Pediatric Nephrology

, Volume 28, Issue 10, pp 2003–2013 | Cite as

Left ventricular diastolic dysfunction by tissue Doppler echocardiography in pediatric chronic kidney disease

  • Ylva Tranæus LindbladEmail author
  • Jonas Axelsson
  • Rita Balzano
  • Georgios Vavilis
  • Milan Chromek
  • Gianni Celsi
  • Peter Bárány
Original Article



Myocardial dysfunction is common in chronic kidney disease (CKD) and related to poor outcomes. New non-invasive methods to assess cardiac function have been introduced, but comparative studies evaluating their clinical usefulness in pediatric CKD are lacking. We studied left ventricular (LV) function in pediatric CKD and renal transplant patients, comparing conventional pulse-wave Doppler echocardiography (cPWD) with newer tissue Doppler imaging (TDI) and relating the results to known cardiovascular risk factors.


The study included 34 children/adolescents with CKD stages 2–5, 44 renal transplant patients and 19 patients with a normal renal function. The mean age was 11.4 (range 0.8–18.8) years.


Both patient groups had significantly lower LV diastolic function than those with a normal renal function. The most sensitive determinants were TDI E′/A′ and cPWD E/TDI E′ ratios. In a stepwise linear regression analysis, high blood pressure, young age and the presence of albuminuria all independently predicted LV diastolic function.


Our study confirms the high prevalence of LV diastolic dysfunction in pediatric CKD patients and following renal transplantation, where TDI appears to be more sensitive than cPWD in assessing early myocardial dysfunction. Our results also underline the importance of preventive measures, such as rigorous blood pressure control, in pediatric CKD.


Pediatric CKD Renal transplant TDI cPWD Myocardial dysfunction 



Ylva Tranæus Lindblad was partly supported by grants from the Swedish Kidney Foundation, as well as those from the Jerring-, Freemason-, Swärd/Ekelund-, Samaritan- and Signe Olof Wallenius- Foundations. Financial support was also provided by the Society of child-welfare and through the regional agreement on medical training and clinical research (ALF) between Stockholm county council and the Karolinska Institute. The authors also wish to thank the nurses and staff at the Pediatric Nephrology Department at Astrid Lindgren Pediatric Hospital Huddinge, as well as the staff at the renal research lab. Special thanks is given to Abdul Rashid Qureshi who checked and reanalyzed the multiple regression statistical analyses.


