration and bone mineralization in children with renal failure on peritoneal dialysis. J Clin Endocrinol Metab 94:511–517PubMedCrossRefGoogle Scholar
  3. 3.
    Fliser D, Kollerits B, Neyer U, Ankerst DP, Lhotta K, Lingenhel A, Ritz E, Kronenberg F, Kuen E, Konig P, Kraatz G, Mann JF, Muller GA, Kohler H, Riegler P (2007) Fibroblast growth factor 23 (FGF23) predicts progression of chronic kidney disease: the Mild to Moderate Kidney Disease (MMKD) Study. J Am Soc Nephrol 18:2600–2608PubMedCrossRefGoogle Scholar
  4. 4.
    Isakova T, Xie H, Yang W, Xie D, Anderson AH, Scialla J, Wahl P, Gutierrez OM, Steigerwalt S, He J, Schwartz S, Lo J, Ojo A, Sondheimer J, Hsu CY, Lash J, Leonard M, Kusek JW, Feldman HI, Wolf M (2011) Fibroblast growth factor 23 and risks of mortality and end-stage renal disease in patients with chronic kidney disease. JAMA 305:2432–2439PubMedCrossRefGoogle Scholar
  5. 5.
    Gutierrez OM, Januzzi JL, Isakova T, Laliberte K, Smith K, Collerone G, Sarwar A, Hoffmann U, Coglianese E, Christenson R, Wang TJ, deFilippi C, Wolf M (2009) Fibroblast growth factor 23 and left ventricular hypertrophy in chronic kidney disease. Circulation 119:2545–2552PubMedCrossRefGoogle Scholar
  6. 6.
    Jean G, Bresson E, Terrat JC, Vanel T, Hurot JM, Lorriaux C, Mayor B, Chazot C (2009) Peripheral vascular calcification in long-haemodialysis patients: associated factors and survival consequences. Nephrol Dial Transplant 24:948–955PubMedCrossRefGoogle Scholar
  7. 7.
    Gutierrez OM, Mannstadt M, Isakova T, Rauh-Hain JA, Tamez H, Shah A, Smith K, Lee H, Thadhani R, Jüppner H, Wolf M (2008) Fibroblast growth factor 23 and mortality among patients undergoing hemodialysis. N Engl J Med 359:584–592PubMedCrossRefGoogle Scholar
  8. 8.
    Wesseling-Perry K, Tsai EW, Ettenger RB, Juppner H, Salusky IB (2011) Mineral abnormalities and long-term graft function in pediatric renal transplant recipients: a role for FGF-23? Nephrol Dial Transplant 26:3779–3784PubMedCrossRefGoogle Scholar
  9. 9.
    Wolf M, Molnar MZ, Amaral AP, Czira ME, Rudas A, Ujszaszi A, Kiss I, Rosivall L, Kosa J, Lakatos P, Kovesdy CP, Mucsi I (2011) Elevated fibroblast growth factor 23 is a risk factor for kidney transplant loss and mortality. J Am Soc Nephrol 22:956–966PubMedCrossRefGoogle Scholar
  10. 10.
    Garabedian M, Silve C, Levy-Bentolila D, Bourdeau A, Ulmann A, Nguyen TM, Lieberherr M, Broyer M, Balsan S (1981) Changes in plasma 1,25 and 24,25-dihydroxyvitamin D after renal transplantation in children. Kidney Int 20:403–410PubMedCrossRefGoogle Scholar
  11. 11.
    Reinhardt W, Bartelworth H, Jockenhovel F, Schmidt-Gayk H, Witzke O, Wagner K, Heemann UW, Reinwein D, Philipp T, Mann K (1998) Sequential changes of biochemical bone parameters after kidney transplantation. Nephrol Dial Transplant 13:436–442PubMedCrossRefGoogle Scholar
  12. 12.
    Nordal KP, Dahl E, Halse J, Aksnes L, Thomassen Y, Flatmark A (1992) Aluminum metabolism and bone histology after kidney transplantation: a one-year follow-up study. J Clin Endocrinol Metab 74:1140–1145PubMedCrossRefGoogle Scholar
  13. 13.
    Larsson T, Nisbeth U, Ljunggren O, Jüppner H, Jonsson KB (2003) Circulating concentration of FGF-23 increases as renal function declines in patients with chronic kidney disease, but does not change in response to variation in phosphate intake in healthy volunteers. Kidney Int 64:2272–2279PubMedCrossRefGoogle Scholar
  14. 14.
    Bhan I, Shah A, Holmes J, Isakova T, Gutierrez O, Burnett SA, Jüppner H, Wolf M (2006) Post-transplant hypophosphatemia: tertiary ‘Hyper-Phosphatoninism’? Kidney Int 70:1486–1494PubMedCrossRefGoogle Scholar
  15. 15.
    Evenepoel P, Naesens M, Claes K, Kuypers D, Vanrenterghem Y (2007) Tertiary ‘hyperphosphatoninism’ accentuates hypophosphatemia and suppresses calcitriol levels in renal transplant recipients. Am J Transplant 7:1193–1200PubMedCrossRefGoogle Scholar
  16. 16.
    Pande S, Ritter CS, Rothstein M, Wiesen K, Vassiliadis J, Kumar R, Schiavi SC, Slatapolsky E, Brown AJ (2006) FGF-23 and sFRP-4 in chronic kidney disease and post-renal transplantation. Nephron Physiol 104:23–32CrossRefGoogle Scholar
  17. 17.
