Advertisement

Pediatric Nephrology

, Volume 28, Issue 10, pp 2035–2042 | Cite as

Associations between fibroblast growth factor 23 and cardiac characteristics in pediatric heart failure

  • Tamara IsakovaEmail author
  • Jessica Houston
  • Laura Santacruz
  • Eva Schiavenato
  • Gabriel Somarriba
  • William G. Harmon
  • Steven E. Lipshultz
  • Tracie L. Miller
  • Paolo G. Rusconi
Original Article

Abstract

Background

In adults with heart failure, elevated levels of fibroblast growth factor 23 (FGF23) are associated with mortality. Data on FGF23 levels in pediatric heart failure are lacking.

Patients and methods

We conducted a cross-sectional study of 17 healthy children (mean age 13 years) and 20 pediatric patients with heart failure (mean age 12 years) who underwent echocardiography and for whom the following measurements were taken: plasma FGF23 and parathyroid hormone (PTH) and serum phosphate, creatinine and N-terminal prohormone brain natriuretic peptide (NT-proBNP). Symptom severity was assessed with the New York Heart Association and the Ross classification systems.

Results

Of the 20 patients, 11 had dilated cardiomyopathy, four had congenital heart disease, three had hypertrophic cardiomyopathy, one had a failing heart transplant and one had pulmonary hypertension. Mean phosphate levels in these patients were within the reported reference range for healthy children. Median PTH levels were in the normal range in patients and controls. The median FGF23 level was higher in patients versus controls (110.9 vs. 66.4 RU/ml; P = 0.03) and higher in patients on diuretics versus other patients (222.4 vs. 82.1 RU/ml; P = 0.01). Levels of FGF23 and NT-proBNP were directly correlated (r = 0.47, P = 0.04), and patients with greater physical functional impairment had higher FGF23 levels (142.5 in those with moderate-severe limitation vs. 92.8 RU/ml in those with no limitation; P = 0.05). Among patients with dilated cardiomyopathy, higher FGF23 levels were associated with a greater left ventricular end-diastolic diameter (r = 0.63, P = 0.04).

Conclusion

FGF23 levels are elevated in children with heart failure and are associated with diuretic use, severity of heart failure and left ventricular dilation.

Keywords

Heart failure Fibroblast growth factor 23 Parathyroid hormone Diuretics N-terminal prohormone brain natriuretic peptide 

Notes

Acknowledgments

This study was supported by grants from the National Institute of Health: K23DK087858 (TI), R01HL111459, R01HL109090, R01HL053392, R01HL087000 (SEL) and R01HL095127 (TLM), and the Children’s Cardiomyopathy Foundation (SEL).

Disclosures

None.

