Pediatric Nephrology

, Volume 29, Issue 2, pp 163–171 | Cite as

Proteomics in acute kidney injury—current status and future promise

Review

Abstract

Pediatric acute kidney injury (AKI) is associated with increased morbidity, mortality and associated healthcare costs. Unfortunately, there are currently no effective therapies available, and this has been attributed in part to the late diagnosis of AKI. Therefore, significant efforts have been made to develop early diagnostic tools for AKI in the hope that early identification of renal injury will allow for effective therapeutic intervention. Different transcriptomic, proteomic and metabolomic technologies offer unbiased approaches to identifying novel biomarkers of AKI. This review will provide an overview of non-invasive pediatric AKI biomarkers. It will focus on unbiased technologies by using examples of biomarkers identified with “-omic” technologies and different methodological and implementation challenges will be highlighted. Finally, emerging proteomic techniques that may be applicable to biomarker discovery will be presented. Ultimately, the development of novel biomarkers of AKI may lead to the early diagnosis and effective therapeutic intervention of AKI to improve patient outcomes.

Keywords

Biomarker Non-invasive diagnosis Transcriptomics Catabolomics Metabolomics 

References

  1. 1.
    Parikh CR, Devarajan P, Zappitelli M, Sint K, Thiessen-Philbrook H, Li S, Kim RW, Koyner JL, Coca SG, Edelstein CL, Shlipak MG, Garg AX, Krawczeski CD (2011) Postoperative biomarkers predict acute kidney injury and poor outcomes after pediatric cardiac surgery. J Am Soc Nephrol 22:1737–1747PubMedCrossRefGoogle Scholar
  2. 2.
    Parikh CR, Coca SG, Thiessen-Philbrook H, Shlipak MG, Koyner JL, Wang Z, Edelstein CL, Devarajan P, Patel UD, Zappitelli M, Krawczeski CD, Passik CS, Swaminathan M, Garg AX (2011) Postoperative biomarkers predict acute kidney injury and poor outcomes after adult cardiac surgery. J Am Soc Nephrol 22:1748–1757PubMedCrossRefGoogle Scholar
  3. 3.
    Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group (2012) KDGIO Clinical Practice Guideline for Acute Kidney Injury. Kidney Int Suppl 2:1–138Google Scholar
  4. 4.
    Schneider J, Khemani R, Grushkin C, Bart R (2010) Serum creatinine as stratified in the RIFLE score for acute kidney injury is associated with mortality and length of stay for children in the pediatric intensive care unit. Crit Care Med 38:933–939PubMedCrossRefGoogle Scholar
  5. 5.
    Plötz FB, Bouma AB, van Wijk JA, Kneyber MC, Bökenkamp A (2008) Pediatric acute kidney injury in the ICU: an independent evaluation of pRIFLE criteria. Intensive Care Med 34:1713–1717PubMedCrossRefGoogle Scholar
  6. 6.
    Akcan-Arikan A, Zappitelli M, Loftis LL, Washburn KK, Jefferson LS, Goldstein SL (2007) Modified RIFLE criteria in critically ill children with acute kidney injury. Kidney Int 71:1028–1035PubMedCrossRefGoogle Scholar
  7. 7.
    Symons JM, Chua AN, Somers MJ, Baum MA, Bunchman TE, Benfield MR, Brophy PD, Blowey D, Fortenberry JD, Chand D, Flores FX, Hackbarth R, Alexander SR, Mahan J, McBryde KD, Goldstein SL (2007) Demographic characteristics of pediatric continuous renal replacement therapy: a report of the prospective pediatric continuous renal replacement therapy registry. Clin J Am Soc Nephrol 2:732–738PubMedCrossRefGoogle Scholar
  8. 8.
    Prince JF, Mott AR, Dickerson HA, Jeffries JL, Nelson DP, Chang AC, Smith EO, Towbin JA, Dreyer WJ, Denfield SW, Goldstein SL (2008) Worsening renal function in children hospitalized with decompensated heart failure: evidence for a pediatric cardiorenal syndrome? Pediatr Crit Care 9:279–284CrossRefGoogle Scholar
