Pediatric Nephrology

, Volume 28, Issue 7, pp 1145–1149 | Cite as

Limited value of routine microalbuminuria assessment in multi-ethnic obese children

  • Nalini N. E. Radhakishun
  • Mariska van Vliet
  • Ines A. von Rosenstiel
  • Jos H. Beijnen
  • Michaela Diamant
Brief Report



To determine the prevalence of microalbuminuria and its association with cardiometabolic risk factors in a multi-ethnic cohort of overweight and obese children.


A retrospective analysis of prospectively collected data was performed using data from 408 overweight and obese children (age 3–19 years). In addition to administering an oral glucose tolerance test, we measured anthropometric variables, plasma lipid levels, alanine aminotransferase and the urinary albumin/creatinine ratio (ACR). Microalbuminuria was defined as an ACR of between 2.5 and 25 mg/mmol in boys and 3.5 and 25 mg/mmol in girls. In total, only 11 (2.7 %) of the children analyzed presented with microalbuminuria, with no differences between ethnic groups, sex or in the prevalence of hypertension compared to the children with normoalbuminuria. After adjustment for confounders, the body mass index Z-score tended to be different between the group with microalbuminuria versus that without (3.6 vs. 3.2, respectively; P = 0.054). ACR was not associated with hypertension, impaired glucose tolerance, high triglycerides or low high-density lipoprotein-cholesterol.


In a large multi-ethnic cohort of overweight and obese children, we found a low prevalence of microalbuminuria (11 children, 2.7 %), and in this small number of individuals, we found no association with any of the cardiometabolic risk factors assessed. Therefore, our data do not support the routine measurement of microalbuminuria in asymptomatic overweight and obese children and adolescents.


Albumin/creatinine ratio Cardiometabolic risk factors Body mass index Metabolic syndrome Albuminuria Prevalence 


Conflict of interest



  1. 1.
    Srivastava T (2006) Nondiabetic consequences of obesity on kidney. Pediatr Nephrol 21:463–470PubMedCrossRefGoogle Scholar
  2. 2.
    Klausen K, Borch-Johnsen K, Feldt-Rasmussen B, Jensen G, Clausen P, Scharling H, Appleyard M, Jensen JS (2004) Very low levels of microalbuminuria are associated with increased risk of coronary heart disease and death independently of renal function, hypertension, and diabetes. Circulation 110:32–35PubMedCrossRefGoogle Scholar
  3. 3.
    Nguyen S, McCulloch C, Brakeman P, Portale A, Hsu CY (2008) Being overweight modifies the association between cardiovascular risk factors and microalbuminuria in adolescents. Pediatrics 121:37–45PubMedCrossRefGoogle Scholar
  4. 4.
    Savino A, Pelliccia P, Giannini C, de Giorgis T, Cataldo I, Chiarelli F, Mohn A (2011) Implications for kidney disease in obese children and adolescents. Pediatr Nephrol 26:749–758PubMedCrossRefGoogle Scholar
  5. 5.
    Invitti C, Maffeis C, Gilardini L, Pontiggia B, Mazzilli G, Girola A, Sartorio A, Morabito F, Viberti GC (2006) Metabolic syndrome in obese Caucasian children: prevalence using WHO-derived criteria and association with nontraditional cardiovascular risk factors. Int J Obes 30:627–633CrossRefGoogle Scholar
  6. 6.
    Donaghue K, Chiarelli F, Trotta D, Allgrove J, Dahl-Jorgensen K (2009) ISPAD Clinical Practice Consensus Guidelines 2009 Compendium. Microvascular and macrovascular complications associated with diabetes in children and adolescents. Pediatr Diabetes 10:195–203PubMedCrossRefGoogle Scholar
  7. 7.
    Fredriks A, Van Buuren S, Wit J, Verloove-Vanhorick S (2000) Body index measurements in 1996–7 compared with 1980. Arch Dis Child 82:107–112PubMedCrossRefGoogle Scholar
  8. 8.
    Fredriks AM, van Buuren S, Fekkes M, Verloove-Vanhorick SP, Wit JM (2005) Are age references for waist circumference, hip circumference and waist-hip ratio in Dutch children useful in clinical practice? Eur J Pediatr 164:216–222PubMedCrossRefGoogle Scholar
  9. 9.
    Matthews D, Hosker J, Rudenski A, Naylor B, Treacher D, Turner R (1985) Homeostasis model assessment: insulin resistance and B-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28:412–419PubMedCrossRefGoogle Scholar
  10. 10.
    Weiss R, Dziura J, Burgert TS, Tamborlane WV, Taksali SE, Yeckel CW, Allen K, Lopes M, Savoye M, Morrison J (2004) Obesity and the metabolic syndrome in children and adolescents. N Engl J Med 350:2362–2374PubMedCrossRefGoogle Scholar
  11. 11.
    NGHS Coordinating Center (1998) NHLBI Growth and Health Study (NGHS) data monitoring report. Maryland Medical Research, BaltimoreGoogle Scholar
  12. 12.
    De Man SA, Andre JL, Bachmann H, Grobbee DE, Ibsen KK, Laaser U, Lippert P, Hofman A (1991) Blood pressure in childhood: pooled findings of six European studies. J Hypertens 9:109PubMedCrossRefGoogle Scholar
  13. 13.
    Mutner PNB, Kramer H, Peralta CA, Kim Y, Jacobs DR Jr, Klefe CI, Lewis CE (2012) Racial differences in the incidence of chronic kidney disease. Clin J Am Soc Nephrol 7:101–107CrossRefGoogle Scholar
  14. 14.
    El-Atat FA, Stas SN, McFarlane SI, Sowers JR (2004) The relationship between hyperinsulinemia, hypertension and progressive renal disease. J Am Soc Nephrol 15:2816–2827PubMedCrossRefGoogle Scholar
  15. 15.
    Elises J, Griffiths P, Hocking M, Taylor C, White R (1988) Simplified quantification of urinary protein excretion in children. Clin Nephrol 30:225PubMedGoogle Scholar

Copyright information

© IPNA 2013

Authors and Affiliations

  • Nalini N. E. Radhakishun
    • 1
  • Mariska van Vliet
    • 2
  • Ines A. von Rosenstiel
    • 1
  • Jos H. Beijnen
    • 3
  • Michaela Diamant
    • 4
  1. 1.Department of PediatricsSlotervaart HospitalAmsterdamThe Netherlands
  2. 2.Department of Internal MedicineSlotervaart HospitalAmsterdamThe Netherlands
  3. 3.Department of Pharmacy & PharmacologySlotervaart HospitalAmsterdamThe Netherlands
  4. 4.Department of Endocrinology/Diabetes CenterVU University Medical Center (VUmc)AmsterdamThe Netherlands

Personalised recommendations