  1. 1.
    McDonald SP, Craig JC (2004) Long-term survival of children with end-stage renal disease. N Engl J Med 350:2654–2662PubMedCrossRefGoogle Scholar
  2. 2.
    Groothoff J, Gruppen M, de Groot E, Offringa M (2005) Cardiovascular disease as a late complication of end-stage renal disease in children. Perit Dial Int 25[Suppl 3]:S123–S126PubMedGoogle Scholar
  3. 3.
    Parekh RS, Carroll CE, Wolfe RA, Port FK (2002) Cardiovascular mortality in children and young adults with end-stage kidney disease. J Pediatr 141:191–197PubMedCrossRefGoogle Scholar
  4. 4.
    Oh J, Wunsch R, Turzer M, Bahner M, Raggi P, Querfeld U, Mehls O, Schaefer F (2002) Advanced coronary and carotid arteriopathy in young adults with childhood-onset chronic renal failure. Circulation 106:100–105PubMedCrossRefGoogle Scholar
  5. 5.
    Johnstone LM, Jones CL, Grigg LE, Wilkinson JL, Walker RG, Powell HR (1996) Left ventricular abnormalities in children, adolescents and young adults with renal disease. Kidney Int 50:998–1006PubMedCrossRefGoogle Scholar
  6. 6.
    Matteucci MC, Wuhl E, Picca S, Mastrostefano A, Rinelli G, Romano C, Rizzoni G, Mehls O, de Simone G, Schaefer F (2006) Left ventricular geometry in children with mild to moderate chronic renal insufficiency. J Am Soc Nephrol 17:218–226PubMedCrossRefGoogle Scholar
  7. 7.
    Mitsnefes MM, Kimball TR, Border WL, Witt SA, Glascock BJ, Khoury PR, Daniels SR (2004) Impaired left ventricular diastolic function in children with chronic renal failure. Kidney Int 65:1461–1466PubMedCrossRefGoogle Scholar
  8. 8.
    Gorcsan J 3rd (2000) Tissue Doppler echocardiography. Curr Opin Cardiol 15:323–329PubMedCrossRefGoogle Scholar
  9. 9.
    Hayashi SY, Rohani M, Lindholm B, Brodin LA, Lind B, Barany P, Alvestrand A, Seeberger A (2006) Left ventricular function in patients with chronic kidney disease evaluated by colour tissue Doppler velocity imaging. Nephrol Dial Transplant 21:125–132PubMedCrossRefGoogle Scholar
  10. 10.
    Otsuka T, Suzuki M, Yoshikawa H, Sugi K (2009) Left ventricular diastolic dysfunction in the early stage of chronic kidney disease. J Cardiol 54:199–204PubMedCrossRefGoogle Scholar
  11. 11.
    Nagueh SF, Appleton CP, Gillebert TC, Marino PN, Oh JK, Smiseth OA, Waggoner AD, Flachskampf FA, Pellikka PA, Evangelisa A (2009) Recommendations for the evaluation of left ventricular diastolic function by echocardiography. Eur J Echocardiogr 10:165–193PubMedCrossRefGoogle Scholar
  12. 12.
    Mitsnefes MM, Kimball TR, Kartal J, Witt SA, Glascock BJ, Khoury PR, Daniels SR (2005) Cardiac and vascular adaptation in pediatric patients with chronic kidney disease: role of calcium-phosphorus metabolism. J Am Soc Nephrol 16:2796–2803PubMedCrossRefGoogle Scholar
  13. 13.
    Tafreshi RI, Human N, Otukesh H, Nikavar A (2011) Evaluation of combined left ventricular function using the myocardial performance index in children with chronic kidney disease. Echocardiography 28:97–103PubMedCrossRefGoogle Scholar
  14. 14.
    Mitsnefes MM, Kimball TR, Border WL, Witt SA, Glascock BJ, Khoury PR, Daniels SR (2004) Abnormal cardiac function in children after renal transplantation. Am J Kidney Dis 43:721–726PubMedCrossRefGoogle Scholar
  15. 15.
    Ten Harkel AD, Cransberg K, Van Osch-Gevers M, Nauta J (2009) Diastolic dysfunction in paediatric patients on peritoneal dialysis and after renal transplantation. Nephrol Dial Transplant 24:1987–1991PubMedCrossRefGoogle Scholar
  16. 16.
    Muscheites J, Meyer AA, Drueckler E, Wigger M, Fischer DC, Kundt G, Kienast W, Haffner D (2008) Assessment of the cardiovascular system in pediatric chronic kidney disease: a pilot study. Pediatr Nephrol 23:2233–2239PubMedCrossRefGoogle Scholar
  17. 17.
    Litwin M, Wuhl E, Jourdan C, Trelewicz J, Niemirska A, Fahr K, Jobs K, Grenda R, Wawer ZT, Rajszys P, Troger J, Mehls O, Schaefer F (2005) Altered morphologic properties of large arteries in children with chronic renal failure and after renal transplantation. J Am Soc Nephrol 16:1494–1500PubMedCrossRefGoogle Scholar
  18. 18.
    Litwin M, Wuhl E, Jourdan C, Niemirska A, Schenk JP, Jobs K, Grenda R, Wawer ZT, Rajszys P, Mehls O, Schaefer F (2008) Evolution of large-vessel arteriopathy in paediatric patients with chronic kidney disease. Nephrol Dial Transplant 23:2552–2557PubMedCrossRefGoogle Scholar
  19. 19.
    Pecoits-Filho R, Barany P, Lindholm B, Heimburger O, Stenvinkel P (2002) Interleukin-6 is an independent predictor of mortality in patients starting dialysis treatment. Nephrol Dial Transplant 17:1684–1688PubMedCrossRefGoogle Scholar
