Pediatric Nephrology

, Volume 29, Issue 7, pp 1119–1129

mTOR inhibitors in pediatric kidney transplantation

Review

Abstract

The mammalian target of the rapamycin (mTOR) inhibitors sirolimus and everolimus are increasingly being used in pediatric kidney transplantation in different combinations and doses. Several studies have shown beneficial effects of using mTOR inhibitors in children after pediatric renal transplantation. A switch to a low-dose calcineurin inhibitor (CNI) and mTOR inhibitor has been proven to stabilize the glomerular filtration rate. Additionally, de novo studies using a low-dose CNI and an mTOR inhibitor have shown good graft survival and a low number of rejections. Side effects of mTOR inhibitors, such as hyperlipidemia, wound healing problems, and proteinuria, mainly occur if high doses are given and if treatment is not combined with a CNI. Lower doses of mTOR inhibitors do not result in growth impairment or reduced testosterone levels. Treatment with mTOR inhibitors is also associated with a lower number of viral infections, especially cytomegalovirus. Due to their antiproliferative effect, mTOR inhibitors could theoretically reduce the risk of post-transplant lymphoproliferative disease. mTOR inhibitors, especially in combination with low-dose CNIs, can safely be used in children after kidney transplantation as de novo therapy or for conversion from CNI- and mycophenolate mofetil-based regimens.