  9. 9.
    Askenazi DJ, Feig DI, Graham NM, Hui-Stickle S, Goldstein SL (2006) 3–5 year longitudinal follow-up of pediatric patients after acute renal failure. Kidney Int 69:184–189PubMedCrossRefGoogle Scholar
  10. 10.
    Goldstein SL, Devarajan P (2011) Acute kidney injury in childhood: should we be worried about progression to CKD? Pediatr Nephrol 26:509–522PubMedCrossRefGoogle Scholar
  11. 11.
    Mammen C, Al Abbas A, Skippen P, Nadel H, Levine D, Collet JP, Matsell DG (2012) Long-term risk of CKD in children surviving episodes of acute kidney injury in the intensive care unit: a prospective cohort study. Am J Kidney Dis 59:523–530PubMedCrossRefGoogle Scholar
  12. 12.
    Wald R, Quinn RR, Luo J, Li P, Scales DC, Mamdani MM, Ray JG (2009) Chronic dialysis and death among survivors of acute kidney injury requiring dialysis. JAMA 302:1179–1185PubMedCrossRefGoogle Scholar
  13. 13.
    Coca SG, Singanamala S, Parikh CR (2012) Chronic kidney disease after acute kidney injury: a systematic review and meta-analysis. Kidney Int 81:442–448PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Jones J, Holmen J, De Graauw J, Jovanovich A, Thornton S, Chonchol M (2012) Association of complete recovery from acute kidney injury with incident CKD stage 3 and all-cause mortality. Am J Kidney Dis 60:402–408PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Greenbaum LA, Warady BA, Furth SL (2009) Current advances in chronic kidney disease in children: growth, cardiovascular, and neurocognitive risk factors. Semin Nephrol 29:425–434PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Gerson AC, Wentz A, Abraham AG, Mendley SR, Hooper SR, Butler RW, Gispon DS, Lande MB, Shinnar S, Moxey-Mims MM, Warady BA, Furth SL (2010) Health-related quality of life of children with mild to moderate chronic kidney disease. Pediatrics 125:e349–e357PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Bonventre JV, Weinberg JM (2003) Recent advances in the pathophysiology of ischemic acute renal failure. J Am Soc Nephrol 14:2199–2210PubMedCrossRefGoogle Scholar
  18. 18.
    Devarajan P, Mishra J, Supavekin S, Patterson LT, Potter S (2003) Gene expression in early ischemic renal injury: clues towards pathogenesis, biomarker discovery, and novel therapeutics. Mol Genet Metab 80:365–376PubMedCrossRefGoogle Scholar
  19. 19.
    Lameire N, Van Biesen W, Vanholder R (2005) Acute renal failure. Lancet 365:417–430PubMedGoogle Scholar
  20. 20.
    Bellomo R, Kellum JA, Ronco C (2004) Defining acute renal failure: pathophysiological principles. Intensive Care Med 30:33–37PubMedCrossRefGoogle Scholar
  21. 21.
    Sutton TA, Fisher CJ, Molitoris BA (2002) Microvascular endothelial injury and dysfunction during ischemic acute renal failure. Kidney Int 62:1539–1549PubMedCrossRefGoogle Scholar
  22. 22.
    Filler GM (2011) The challenges of assessing acute kidney injury in infants. Kidney Int 80:567–568PubMedCrossRefGoogle Scholar
  23. 23.
    Shlipak MG, Sarnak MJ, Katz R, Fried LF, Selinger SL, Newman AB, Siscovick DS, Stehman-Breen C (2005) Cystatin C and the risk of death and cardiovascular events among elderly persons. New Eng J Med 352:2049–2060PubMedCrossRefGoogle Scholar
  24. 24.
    Krawczeski CD, Goldstein SL, Woo JG, Wang Y, Piyaphanee N, Ma Q, Bennett M, Devarajan P (2011) Temporal relationship and predictive value of urinary acute kidney injury biomarkers after pediatric cardiopulmonary bypass. J Am Coll Cardiol 58:2301–2309PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Krawczeski CD, Woo JG, Wang Y, Bennett MR, Ma Q, Devarajan P (2011) Neutrophil gelatinase-associated lipocalin concentrations predict development of acute kidney injury in neonates and children after cardiopulmonary bypass. J Pediatr 158:1009–1015PubMedCrossRefGoogle Scholar