  20. 20.
    Shinohara K, Shoji T, Emoto M, Tahara H, Koyama H, Ishimura E, Miki T, Tabata T, Nishizawa Y (2002) Insulin resistance as an independent predictor of cardiovascular mortality in patients with end-stage renal disease. J Am Soc Nephrol 13:1894–1900PubMedCrossRefGoogle Scholar
  21. 21.
    Sebekova K, Podracka L, Heidland A, Schinzel R (2001) Enhanced plasma levels of advanced glycation end products (AGE) and pro-inflammatory cytokines in children/adolescents with chronic renal insufficiency and after renal replacement therapy by dialysis and transplantation—are they inter-related. Clin Nephrol 56:S21–S26PubMedGoogle Scholar
  22. 22.
    Nairn J, Hodge G, Henning P (2005) Changes in leukocyte subsets: clinical implications for children with chronic renal failure. Pediatr Nephrol 20:190–196PubMedCrossRefGoogle Scholar
  23. 23.
    Ece A, Gurkan F, Kervancioglu M, Kocamaz H, Gunes A, Atamer Y, Selek S (2006) Oxidative stress, inflammation and early cardiovascular damage in children with chronic renal failure. Pediatr Nephrol 21:545–552PubMedCrossRefGoogle Scholar
  24. 24.
    Silverstein DM, Mitchell M, LeBlanc P, Boudreaux JP (2007) Assessment of risk factors for cardiovasuclar disease in pediatric renal transplant patients. Pediatr Transplant 11:721–729PubMedCrossRefGoogle Scholar
  25. 25.
    Prokai A, Fekete A, Kis E, Reusz GS, Sallay P, Korner A, Wagner L, Tulassay T, Szabo AJ (2008) Post-transplant diabetes mellitus in children following renal transplantation. Pediatr Transplant 12:643–649PubMedCrossRefGoogle Scholar
  26. 26.
    Lindblad YT, Axelsson J, Barany P, Celsi G, Lindholm B, Qureshi AR, Carrea A, Canepa A (2008) Hyperinsulinemia and insulin resistance, early cardiovascular risk factors in children with chronic kidney disease. Blood Purif 26:518–525PubMedCrossRefGoogle Scholar
  27. 27.
    Lai HL, Kartal J, Mitsnefes M (2007) Hyperinsulinemia in pediatric patients with chronic kidney disease: the role of tumor necrosis factor-alpha. Pediatr Nephrol 22:1751–1756PubMedCrossRefGoogle Scholar
  28. 28.
    Schwartz GJ, Munoz A, Schneider MF, Mak RH, Kaskel F, Warady BA, Furth SL (2009) New equations to estimate GFR in children with CKD. J Am Soc Nephrol 20:629–637PubMedCrossRefGoogle Scholar
  29. 29.
    Brito VN, Batista MC, Borges MF, Latronico AC, Kohek MB, Thirone AC, Jorge BH, Arnhold IJ, Mendonca BB (1999) Diagnostic value of fluorometric assays in the evaluation of precocious puberty. J Clin Endocrinol Metab 84:3539–3544PubMedCrossRefGoogle Scholar
  30. 30.
    Elmlinger MW, Kuhnel W, Wormstall H, Doller PC (2005) Reference intervals for testosterone, androstenedione and SHBG levels in healthy females and males from birth until old age. Clin Lab 51:625–632PubMedGoogle Scholar
  31. 31.
    Norjavaara E, Ankarberg C, Albertsson-Wikland K (1996) Diurnal rhythm of 17 beta-estradiol secretion throughout pubertal development in healthy girls: evaluation by a sensitive radioimmunoassay. J Clin Endocrinol Metab 81:4095–4102PubMedCrossRefGoogle Scholar
  32. 32.
    National High Blood Pressure Education Program Working Group on High Blood Pressure in Children and Adolescents (2004) The fourth report on the diagnosis, evaluation, and treatment of high blood pressure in children and adolescents. Pediatrics 114:555–576Google Scholar
  33. 33.
    Wuhl E, Witte K, Soergel M, Mehls O, Schaefer F (2002) Distribution of 24-h ambulatory blood pressure in children: normalized reference values and role of body dimensions. J Hypertens 20:1995–2007PubMedCrossRefGoogle Scholar
  34. 34.
    Keskin M, Kurtoglu S, Kendirci M, Atabek ME, Yazici C (2005) Homeostasis model assessment is more reliable than the fasting glucose/insulin ratio and quantitative insulin sensitivity check index for assessing insulin resistance among obese children and adolescents. Pediatrics 115:e500–e503PubMedCrossRefGoogle Scholar
  35. 35.
    Devereux RB, Alonso DR, Lutas EM, Gottlieb GJ, Campo E, Sachs I, Reichek N (1986) Echocardiographic assessment of left ventricular hypertrophy: comparison to necropsy findings. Am J Cardiol 57:450–458PubMedCrossRefGoogle Scholar
  36. 36.
    Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, Picard MH, Roman MJ, Seward J, Shanewise J, Solomon S, Spencer KT, St John Sutton M, Stewart W (2006) Recommendations for chamber quantification. Eur J Echocardiogr 7:79–108PubMedCrossRefGoogle Scholar
  37. 37.