Keywords

Everolimus Sirolimus mTOR inhibitors Pediatric kidney transplantation Survival 

References

  1. 1.
    Joosten SA, Sijpkens YW, van Kooten C, Paul LC (2005) Chronic renal allograft rejection: Pathophysiologic considerations. Kidney Int 68:1–13PubMedCrossRefGoogle Scholar
  2. 2.
    Offner G, Toenshoff B, Hocker B, Krauss M, Bulla M, Cochat P, Fehrenbach H, Fischer W, Foulard M, Hoppe B, Hoyer PF, Jungraithmayr TC, Klaus G, Latta K, Leichter H, Mihatsch MJ, Misselwitz J, Montoya C, Muller-Wiefel DE, Neuhaus TJ, Pape L, Querfeld U, Plank C, Schwarke D, Wygoda S, Zimmerhackl LB (2008) Efficacy and safety of basiliximab in pediatric renal transplant patients receiving cyclosporine, mycophenolate mofetil, and steroids. Transplantation 86:1241–1248PubMedCrossRefGoogle Scholar
  3. 3.
    North American Pediatric Renal Trials and Collaborative Studies (2011) Annual dialysis report. Available at: https://Web.emmes.com/study/ped/annlrept/annualrept2011.pdf
  4. 4.
    Grenda R, Watson A, Trompeter R, Tonshoff B, Jaray J, Fitzpatrick M, Murer L, Vondrak K, Maxwell H, van Damme-Lombaerts R, Loirat C, Mor E, Cochat P, Milford DV, Brown M, Webb NJ (2010) A randomized trial to assess the impact of early steroid withdrawal on growth in pediatric renal transplantation: The TWIST study. Am J Transplant 10:828–836PubMedCrossRefGoogle Scholar
  5. 5.
    Cole OJ, Shehata M, Rigg KM (1998) Effect of SDZ RAD on transplant arteriosclerosis in the rat aortic model. Transplant Proc 30:2200–2203PubMedCrossRefGoogle Scholar
  6. 6.
    Schuurman HJ, Pally C, Weckbecker G, Schuler W, Bruns C (1999) SDZ RAD inhibits cold ischemia-induced vascular remodeling. Transplant Proc 31:1024–1025PubMedCrossRefGoogle Scholar
  7. 7.
    Matsumoto Y, Hof A, Baumlin Y, Muller M, Hof RP (2004) Differential effects of everolimus and cyclosporine A on intimal alpha-actin-positive cell dynamics of carotid allografts in mice. Transplantation 78:345–351PubMedCrossRefGoogle Scholar
  8. 8.
    Faivre S, Kroemer G, Raymond E (2006) Current development of mTOR inhibitors as anticancer agents. Nat Rev Drug Discov 5:671–688PubMedCrossRefGoogle Scholar
  9. 9.
    Rubinsztein DC, Gestwicki JE, Murphy LO, Klionsky DJ (2007) Potential therapeutic applications of autophagy. Nat Rev Drug Discov 6:304–312PubMedCrossRefGoogle Scholar
  10. 10.
    Majumder PK, Febbo PG, Bikoff R, Berger R, Xue Q, McMahon LM, Manola J, Brugarolas J, McDonnell TJ, Golub TR, Loda M, Lane HA, Sellers WR (2004) mTOR inhibition reverses akt-dependent prostate intraepithelial neoplasia through regulation of apoptotic and HIF-1-dependent pathways. Nat Med 10:594–601PubMedCrossRefGoogle Scholar
  11. 11.
    Hartford CM, Ratain MJ (2007) Rapamycin: Something old, something new, sometimes borrowed and now renewed. Clin Pharmacol Ther 82:381–388PubMedCrossRefGoogle Scholar
  12. 12.
    Chapman JR, Valantine H, Albanell J, Arns WA, Campistol JM, Eisen H, Frigerio M, Lehmkuhl H, Marcen R, Morris R, Nashan B, Pascual J, Pohanka E, Segovia J, Zuckermann A (2007) Proliferation signal inhibitors in transplantation: Questions at the cutting edge of everolimus therapy. Transplant Proc 39:2937–2950PubMedCrossRefGoogle Scholar
  13. 13.
    Gaumann A, Schlitt HJ, Geissler EK (2008) Immunosuppression and tumor development in organ transplant recipients: The emerging dualistic role of rapamycin. Transpl Int 21:207–217PubMedCrossRefGoogle Scholar
  14. 14.
    Gupta P, Kaufman S, Fishbein TM (2005) Sirolimus for solid organ transplantation in children. Pediatr Transplant 9:269–276PubMedCrossRefGoogle Scholar
  15. 15.
    Hymes LC, Warshaw BL (2005) Sirolimus in pediatric patients: Results in the first 6 months post-renal transplant. Pediatr Transplant 9:520–522PubMedCrossRefGoogle Scholar
  16. 16.