References

  1. 1.
    Shimada T, Hasegawa H, Yamazaki Y, Muto T, Hino R, Takeuchi Y, Fujita T, Nakahara K, Fukumoto S, Yamashita T (2004) FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J Bone Miner Res 19:429–435CrossRefPubMedGoogle Scholar
  2. 2.
    Ferrari SL, Bonjour JP, Rizzoli R (2005) Fibroblast growth factor-23 relationship to dietary phosphate and renal phosphate handling in healthy young men. J Clin Endocrinol Metab 90:1519–1524CrossRefPubMedGoogle Scholar
  3. 3.
    Antoniucci DM, Yamashita T, Portale AA (2006) Dietary phosphorus regulates serum fibroblast growth factor-23 concentrations in healthy men. J Clin Endocrinol Metab 91:3144–3149CrossRefPubMedGoogle Scholar
  4. 4.
    Burnett SM, Gunawardene SC, Bringhurst FR, Juppner H, Lee H, Finkelstein JS (2006) Regulation of C-terminal and intact FGF-23 by dietary phosphate in men and women. J Bone Miner Res 21:1187–1196CrossRefPubMedGoogle Scholar
  5. 5.
    Wolf M (2012) Update on fibroblast growth factor 23 in chronic kidney disease. Kidney Int 82:737–747CrossRefPubMedGoogle Scholar
  6. 6.
    Gutierrez O, Isakova T, Rhee E, Shah A, Holmes J, Collerone G, Juppner H, Wolf M (2005) Fibroblast growth factor-23 mitigates hyperphosphatemia but accentuates calcitriol deficiency in chronic kidney disease. J Am Soc Nephrol 16:2205–2215CrossRefPubMedGoogle Scholar
  7. 7.
    Isakova T, Xie H, Barchi-Chung A, Vargas G, Sowden N, Houston J, Wahl P, Lundquist A, Epstein M, Smith K, Contreras G, Ortega L, Lenz O, Briones P, Egbert P, Ikizler TA, Jueppner H, Wolf M (2011) Fibroblast growth factor 23 in patients undergoing peritoneal dialysis. Clin J Am Soc Nephrol 6:2688–2695CrossRefPubMedGoogle Scholar
  8. 8.
    Parker BD, Schurgers LJ, Brandenburg VM, Christenson RH, Vermeer C, Ketteler M, Shlipak MG, Whooley MA, Ix JH (2010) The associations of fibroblast growth factor 23 and uncarboxylated matrix Gla protein with mortality in coronary artery disease: the Heart and Soul Study. Ann Intern Med 152:640–648CrossRefPubMedGoogle Scholar
  9. 9.
    Isakova T, Xie H, Yang W, Xie D, Anderson AH, Scialla J, Wahl P, Gutierrez OM, Steigerwalt S, He J, Schwartz S, Lo J, Ojo A, Sondheimer J, Hsu CY, Lash J, Leonard M, Kusek JW, Feldman HI, Wolf M (2011) Fibroblast growth factor 23 and risks of mortality and end-stage renal disease in patients with chronic kidney disease. JAMA 305:2432–2439CrossRefPubMedGoogle Scholar
  10. 10.
    Kendrick J, Cheung AK, Kaufman JS, Greene T, Roberts WL, Smits G, Chonchol M (2011) FGF-23 associates with death, cardiovascular events, and initiation of chronic dialysis. J Am Soc Nephrol 22:1913–1922CrossRefPubMedGoogle Scholar
  11. 11.
    Arnlov J, Carlsson AC, Sundstrom J, Ingelsson E, Larsson A, Lind L, Larsson TE (2013) Serum FGF23 and risk of cardiovascular events in relation to mineral metabolism and cardiovascular pathology. Clin J Am Soc Nephrol 8:781–786CrossRefPubMedGoogle Scholar
  12. 12.
    Isakova T, Gutierrez OM, Wolf M (2009) A blueprint for randomized trials targeting phosphorus metabolism in chronic kidney disease. Kidney Int 76:705–716CrossRefPubMedGoogle Scholar
  13. 13.
    Hsu HJ, Wu MS (2009) Fibroblast growth factor 23: a possible cause of left ventricular hypertrophy in hemodialysis patients. Am J Med Sci 337:116–122CrossRefPubMedGoogle Scholar