  26. 26.
    Mishra J, Dent C, Tarabishi R, Mitsnefes MM, Ma Q, Kelly C, Ruff SM, Zahedi K, Shao M, Bean J, Mori K, Barasch J, Devarajan P (2005) Neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for acute renal injury after cardiac surgery. Lancet 365:1231–1238PubMedCrossRefGoogle Scholar
  27. 27.
    Bennett M, Dent CL, Ma Q, Dastrala S, Grenier F, Workman R, Syed H, Ali S, Barasch J, Devarajan P (2008) Urine NGAL predicts severity of acute kidney injury after cardiac surgery: a prospective study. Clin J Am Soc Nephrol 3:665–673PubMedCrossRefGoogle Scholar
  28. 28.
    Dent CL, Ma Q, Dastrala S, Bennett M, Mitsnefes MM, Barasch J, Devarajan P (2007) Plasma neutrophil gelatinase-associated lipocalin predicts acute kidney injury, morbidity and mortality after pediatric cardiac surgery: a prospective uncontrolled cohort study. Crit Care 11:R127PubMedCrossRefGoogle Scholar
  29. 29.
    Zappitelli M, Washburn KK, Arikan AA, Loftis L, Ma Q, Devarajan P, Parikh CR, Goldstein SL (2007) Urine neutrophil gelatinase-associated lipocalin is an early marker of acute kidney injury in critically ill children: a prospective cohort study. Crit Care 11:R84PubMedCrossRefGoogle Scholar
  30. 30.
    Wheeler DS, Devarajan P, Ma Q, Harmon K, Monaco M, Cvijanovich N, Wong HR (2008) Serum neutrophil gelatinase-associated lipocalin (NGAL) as a marker of acute kidney injury in critically ill children with septic shock. Crit Care Med 36:1297–1303PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Du Y, Zappitelli M, Mian A, Bennett M, Ma Q, Devarajan P, Mehta R, Goldstein SL (2011) Urinary biomarkers to detect acute kidney injury in the pediatric emergency center. Pediatr Nephrol 26:267–274PubMedCrossRefGoogle Scholar
  32. 32.
    Parikh CR, Mishra J, Thiessen-Philbrook H, Dursun B, Ma Q, Kelly C, Dent C, Devarajan P, Edelstein CL (2006) Urinary IL-18 is an early predictive biomarker of acute kidney injury after cardiac surgery. Kidney Int 70:199–203PubMedCrossRefGoogle Scholar
  33. 33.
    Han WK, Waikar SS, Johnson A, Betensky RA, Dent CL, Devarajan P, Bonventre JV (2008) Urinary biomarkers in the early diagnosis of acute kidney injury. Kidney Int 73:863–869PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Portilla D, Dent C, Sugaya T, Nagothu KK, Kundi I, Moore P, Noiri E, Devarajan P (2008) Liver fatty acid-binding protein as a biomarker of acute kidney injury after cardiac surgery. Kidney Int 73:465–472PubMedCrossRefGoogle Scholar
  35. 35.
    Zappitelli M, Krawczeski CD, Devarajan P, Wang Z, Sint K, Thiessen-Philbrook H, Li S, Bennett MR, Ma Q, Shlipak MG, Garg AX, Parikh CR, TRIBE-AKI consortium (2011) Early postoperative serum cystatin C predicts severe acute kidney injury following pediatric cardiac surgery. Kidney Int 80:655–662PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Krawczeski CD, Vandevoorde RG, Kathman T, Bennett MR, Woo JG, Wang Y, Griffiths RE, Devarajan P (2010) Serum cystatin C is an early predictive biomarker of acute kidney injury after pediatric cardiopulmonary bypass. Clin J Am Soc Nephrol 5:1552–1557PubMedCrossRefGoogle Scholar
  37. 37.
    Hassinger AB, Backer CL, Lane JC, Haymond S, Wang D, Wald EL (2012) Predictive power of serum cystatin C to detect acute kidney injury and pediatric-modified RIFLE class in children undergoing cardiac surgery. Pediatr Crit Care Med 13:435–440PubMedCrossRefGoogle Scholar
  38. 38.