    Ettenger RB, Grimm EM (2001) Safety and efficacy of TOR inhibitors in pediatric renal transplant recipients. Am J Kidney Dis 38:S22–S28PubMedCrossRefGoogle Scholar
  17. 17.
    Pape L, Ahlenstiel T, Ehrich JH, Offner G (2007) Reversal of loss of glomerular filtration rate in children with transplant nephropathy after switch to everolimus and low-dose cyclosporine A. Pediatr Transplant 11:291–295PubMedCrossRefGoogle Scholar
  18. 18.
    Federal Drug Administration. Available at: http://www.acessdata.fda.gov/scripts/cder/drugsatfda/index.cfm. Accessed 25 Apr 2013
  19. 19.
  20. 20.
    Garcia CD, Bittencourt VB, Alves AB, Garcia VD, Tumelero A, Antonello JS, Malheiros D (2006) Conversion to sirolimus in pediatric renal transplantation recipients. Transplant Proc 38:1901–1903PubMedCrossRefGoogle Scholar
  21. 21.
    Vilalta R, Vila A, Nieto J, Callis L (2003) Rapamycin use and rapid withdrawal of calcineurin inhibitors in pediatric renal transplantation. Transplant Proc 35:703–704PubMedCrossRefGoogle Scholar
  22. 22.
    MacDonald AS (2003) Rapamycin in combination with cyclosporine or tacrolimus in liver, pancreas, and kidney transplantation. Transplant Proc 35:201S–208SPubMedCrossRefGoogle Scholar
  23. 23.
    Falger JC, Mueller T, Arbeiter K, Boehm M, Regele H, Balzar E, Aufricht C (2006) Conversion from calcineurin inhibitor to sirolimus in pediatric chronic allograft nephropathy. Pediatr Transplant 10:565–569PubMedCrossRefGoogle Scholar
  24. 24.
    Ibanez JP, Monteverde ML, Diaz MA, Goldberg J, Turconi AF (2007) Sirolimus in chronic allograft nephropathy in pediatric recipients. Pediatr Transplant 11:777–780PubMedCrossRefGoogle Scholar
  25. 25.
    Hymes LC, Warshaw BL, Amaral SG, Greenbaum LA (2008) Tacrolimus withdrawal and conversion to sirolimus at three months post-pediatric renal transplantation. Pediatr Transplant 12:773–777PubMedCrossRefGoogle Scholar
  26. 26.
    Weintraub L, Li L, Kambham N, Alexander S, Concepcion W, Miller K, Wong C, Salvatierra O, Sarwal M (2008) Patient selection critical for calcineurin inhibitor withdrawal in pediatric kidney transplantation. Pediatr Transplant 12:541–549PubMedCrossRefGoogle Scholar
  27. 27.
    Ettenger R, Hoyer PF, Grimm P, Webb N, Loirat C, Mahan JD, Mentser M, Niaudet P, Offner G, Vandamme-Lombaerts R, Hexham JM, Everolimus Pediatric Study Group (2008) Multicenter trial of everolimus in pediatric renal transplant recipients: Results at three year. Pediatr Transplant 12:456–463PubMedCrossRefGoogle Scholar
  28. 28.
    Pape L, Offner G, Kreuzer M, Froede K, Drube J, Kanzelmeyer N, Ehrich JH, Ahlenstiel T (2010) De novo therapy with everolimus, low-dose ciclosporine A, basiliximab and steroid elimination in pediatric kidney transplantation. Am J Transplant 10:2349–2354PubMedCrossRefGoogle Scholar
  29. 29.
    Pape L, Lehner F, Blume C, Ahlenstiel T (2011) Pediatric kidney transplantation followed by de novo therapy with everolimus, low-dose cyclosporine A, and steroid elimination: 3-year data. Transplantation 92:658–662PubMedCrossRefGoogle Scholar
  30. 30.
    Schachter AD, Benfield MR, Wyatt RJ, Grimm PC, Fennell RS, Herrin JT, Lirenman DS, McDonald RA, Munoz-Arizpe R, Harmon WE (2006) Sirolimus pharmacokinetics in pediatric renal transplant recipients receiving calcineurin inhibitor co-therapy. Pediatr Transplant 10:914–919PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    El-Sabrout R, Delaney V, Qadir M, Butt F, Hanson P, Butt KM (2003) Sirolimus in combination with tacrolimus or mycophenolate mofetil for minimizing acute rejection risk in renal transplant recipients—a single center experience. Transplant Proc 35:89S–94SPubMedCrossRefGoogle Scholar
  32. 32.
    Ibanez JP, Monteverde ML, Goldberg J, Diaz MA, Turconi A (2005) Sirolimus in pediatric renal transplantation. Transplant Proc 37:682–684PubMedCrossRefGoogle Scholar
  33. 33.