  14. 14.
    Seeherunvong W, Abitbol CL, Chandar J, Rusconi P, Zilleruelo GE, Freundlich M (2012) Fibroblast growth factor 23 and left ventricular hypertrophy in children on dialysis. Pediatr Nephrol 27:2129–2136Google Scholar
  15. 15.
    Plischke M, Neuhold S, Adlbrecht C, Bielesz B, Shayganfar S, Bieglmayer C, Szekeres T, Horl WH, Strunk G, Vavken P, Pacher R, Hulsmann M (2012) Inorganic phosphate and FGF-23 predict outcome in stable systolic heart failure. Eur J Clin Invest 42:649–656CrossRefPubMedGoogle Scholar
  16. 16.
    Gruson D, Lepoutre T, Ketelslegers JM, Cumps J, Ahn SA, Rousseau MF (2012) C-terminal FGF23 is a strong predictor of survival in systolic heart failure. Peptides 37:258–262CrossRefPubMedGoogle Scholar
  17. 17.
    Smith K, deFilippi C, Isakova T, Gutierrez OM, Laliberte K, Seliger S, Kelley W, Duh SH, Hise M, Christenson R, Wolf M, Januzzi J (2013) Fibroblast growth factor 23, high-sensitivity cardiac troponin, and left ventricular hypertrophy in CKD. Am J Kidney Dis 61:67–73CrossRefPubMedGoogle Scholar
  18. 18.
    Holden RM, Beseau D, Booth SL, Adams MA, Garland JS, Morton RA, Collier CP, Foley RN (2012) FGF-23 is associated with cardiac troponin T and mortality in hemodialysis patients. Hemodial Int 16:53–58PubMedGoogle Scholar
  19. 19.
    Faul C, Amaral AP, Oskouei B, Hu MC, Sloan A, Isakova T, Gutierrez OM, Aguillon-Prada R, Lincoln J, Hare JM, Mundel P, Morales A, Scialla J, Fischer M, Soliman EZ, Chen J, Go AS, Rosas SE, Nessel L, Townsend RR, Feldman HI, St John Sutton M, Ojo A, Gadegbeku C, Di Marco GS, Reuter S, Kentrup D, Tiemann K, Brand M, Hill JA, Moe OW, Kuro OM, Kusek JW, Keane MG, Wolf M (2011) FGF23 induces left ventricular hypertrophy. J Clin Invest 121:4393–4408CrossRefPubMedGoogle Scholar
  20. 20.
    Rosenthal D, Chrisant MR, Edens E, Mahony L, Canter C, Colan S, Dubin A, Lamour J, Ross R, Shaddy R, Addonizio L, Beerman L, Berger S, Bernstein D, Blume E, Boucek M, Checchia P, Dipchand A, Drummond-Webb J, Fricker J, Friedman R, Hallowell S, Jaquiss R, Mital S, Pahl E, Pearce FB, Rhodes L, Rotondo K, Rusconi P, Scheel J, Pal Singh T, Towbin J (2004) International Society for Heart and Lung Transplantation: Practice guidelines for management of heart failure in children. J Heart Lung Transplant 23:1313–1333CrossRefPubMedGoogle Scholar
  21. 21.
    Miller TL, Somarriba G, Orav EJ, Mendez AJ, Neri D, Schaefer N, Forster L, Goldberg R, Scott GB, Lipshultz SE (2010) Biomarkers of vascular dysfunction in children infected with human immunodeficiency virus-1. J Acquir Immune Defic Syndr 55:182–188CrossRefPubMedGoogle Scholar
  22. 22.
    Grenier MA, Osganian SK, Cox GF, Towbin JA, Colan SD, Lurie PR, Sleeper LA, Orav EJ, Lipshultz SE (2000) Design and implementation of the North American Pediatric Cardiomyopathy Registry. Am Heart J 139:S86–S95CrossRefPubMedGoogle Scholar
  23. 23.
    Ross RD, Daniels SR, Schwartz DC, Hannon DW, Shukla R, Kaplan S (1987) Plasma norepinephrine levels in infants and children with congestive heart failure. Am J Cardiol 59:911–914CrossRefPubMedGoogle Scholar
  24. 24.
    Schwartz GJ, Munoz A, Schneider MF, Mak RH, Kaskel F, Warady BA, Furth SL (2009) New equations to estimate GFR in children with CKD. J Am Soc Nephrol 20:629–637CrossRefPubMedGoogle Scholar