    Zappitelli M, Coca SG, Garg AX, Krawczeski CD, Thiessen Philbrook H, Sint K, Li S, Parikh CR, Devarajan P, TRIBE-AKI consortium (2012) The association of albumin/creatinine ratio with postoperative AKI in children undergoing cardiac surgery. Clin J Am Soc Nephrol 7:1761–1769PubMedCrossRefGoogle Scholar
  39. 39.
    Shlipak MG, Coca SG, Wang Z, Devarajan P, Koyner JL, Patel UD, Thiessen-Philbrook H, Garg AX, Parikh CR; TRIBE-AKI consortium (2011) Presurgical serum cystatin C and risk of acute kidney injury after cardiac surgery. Am J Kidney Dis 58:366–373CrossRefGoogle Scholar
  40. 40.
    Mishra J, Ma Q, Prada A, Mitsnefes M, Zahedi K, Yang J, Barasch J, Devarajan P (2003) Identification of neutrophil gelatinase-associated lipocalin as a novel early urinary biomarker for ischemic renal injury. J Am Soc Nephrol 14:2534–2543PubMedCrossRefGoogle Scholar
  41. 41.
    Mori K, Lee HT, Rapoport D, Drexler IR, Foster K, Yang J, Schmidt-Ott KM, Chen X, Li JY, Weiss S, Mishra J, Cheema FH, Markowitz G, Suganami T, Sawai K, Mukoyama M, Kunis C, D’Agati V, Devarajan P, Barasch J (2005) Endocytic delivery of lipocalin-siderophore-iron complex rescues the kidney from ischemia-reperfusion injury. J Clin Invest 115:610–621PubMedCentralPubMedGoogle Scholar
  42. 42.
    Mishra J, Mori K, Ma Q, Kelly C, Yang J, Mitsnefes M, Barasch J, Devarajan P (2004) Amelioration of ischemic acute renal injury by neutrophil gelatinase-associated lipocalin. J Am Soc Nephrol 15:3073–3082PubMedCrossRefGoogle Scholar
  43. 43.
    Haase M, Bellomo R, Devarajan P, Schlattmann P, Haase-Fielitz A, NGAL Meta-analysis Investigator Group (2009) Accuracy of neutrophil gelatinase-associated lipocalin (NGAL) in diagnosis and prognosis in acute kidney injury: a systematic review and meta-analysis. Am J Kidney Dis 54:1012–1024PubMedCrossRefGoogle Scholar
  44. 44.
    Ichimura T, Bonventre JV, Bailly V, Wei H, Hession CA, Cate RL, Sanicola M (1998) Kidney injury molecule-1 (KIM-1), a putative epithelial cell adhesion molecule containing a novel immunoglobulin domain, is up-regulated in renal cells after injury. J Biol Chem 273:4135–4142PubMedCrossRefGoogle Scholar
  45. 45.
    Han WK, Bailly V, Abichandani R, Thadhani R, Bonventre JV (2002) Kidney injury molecule-1 (KIM-1): a novel biomarker for human renal proximal tubule injury. Kidney Int 62:237–244PubMedCrossRefGoogle Scholar
  46. 46.
    Bonventre JV, Yang L (2010) Kidney injury molecule-1. Curr Opin Crit Care 16:556–561PubMedCrossRefGoogle Scholar
  47. 47.
    Bonventre JV, Yang L (2011) Cellular pathophysiology of ischemic acute kidney injury. J Clin Invest 121:4210–4221PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Han WK, Wagener G, Zhu Y, Wang S, Lee HT (2009) Urinary biomarkers in the early detection of acute kidney injury after cardiac surgery. Clin J Am Soc Nephrol 4:873–882PubMedCrossRefGoogle Scholar
  49. 49.
    Ho J, Lucy M, Krokhin O, Hayglass K, Pascoe E, Darroch G, Rush D, Nickerson P, Rigatto C, Reslerova M (2009) Mass spectrometry-based proteomic analysis of urine in acute kidney injury following cardiopulmonary bypass: a nested case control study. Am J Kidney Dis 53:584–595PubMedCrossRefGoogle Scholar
  50. 50.
    Ho J, Reslerova M, Gali B, Gao A, Bestland J, Rush DN, Nickerson PW, Rigatto C (2011) Urinary hepcidin-25 and risk of acute kidney injury following cardiopulmonary bypass. Clin J Am Soc Nephrol 6:2340–2346PubMedCrossRefGoogle Scholar
  51. 51.
    Haase-Fielitz A, Mertens PR, Plass M, Kuppe H, Hetzer R, Westerman M, Ostland V, Prowle JR, Bellomo R, Haase M (2011) Urine hepcidin has additive value in ruling out cardiopulmonary bypass-associated acute kidney injury—an observational cohort study. Crit Care 15:R186PubMedCrossRefGoogle Scholar