    Iorember FM, Patel HP, Ohana A, Hayes JR, Mahan JD, Baker PB, Rajab A (2010) Steroid avoidance using sirolimus and cyclosporine in pediatric renal transplantation: One year analysis. Pediatr Transplant 14:93–99PubMedCrossRefGoogle Scholar
  34. 34.
    Sindhi R (2003) Sirolimus in pediatric transplant recipients. Transplant Proc 35:113S–114SPubMedCrossRefGoogle Scholar
  35. 35.
    Benfield MR, Bartosh S, Ikle D, Warshaw B, Bridges N, Morrison Y, Harmon W (2010) A randomized double-blind, placebo controlled trial of steroid withdrawal after pediatric renal transplantation. Am J Transplant 10:81–88PubMedCrossRefGoogle Scholar
  36. 36.
    Alvarez-Garcia O, Carbajo-Perez E, Garcia E, Gil H, Molinos I, Rodriguez J, Ordonez FA, Santos F (2007) Rapamycin retards growth and causes marked alterations in the growth plate of young rats. Pediatr Nephrol 22:954–961PubMedCrossRefGoogle Scholar
  37. 37.
    Sanchez CP, He YZ (2009) Bone growth during rapamycin therapy in young rats. BMC Pediatr 9:3PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Rangel GA, Ariceta G (2009) Growth failure associated with sirolimus: Case report. Pediatr Nephrol 24:2047–2050PubMedCrossRefGoogle Scholar
  39. 39.
    Hymes LC, Warshaw BL (2011) Linear growth in pediatric renal transplant recipients receiving sirolimus. Pediatr Transplant 15:570–572PubMedGoogle Scholar
  40. 40.
    Gonzalez D, Garcia CD, Azocar M, Waller S, Alonso A, Ariceta G, Mejia N, Santos F (2011) Growth of kidney-transplanted pediatric patients treated with sirolimus. Pediatr Nephrol 26:961–966PubMedCrossRefGoogle Scholar
  41. 41.
    Cavanaugh TM, Schoenemen H, Goebel J (2012) The impact of sirolimus on sex hormones in male adolescent kidney recipients. Pediatr Transplant 16:280–285PubMedCrossRefGoogle Scholar
  42. 42.
    Tondolo V, Citterio F, Panocchia N, Nanni G, Favi E, Brescia A, Castagneto M (2005) Gonadal function and immunosuppressive therapy after renal transplantation. Transplant Proc 37:1915–1917PubMedCrossRefGoogle Scholar
  43. 43.
    Lee S, Coco M, Greenstein SM, Schechner RS, Tellis VA, Glicklich DG (2005) The effect of sirolimus on sex hormone levels of male renal transplant recipients. Clin Transplant 19:162–167PubMedCrossRefGoogle Scholar
  44. 44.
    Huyghe E, Zairi A, Nohra J, Kamar N, Plante P, Rostaing L (2007) Gonadal impact of target of rapamycin inhibitors (sirolimus and everolimus) in male patients: An overview. Transpl Int 20:305–311PubMedCrossRefGoogle Scholar
  45. 45.
    Kaczmarek I, Groetzner J, Adamidis I, Landwehr P, Mueller M, Vogeser M, Gerstorfer M, Uberfuhr P, Meiser B, Reichart B (2004) Sirolimus impairs gonadal function in heart transplant recipients. Am J Transplant 4:1084–1088PubMedCrossRefGoogle Scholar
  46. 46.
    Rovira J, Diekmann F, Ramirez-Bajo MJ, Banon-Maneus E, Moya-Rull D, Campistol JM (2012) Sirolimus-associated testicular toxicity: Detrimental but reversible. Transplantation 93:874–879PubMedCrossRefGoogle Scholar
  47. 47.
    Ekberg H, Tedesco-Silva H, Demirbas A, Vitko S, Nashan B, Gurkan A, Margreiter R, Hugo C, Grinyo JM, Frei U, Vanrenterghem Y, Daloze P, Halloran PF, ELITE-Symphony Study (2007) Reduced exposure to calcineurin inhibitors in renal transplantation. N Engl J Med 357:2562–2575PubMedCrossRefGoogle Scholar
  48. 48.
    Ekberg H, Bernasconi C, Tedesco-Silva H, Vitko S, Hugo C, Demirbas A, Acevedo RR, Grinyo J, Frei U, Vanrenterghem Y, Daloze P, Halloran P (2009) Calcineurin inhibitor minimization in the symphony study: Observational results 3 years after transplantation. Am J Transplant 9:1876–1885PubMedCrossRefGoogle Scholar
  49. 49.
    Nashan B, Gaston R, Emery V, Saemann MD, Mueller NJ, Couzi L, Dantal J, Shihab F, Mulgaonkar S, Seun Kim Y, Brennan DC (2012) Review of cytomegalovirus infection findings with mammalian target of rapamycin inhibitor-based immunosuppressive therapy in de novo renal transplant recipients. Transplantation 93:1075–1085PubMedCrossRefGoogle Scholar