    Nishimura RA, Tajik AJ (1997) Evaluation of diastolic filling of left ventricle in health and disease: Doppler echocardiography is the clinician’s Rosetta Stone. J Am Coll Cardiol 30:8–18PubMedCrossRefGoogle Scholar
  38. 38.
    Frommelt PC (2006) Echocardiographic measures of diastolic function in pediatric heart disease. Curr Opin Cardiol 21:194–199PubMedCrossRefGoogle Scholar
  39. 39.
    Balzano R, Lindblad YT, Vavilis G, Jogestrand T, Berg UB, Krmar RT (2011) Use of annual ABPM, and repeated carotid scan and echocardiography to monitor cardiovascular health over nine yr in pediatric and young adult renal transplant recipients. Pediatr Transplant 15:635–641PubMedGoogle Scholar
  40. 40.
    Wikland KA, Luo ZC, Niklasson A, Karlberg J (2002) Swedish population-based longitudinal reference values from birth to 18 years of age for height, weight and head circumference. Acta Paediatr 91:739–754PubMedCrossRefGoogle Scholar
  41. 41.
    Rolland-Cachera MF, Sempe M, Guilloud-Bataille M, Patois E, Pequignot-Guggenbuhl F, Fautrad V (1982) Adiposity indices in children. Am J Clin Nutr 36:178–184PubMedGoogle Scholar
  42. 42.
    Mitsnefes MM, Kimball TR, Kartal J, Witt SA, Glascock BJ, Khoury PR, Daniels SR (2006) Progression of left ventricular hypertrophy in children with early chronic kidney disease: 2-year follow-up study. J Pediatr 149:671–675PubMedCrossRefGoogle Scholar
  43. 43.
    El-Husseini AA, Sheashaa HA, Hassan NA, El-Demerdash FM, Sobh MA, Ghoneim MA (2004) Echocardiographic changes and risk factors for left ventricular hypertrophy in children and adolescents after renal transplantation. Pediatr Transplant 8:249–254PubMedCrossRefGoogle Scholar
  44. 44.
    Matteucci MC, Chinali M, Rinelli G, Wuhl E, Zurowska A, Charbit M, Pongiglione G, Schaefer F (2013) Change in cardiac geometry and function in CKD children during strict bp control: a randomized study. Clin J Am Soc Nephrol 8:203–210PubMedCrossRefGoogle Scholar
  45. 45.
    Matsushita K, van der Velde M, Astor BC, Woodward M, Levey AS, de Jong PE, Coresh J, Gansevoort RT (2010) Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis. Lancet 375:2073–2081PubMedCrossRefGoogle Scholar
  46. 46.
    Edfeldt K, Agerberth B, Rottenberg ME, Gudmundsson GH, Wang XB, Mandal K, Xu Q, Yan ZQ (2006) Involvement of the antimicrobial peptide LL-37 in human atherosclerosis. Arterioscler Thromb Vasc Biol 26:1551–1557PubMedCrossRefGoogle Scholar
  47. 47.
    Kanbay M, Ikizek M, Solak Y, Selcoki Y, Uysal S, Armutcu F, Eryonucu B, Covic A, Johnson RJ (2011) Uric acid and pentraxin-3 levels are independently associated with coronary artery disease risk in patients with stage 2 and 3 kidney disease. Am J Nephrol 33:325–331PubMedCrossRefGoogle Scholar
  48. 48.
    Tong M, Carrero JJ, Qureshi AR, Anderstam B, Heimburger O, Barany P, Axelsson J, Alvestrand A, Stenvinkel P, Lindholm B, Suliman ME (2007) Plasma pentraxin 3 in patients with chronic kidney disease: associations with renal function, protein-energy wasting, cardiovascular disease, and mortality. Clin J Am Soc Nephrol 2:889–897PubMedCrossRefGoogle Scholar
  49. 49.
    Kirkpantur A, Kahraman S, Genctoy G, Altun B, Abali G, Arici M, Turgan C (2008) The interleukin-10 promoter genotype predicts diastolic dysfunction in maintenance hemodialysis patients. Hemodial Int 12:352–361PubMedCrossRefGoogle Scholar
  50. 50.
    Canpolat N, Caliskan S, Sever L, Guzeltas A, Kantarci F, Candan C, Civilibal M, Kasapcopur O, Arisoy N (2012) Glucose intolerance: is it a risk factor for cardiovascular disease in children with chronic kidney disease? Pediatr Nephrol 27:627–635PubMedCrossRefGoogle Scholar

Copyright information

© IPNA 2013

Authors and Affiliations

  • Ylva Tranæus Lindblad
    • 1
    • 5
    Email author
  • Jonas Axelsson
    • 3
  • Rita Balzano
    • 4
  • Georgios Vavilis
    • 4
  • Milan Chromek
    • 1
  • Gianni Celsi
    • 1
  • Peter Bárány
    • 2
  1. 1.Division of Pediatrics, Department of Clinical Sciences, Intervention and Technology (CLINTEC)Karolinska InstitutetStockholmSweden
  2. 2.Division of Renal Medicine, CLINTECKarolinska InstitutetStockholmSweden
  3. 3.Renal Research Group, Department of Molecular Medicine and SurgeryKarolinska InstitutetStockholmSweden
  4. 4.Clinical Physiology, Department of Laboratory MedicineKarolinska InstitutetStockholmSweden
  5. 5.Astrid Lindgren Pediatric Hospital HuddingeKarolinska University Hospital HuddingeStockholmSweden

Personalised recommendations