    Isakova T, Xie H, Barchi-Chung A, Vargas G, Sowden N, Houston J, Wahl P, Lundquist A, Epstein M, Smith K, Contreras G, Ortega L, Lenz O, Briones P, Egbert P, Ikizler TA, Jueppner H, Wolf M (2011) Fibroblast growth factor 23 in patients undergoing peritoneal dialysis. Clin J Am Soc Nephrol 6:2688–2695PubMedCrossRefGoogle Scholar
  18. 18.
    Bhattacharyya N, Wiench M, Dumitrescu C, Connolly BM, Bugge TH, Patel HV, Gafni RI, Cherman N, Cho M, Hager GL, Collins MT (2012) Mechanism of FGF23 processing in fibrous dysplasia. J Bone Miner Res 27:1132–1141PubMedCrossRefGoogle Scholar
  19. 19.
    Sato T, Fukagawa M, Uchida K, Katayama A, Nagasaka T, Matsuoka S, Goto N, Tominaga Y, Kobayashi T, Nakao A (2009) 1,25-dihydroxyvitamin D synthesis after renal transplantation: the role of fibroblast growth factor 23 and cyclosporine. Clin Transplant 23:368–374PubMedCrossRefGoogle Scholar
  20. 20.
    Sanchez Fructuoso AI, Maestro ML, Calvo N, De La Orden V, Perez Flores I, Vidaurreta M, Valero R, Fernandez-Perez C, Barrientos A (2012) Role of fibroblast growth factor 23 (FGF23) in the metabolism of phosphorus and calcium immediately after kidney transplantation. Transplant Proc 44:2551–2554PubMedCrossRefGoogle Scholar
  21. 21.
    Kawarazaki H, Shibagaki Y, Fukumoto S, Kido R, Nakajima I, Fuchinoue S, Fujita T, Fukagawa M, Teraoka S (2011) The relative role of fibroblast growth factor 23 and parathyroid hormone in predicting future hypophosphatemia and hypercalcemia after living donor kidney transplantation: a 1-year prospective observational study. Nephrol Dial Transplant 26:2691–2695PubMedCrossRefGoogle Scholar
  22. 22.
    Nakanishi S, Kazama JJ, Nii-Kono T, Omori K, Yamashita T, Fukumoto S, Gejyo F, Shigematsu T, Fukagawa M (2005) Serum fibroblast growth factor-23 levels predict the future refractory hyperparathyroidism in dialysis patients. Kidney Int 67:1171–1178PubMedCrossRefGoogle Scholar
  23. 23.
    Gazdar AF, Dammin GJ (1970) Neural degeneration and regeneration in human renal transplants. N Engl J Med 283:222–224PubMedCrossRefGoogle Scholar
  24. 24.
    Dai B, David V, Alshayeb HM, Showkat A, Gyamlani G, Horst RL, Wall BM, Quarles LD (2012) Assessment of 24,25(OH)2D levels does not support FGF23-mediated catabolism of vitamin D metabolites. Kidney Int 82:1061–1070PubMedCrossRefGoogle Scholar
  25. 25.
    Spalding EM, Chamney PW, Farrington K (2002) Phosphate kinetics during hemodialysis: evidence for biphasic regulation. Kidney Int 61:655–667PubMedCrossRefGoogle Scholar
  26. 26.
    Shimada T, Urakawa I, Isakova T, Yamazaki Y, Epstein M, Wesseling-Perry K, Wolf M, Salusky IB, Jüppner H (2010) Circulating fibroblast growth factor 23 in patients with end-stage renal disease treated by peritoneal dialysis is intact and biologically active. J Clin Endocrinol Metab 95:578–585PubMedCrossRefGoogle Scholar
  27. 27.
    Bacchetta J, Dubourg L, Harambat J, Ranchin B, Bou-Jaoude P, Arnaud S, Carlier MC, Richard M, Cochat P (2010) The influence of glomerular filtration rate and age on fibroblast growth factor 23 serum levels in pediatric chronic kidney disease. J Clin Endocrinol Metab 95:1741–1748PubMedCrossRefGoogle Scholar
  28. 28.
    Mendoza JM, Isakova T, Ricardo AC, Xie H, Navaneethan SD, Anderson AH, Bazzano LA, Xie D, Kretzler M, Nessel L, Hamm LL, Negrea L, Leonard MB, Raj D, Wolf M (2012) Fibroblast Growth Factor 23 and Inflammation in CKD. Clin J Am Soc Nephrol 7:1155–1162CrossRefGoogle Scholar
  29. 29.
    Krajisnik T, Bjorklund P, Marsell R, Ljunggren O, Akerstrom G, Jonsson KB, Westin G, Larsson TE (2007) Fibroblast growth factor-23 regulates parathyroid hormone and 1alpha-hydroxylase expression in cultured bovine parathyroid cells. J Endocrinol 195:125–131PubMedCrossRefGoogle Scholar
  30. 30.
    Ben-Dov IZ, Galitzer H, Lavi-Moshayoff V, Goetz R, Kuro O, Mohammadi M, Sirkis R, Naveh-Many T, Silver J (2007) The parathyroid is a target organ for FGF23 in rats. J Clin Invest 117:4003–4008PubMedGoogle Scholar

Copyright information

© IPNA 2013

Authors and Affiliations

  • Katherine Wesseling-Perry
    • 1
  • Renata C. Pereira
    • 1
  • Eileen Tsai
    • 1
  • Robert Ettenger
    • 1
  • Harald Jüppner
    • 2
  • Isidro B. Salusky
    • 1
  1. 1.Department of PediatricsDavid Geffen School of Medicine at UCLALos AngelesUSA
  2. 2.Endocrine Unit and Pediatric Nephrology UnitMassachusetts General Hospital and Harvard Medical SchoolBostonUSA

Personalised recommendations