  50. 50.
    Brennan DC, Legendre C, Patel D, Mange K, Wiland A, McCague K, Shihab FS (2011) Cytomegalovirus incidence between everolimus versus mycophenolate in de novo renal transplants: Pooled analysis of three clinical trials. Am J Transplant 11:2453–2462PubMedCrossRefGoogle Scholar
  51. 51.
    Cullis B, D’Souza R, McCullagh P, Harries S, Nicholls A, Lee R, Bingham C (2006) Sirolimus-induced remission of posttransplantation lymphoproliferative disorder. Am J Kidney Dis 47:e67–e72PubMedCrossRefGoogle Scholar
  52. 52.
    Pascual J (2007) Post-transplant lymphoproliferative disorder–the potential of proliferation signal inhibitors. Nephrol Dial Transplant 22[Suppl 1]:i27–i35PubMedCrossRefGoogle Scholar
  53. 53.
    Zaltzman JS, Prasad R, Chun K, Jothy S (2005) Resolution of renal allograft-associated post-transplant lymphoproliferative disorder with the introduction of sirolimus. Nephrol Dial Transplant 20:1748–1751PubMedCrossRefGoogle Scholar
  54. 54.
    Chiurchiu C, Carreno CA, Schiavelli R, Petrone H, Balaguer C, Trimarchi H, Pujol GS, Novoa P, Acosta F, Gonzalez C, Arriola M, Massari PU, Argentinian Registry of Everolimus Treated Renal Transplant Recipients (2010) Results of the conversion to everolimus in renal transplant recipients with posttransplantation malignancies. Transplant Proc 42:277–279PubMedCrossRefGoogle Scholar
  55. 55.
    Jimenez-Rivera C, Avitzur Y, Fecteau AH, Jones N, Grant D, Ng VL (2004) Sirolimus for pediatric liver transplant recipients with post-transplant lymphoproliferative disease and hepatoblastoma. Pediatr Transplant 8:243–248PubMedCrossRefGoogle Scholar
  56. 56.
    Augustine JJ, Bodziak KA, Hricik DE (2007) Use of sirolimus in solid organ transplantation. Drugs 67:369–391PubMedCrossRefGoogle Scholar
  57. 57.
    Schachter AD, Meyers KE, Spaneas LD, Palmer JA, Salmanullah M, Baluarte J, Brayman KL, Harmon WE (2004) Short sirolimus half-life in pediatric renal transplant recipients on a calcineurin inhibitor-free protocol. Pediatr Transplant 8:171–177PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    Powell HR, Kara T, Jones CL (2007) Early experience with conversion to sirolimus in a pediatric renal transplant population. Pediatr Nephrol 22:1773–1777PubMedCrossRefGoogle Scholar
  59. 59.
    Bumbea V, Kamar N, Ribes D, Esposito L, Modesto A, Guitard J, Nasou G, Durand D, Rostaing L (2005) Long-term results in renal transplant patients with allograft dysfunction after switching from calcineurin inhibitors to sirolimus. Nephrol Dial Transplant 20:2517–2523PubMedCrossRefGoogle Scholar
  60. 60.
    Butani L (2004) Investigation of pediatric renal transplant recipients with heavy proteinuria after sirolimus rescue. Transplantation 78:1362–1366PubMedCrossRefGoogle Scholar
  61. 61.
    Letavernier E, Bruneval P, Vandermeersch S, Perez J, Mandet C, Belair MF, Haymann JP, Legendre C, Baud L (2009) Sirolimus interacts with pathways essential for podocyte integrity. Nephrol Dial Transplant 24:630–638PubMedCrossRefGoogle Scholar
  62. 62.
    Guba M, von Breitenbuch P, Steinbauer M, Koehl G, Flegel S, Hornung M, Bruns CJ, Zuelke C, Farkas S, Anthuber M, Jauch KW, Geissler EK (2002) Rapamycin inhibits primary and metastatic tumor growth by antiangiogenesis: Involvement of vascular endothelial growth factor. Nat Med 8:128–135PubMedCrossRefGoogle Scholar
  63. 63.
    Oroszlan M, Bieri M, Ligeti N, Farkas A, Meier B, Marti HP, Mohacsi P (2010) Sirolimus and everolimus reduce albumin endocytosis in proximal tubule cells via an angiotensin II-dependent pathway. Transpl Immunol 23:125–132PubMedCrossRefGoogle Scholar
  64. 64.