  52. 52.
    Prowle JR, Ostland V, Calzavacca P, Licari E, Ligabo EV, Echeverri JE, Bagshaw SM, Haase-Fielitz A, Haase M, Westerman M, Bellomo R (2012) Greater increase in urinary hepcidin predicts protection from acute kidney injury after cardiopulmonary bypass. Nephrol Dial Transplant 27:595–602PubMedCrossRefGoogle Scholar
  53. 53.
    Nguyen MT, Ross GF, Dent CL, Devarajan P (2005) Early prediction of acute renal injury using urinary proteomics. Am J Nephrol 25:318–326PubMedCrossRefGoogle Scholar
  54. 54.
    Nguyen MT, Dent CL, Ross GF, Harris N, Manning PB, Mitsnefes MM, Devarajan P (2008) Urinary aprotinin as a predictor of acute kidney injury after cardiac surgery in children receiving aprotinin therapy. Pediatr Nephrol 23:1317–1326PubMedCrossRefGoogle Scholar
  55. 55.
    Devarajan P, Krawczeski CD, Nguyen MT, Kathman T, Wang Z, Parikh CR (2010) Proteomic identification of early biomarkers of acute kidney injury after cardiac surgery in children. Am J Kidney Dis 56:632–642PubMedCentralPubMedCrossRefGoogle Scholar
  56. 56.
    Bennett MR, Ravipati N, Ross G, Nguyen MT, Hirsch R, Beekman RH, Rovner L, Devarajan P (2008) Using proteomics to identify preprocedural risk factors for contrast induced nephropathy. Proteomics Clin Appl 2:1058–1064PubMedCentralPubMedCrossRefGoogle Scholar
  57. 57.
    Metzger J, Kirsch T, Schiffer E, Ulger P, Mentes E, Brand K, Weissinger EM, Haubitz H, Mischak H, Herget-Rosenthal S (2010) Urinary excretion of twenty peptides forms an early and accurate diagnostic pattern of acute kidney injury. Kidney Int 78:1252–1262PubMedCrossRefGoogle Scholar
  58. 58.
    Maddens B, Ghesquière B, Vanholder R, Demon D, Vanmassenhove J, Gevaert K, Meyer E (2012) Chitinase-like proteins are candidate biomarkers for sepsis-induced acute kidney injury. Mol Cell Proteomics 11:M111.013094PubMedCrossRefGoogle Scholar
  59. 59.
    Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 17:994–999PubMedCrossRefGoogle Scholar
  60. 60.
    Aregger F, Pilop C, Uehlinger DE, Brunisholtz R, Carrel TP, Frey FJ, Frey BM (2010) Urinary proteomics before and after extracorporeal circulation in patients with and without acute kidney injury. J Thorac Cardiovasc Surg 139:692–700PubMedCrossRefGoogle Scholar
  61. 61.
    Zhou H, Pisitkun T, Aponte A, Yuen PS, Hoffert JD, Yasuda H, Hu X, Chawla L, Shen RF, Knepper MA, Star RA (2006) Exosomal fetuin-A identified by proteomics: a novel urinary biomarker for detecting acute kidney injury. Kidney Int 70:1847–1857PubMedCentralPubMedCrossRefGoogle Scholar
  62. 62.
    Beger RD, Holland RD, Sun J, Schnackenberg LK, Moore PC, Dent CL, Devarajan P, Portilla D (2008) Metabonomics of acute kidney injury in children after cardiac surgery. Pediatr Nephrol 23:977–984PubMedCrossRefGoogle Scholar
  63. 63.
    Cravatt BF, Wright AT, Kozarich JW (2008) Activity-based protein profiling: from enzyme chemistry to proteomic chemistry. Annu Rev Biochem 77:383–414PubMedCrossRefGoogle Scholar
  64. 64.
    Liu Y, Patricelli MP, Cravatt BF (1999) Activity-based protein profiling: the serine hydrolases. Proc Natl Acad Sci USA 96:14694–14699PubMedCrossRefGoogle Scholar

Copyright information

© IPNA 2013

Authors and Affiliations

  1. 1.Section of Nephrology, Department Internal MedicineUniversity of ManitobaWinnipegCanada
  2. 2.Manitoba Centre for Proteomics and Systems BiologyUniversity of ManitobaWinnipegCanada
  3. 3.Section of Nephrology, Department Paediatrics and Child HealthUniversity of ManitobaWinnipegCanada
  4. 4.Sections of Nephrology & Biomedical ProteomicsHealth Sciences Centre, GE421CWinnipegCanada

Personalised recommendations