  25. 25.
    Lipshultz SE, Miller TL, Scully RE, Lipsitz SR, Rifai N, Silverman LB, Colan SD, Neuberg DS, Dahlberg SE, Henkel JM, Asselin BL, Athale UH, Clavell LA, Laverdiere C, Michon B, Schorin MA, Sallan SE (2012) Changes in cardiac biomarkers during doxorubicin treatment of pediatric patients with high-risk acute lymphoblastic leukemia: associations with long-term echocardiographic outcomes. J Clin Oncol 30:1042–1049CrossRefPubMedGoogle Scholar
  26. 26.
    Colan SD, Parness IA, Spevak PJ, Sanders SP (1992) Developmental modulation of myocardial mechanics: age- and growth-related alterations in afterload and contractility. J Am Coll Cardiol 19:619–629CrossRefPubMedGoogle Scholar
  27. 27.
    Sluysmans T, Colan SD (2005) Theoretical and empirical derivation of cardiovascular allometric relationships in children. J Appl Physiol 99:445–457CrossRefPubMedGoogle Scholar
  28. 28.
    Lipshultz SE, Easley KA, Orav EJ, Kaplan S, Starc TJ, Bricker JT, Lai WW, Moodie DS, McIntosh K, Schluchter MD, Colan SD (1998) Left ventricular structure and function in children infected with human immunodeficiency virus: the prospective P2C2 HIV Multicenter Study. Pediatric Pulmonary and Cardiac Complications of Vertically Transmitted HIV Infection (P2C2 HIV) Study Group. Circulation 97:1246–1256CrossRefPubMedGoogle Scholar
  29. 29.
    Schiller NB, Shah PM, Crawford M, DeMaria A, Devereux R, Feigenbaum H, Gutgesell H, Reichek N, Sahn D, Schnittger I (1989) Recommendations for quantitation of the left ventricle by two-dimensional echocardiography. American Society of Echocardiography Committee on Standards, Subcommittee on Quantitation of Two-Dimensional Echocardiograms. J Am Soc Echocardiogr 2:358–367PubMedGoogle Scholar
  30. 30.
    Devereux RB, Alonso DR, Lutas EM, Gottlieb GJ, Campo E, Sachs I, Reichek N (1986) Echocardiographic assessment of left ventricular hypertrophy: comparison to necropsy findings. Am J Cardiol 57:450–458CrossRefPubMedGoogle Scholar
  31. 31.
    Mitchell DM, Juppner H (2010) Regulation of calcium homeostasis and bone metabolism in the fetus and neonate. Curr Opin Endocrinol Diabetes Obes 17:25–30PubMedGoogle Scholar
  32. 32.
    Bacchetta J, Cochat P, Salusky IB, Wesseling-Perry K (2012) Uric acid and IGF1 as possible determinants of FGF23 metabolism in children with normal renal function. Pediatr Nephrol 27:1131–1138CrossRefPubMedGoogle Scholar
  33. 33.
    Fischer DC, Mischek A, Wolf S, Rahn A, Salweski B, Kundt G, Haffner D (2012) Paediatric reference values for the C-terminal fragment of fibroblast-growth factor-23, sclerostin, bone-specific alkaline phosphatase and isoform 5b of tartrate-resistant acid phosphatase. Ann Clin Biochem 49:546–553CrossRefPubMedGoogle Scholar
  34. 34.
    Gutierrez OM, Januzzi JL, Isakova T, Laliberte K, Smith K, Collerone G, Sarwar A, Hoffmann U, Coglianese E, Christenson R, Wang TJ, deFilippi C, Wolf M (2009) Fibroblast growth factor 23 and left ventricular hypertrophy in chronic kidney disease. Circulation 119:2545–2552CrossRefPubMedGoogle Scholar
  35. 35.
    Scialla JJ, Ling Lau W, Reilly MP, Isakova T, Hsueh-Ying Y, Crouthamel MH, Chavkin NW, Rahman M, Wahl P, Amaral AP, Hamano T, Master SR, Nessel L, Chai B, Xie D, Kallem RR, Chen J, Lash J, Kusek J, Budoff M, Giachelli CM, Wolf M for the Chronic Renal Insufficiency Cohort Study (2013) Fibroblast growth factor 23 is not associated with and does not induce arterial calcification. Kidney Int. doi: 10.1038/ki.2013.3 Google Scholar