    Valente JF, Hricik D, Weigel K, Seaman D, Knauss T, Siegel CT, Bodziak K, Schulak JA (2003) Comparison of sirolimus vs. mycophenolate mofetil on surgical complications and wound healing in adult kidney transplantation. Am J Transplant 3:1128–1134PubMedCrossRefGoogle Scholar
  65. 65.
    Dean PG, Lund WJ, Larson TS, Prieto M, Nyberg SL, Ishitani MB, Kremers WK, Stegall MD (2004) Wound-healing complications after kidney transplantation: A prospective, randomized comparison of sirolimus and tacrolimus. Transplantation 77:1555–1561PubMedCrossRefGoogle Scholar
  66. 66.
    Nashan B, Citterio F (2012) Wound healing complications and the use of mammalian target of rapamycin inhibitors in kidney transplantation: A critical review of the literature. Transplantation 94:547–561PubMedCrossRefGoogle Scholar
  67. 67.
    Budde K, Lehner F, Sommerer C, Arns W, Reinke P, Eisenberger U, Wuthrich RP, Scheidl S, May C, Paulus EM, Muhlfeld A, Wolters HH, Pressmar K, Stahl R, Witzke O, ZEUS Study Investigators (2012) Conversion from cyclosporine to everolimus at 4.5 months posttransplant: 3-year results from the randomized ZEUS study. Am J Transplant 12:1528–1540PubMedCrossRefGoogle Scholar
  68. 68.
    Van Damme-Lombaerts R, Webb NA, Hoyer PF, Mahan J, Lemire J, Ettenger R, McMahon L, Cambon N, Boger R, Kovarik JM (2002) Single-dose pharmacokinetics and tolerability of everolimus in stable pediatric renal transplant patients. Pediatr Transplant 6:147–152PubMedCrossRefGoogle Scholar
  69. 69.
    Zimmerman JJ, Kahan BD (1997) Pharmacokinetics of sirolimus in stable renal transplant patients after multiple oral dose administration. J Clin Pharmacol 37:405–415PubMedCrossRefGoogle Scholar
  70. 70.
    Schubert M, Venkataramanan R, Holt DW, Shaw LM, McGhee W, Reyes J, Webber S, Sindhi R (2004) Pharmacokinetics of sirolimus and tacrolimus in pediatric transplant patients. Am J Transplant 4:767–773PubMedCrossRefGoogle Scholar
  71. 71.
    Venkataramanan R, Sindhi R (2006) Sirolimus pharmacokinetic differences between children and adults. Pediatr Transplant 10:872–874PubMedCrossRefGoogle Scholar
  72. 72.
    Grimm EM, Kelley PA, Seinford RD, Gitomer JJ, Kahan BD (2000) Sirolimus pharmacokinetics in pediatric renal transplants. Pediatr Transplant 4:S86aCrossRefGoogle Scholar
  73. 73.
    Zimmerman JJ, Harper D, Getsy J, Jusko WJ (2003) Pharmacokinetic interactions between sirolimus and microemulsion cyclosporine when orally administered jointly and 4 hours apart in healthy volunteers. J Clin Pharmacol 43:1168–1176PubMedCrossRefGoogle Scholar
  74. 74.
    Vu MD, Qi S, Xu D, Wu J, Fitzsimmons WE, Sehgal SN, Dumont L, Busque S, Daloze P, Chen H (1997) Tacrolimus (FK506) and sirolimus (rapamycin) in combination are not antagonistic but produce extended graft survival in cardiac transplantation in the rat. Transplantation 64:1853–1856PubMedCrossRefGoogle Scholar
  75. 75.
    Brandhorst G, Tenderich G, Zittermann A, Oezpeker C, Koerfer R, Oellerich M, Armstrong VW (2008) Everolimus exposure in cardiac transplant recipients is influenced by concomitant calcineurin inhibitor. Ther Drug Monit 30:113–116PubMedCrossRefGoogle Scholar
  76. 76.
    Pascual J, del Castillo D, Cabello M, Pallardo L, Grinyo JM, Fernandez AM, Brunet M (2010) Interaction between everolimus and tacrolimus in renal transplant recipients: A pharmacokinetic controlled trial. Transplantation 89:994–1000PubMedCrossRefGoogle Scholar
  77. 77.
    Marin-Casino M, Crespo M, Mateu-de Antonio J, Pascual J (2011) Monitoring sirolimus levels: How does it affect the immunoassay used? Nefrologia 31:359–361PubMedGoogle Scholar
  78. 78.
    Coentrao L, Carvalho C, Sampaio S, Oliveira JG, Pestana MI (2010) Relationship between everolimus blood concentration assessed using the innofluor certican fluorescence polarization immunoassay and the architect i system sirolimus chemiluminescent microparticle immunoassay. Transplant Proc 42:1867–1869PubMedCrossRefGoogle Scholar
  79. 79.
    Katzman SD, O’Gorman WE, Villarino AV, Gallo E, Friedman RS, Krummel MF, Nolan GP, Abbas AK (2010) Duration of antigen receptor signaling determines T-cell tolerance or activation. Proc Natl Acad Sci USA 107:18085–18090PubMedCentralPubMedCrossRefGoogle Scholar
  80. 80.
    Delgoffe GM, Pollizzi KN, Waickman AT, Heikamp E, Meyers DJ, Horton MR, Xiao B, Worley PF, Powell JD (2011) The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2. Nat Immunol 12:295–303PubMedCentralPubMedCrossRefGoogle Scholar
  81. 81.
    Thomson AW, Turnquist HR, Raimondi G (2009) Immunoregulatory functions of mTOR inhibition. Nat Rev Immunol 9:324–337PubMedCentralPubMedCrossRefGoogle Scholar
  82. 82.
    Yang K, Neale G, Green DR, He W, Chi H (2011) The tumor suppressor Tsc1 enforces quiescence of naive T cells to promote immune homeostasis and function. Nat Immunol 12:888–897PubMedCentralPubMedCrossRefGoogle Scholar
  83. 83.
    Gulen MF, Kang Z, Bulek K, Youzhong W, Kim TW, Chen Y, Altuntas CZ, Sass Bak-Jensen K, McGeachy MJ, Do JS, Xiao H, Delgoffe GM, Min B, Powell JD, Tuohy VK, Cua DJ, Li X (2010) The receptor SIGIRR suppresses Th17 cell proliferation via inhibition of the interleukin-1 receptor pathway and mTOR kinase activation. Immunity 32:54–66PubMedCentralPubMedCrossRefGoogle Scholar
  84. 84.
    Delgoffe GM, Kole TP, Zheng Y, Zarek PE, Matthews KL, Xiao B, Worley PF, Kozma SC, Powell JD (2009) The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment. Immunity 30:832–844PubMedCentralPubMedCrossRefGoogle Scholar
  85. 85.
    Battaglia M, Stabilini A, Tresoldi E (2012) Expanding human T regulatory cells with the mTOR-inhibitor rapamycin. Methods Mol Biol 821:279–293PubMedCrossRefGoogle Scholar
  86. 86.
    Brouard S, Puig-Pey I, Lozano JJ, Pallier A, Braud C, Giral M, Guillet M, Londono MC, Oppenheimer F, Campistol JM, Soulillou JP, Sanchez-Fueyo A (2010) Comparative transcriptional and phenotypic peripheral blood analysis of kidney recipients under cyclosporin A or sirolimus monotherapy. Am J Transplant 10:2604–2614PubMedCrossRefGoogle Scholar
  87. 87.
    Araki K, Turner AP, Shaffer VO, Gangappa S, Keller SA, Bachmann MF, Larsen CP, Ahmed R (2009) mTOR regulates memory CD8 T-cell differentiation. Nature 460:108–112PubMedCentralPubMedCrossRefGoogle Scholar
  88. 88.
    Araki K, Youngblood B, Ahmed R (2010) The role of mTOR in memory CD8 T-cell differentiation. Immunol Rev 235:234–243PubMedCentralPubMedCrossRefGoogle Scholar
  89. 89.
    Pascual J, Boletis IN, Campistol JM (2006) Everolimus (certican) in renal transplantation: A review of clinical trial data, current usage, and future directions. Transplant Rev (Orlando) 20:1–18CrossRefGoogle Scholar
  90. 90.
    Zuckermann A, Manito N, Epailly E, Fiane A, Bara C, Delgado JF, Lehmkuhl H, Ross H, Eisen H, Chapman J, Valantine H (2008) Multidisciplinary insights on clinical guidance for the use of proliferation signal inhibitors in heart transplantation. J Heart Lung Transplant 27:141–149PubMedCrossRefGoogle Scholar
  91. 91.
    Lexicomp (2013) Lexicomp Online™. Available at: http://www.uptodate.com/contents/everolimus-drug-information?source=search_result&search=everolimus&selectedTitle=1%7E80#F7710406. Lexi-Drugs Online™, Lexicomp Inc., Hudson. Accessed 25 Apr 2013
  92. 92.
    Lexicomp (2013) Lexicomp Online™. Available at: http://www.uptodate.com/contents/sirolimus-drug-information?source=search_result&search=sirolimus&selectedTitle=1%7E150#F221195. Lexi-Drugs Online™, Lexicomp, Inc., Hudson. Accessed 25 Apr 2013

Copyright information

© IPNA 2013

Authors and Affiliations

  1. 1.Department of Pediatric Nephrology, Hepatology and Metabolic DiseasesHannover Medical SchoolHannoverGermany

Personalised recommendations