  36. 36.
    Masi L, Franceschelli F, Leoncini G, Gozzini A, Rigante D, La Torre F, Matucci-Cerinic M, Brandi ML, Falcini F (2013) Can fibroblast growth factor (FGF)-23 circulating levels suggest coronary artery abnormalities in children with Kawasaki disease? Clin Exp Rheumatol 31:149–153PubMedGoogle Scholar
  37. 37.
    Ratnasamy C, Kinnamon DD, Lipshultz SE, Rusconi P (2008) Associations between neurohormonal and inflammatory activation and heart failure in children. Am Heart J 155:527–533CrossRefPubMedGoogle Scholar
  38. 38.
    Rusconi PG, Ludwig DA, Ratnasamy C, Mas R, Harmon WG, Colan SD, Lipshultz SE (2010) Serial measurements of serum NT-proBNP as markers of left ventricular systolic function and remodeling in children with heart failure. Am Heart J 160:776–783CrossRefPubMedGoogle Scholar
  39. 39.
    Lipshultz SE, Somers MJ, Lipsitz SR, Colan SD, Jabs K, Rifai N (2003) Serum cardiac troponin and subclinical cardiac status in pediatric chronic renal failure. Pediatrics 112:79–86CrossRefPubMedGoogle Scholar
  40. 40.
    van Husen M, Fischer AK, Lehnhardt A, Klaassen I, Moller K, Muller-Wiefel DE, Kemper MJ (2010) Fibroblast growth factor 23 and bone metabolism in children with chronic kidney disease. Kidney Int 78:200–206CrossRefPubMedGoogle Scholar
  41. 41.
    Isakova T, Xie H, Barchi-Chung A, Smith K, Sowden N, Epstein M, Collerone G, Keating L, Juppner H, Wolf M (2012) Daily variability in mineral metabolites in CKD and effects of dietary calcium and calcitriol. Clin J Am Soc Nephrol 7:820–828CrossRefPubMedGoogle Scholar
  42. 42.
    Thadhani R, Appelbaum E, Pritchett Y, Chang Y, Wenger J, Tamez H, Bhan I, Agarwal R, Zoccali C, Wanner C, Lloyd-Jones D, Cannata J, Thompson BT, Andress D, Zhang W, Packham D, Singh B, Zehnder D, Shah A, Pachika A, Manning WJ, Solomon SD (2012) Vitamin D therapy and cardiac structure and function in patients with chronic kidney disease: the PRIMO randomized controlled trial. JAMA 307:674–684CrossRefPubMedGoogle Scholar
  43. 43.
    Kantor PF, Rusconi P, Lipshultz S, Mital S, Wilkinson JD, Burch M (2011) Current applications and future needs for biomarkers in pediatric cardiomyopathy and heart failure: summary from the second international conference on pediatric cardiomyopathy. Prog Pediatr Cardiol 32:11–14CrossRefPubMedGoogle Scholar

Copyright information

© IPNA 2013

Authors and Affiliations

  • Tamara Isakova
    • 1
    Email author
  • Jessica Houston
    • 1
  • Laura Santacruz
    • 2
  • Eva Schiavenato
    • 1
  • Gabriel Somarriba
    • 3
  • William G. Harmon
    • 2
  • Steven E. Lipshultz
    • 2
    • 3
  • Tracie L. Miller
    • 2
    • 3
  • Paolo G. Rusconi
    • 2
    • 3
  1. 1.Division of Nephrology and Hypertension, Department of MedicineUniversity of Miami Miller School of MedicineMiamiUSA
  2. 2.Division of Pediatric Cardiology, Department of PediatricsUniversity of Miami Miller School of MedicineMiamiUSA
  3. 3.Division of Pediatric Clinical Research, Department of PediatricsUniversity of Miami Miller School of MedicineMiamiUSA

Personalised recommendations