Pediatric Nephrology

, Volume 28, Issue 11, pp 2079–2088 | Cite as

Animal models of nephrotic syndrome

  • Ivana Simic
  • Mansoureh Tabatabaeifar
  • Franz SchaeferEmail author


Animal models of proteinuria and nephrotic syndrome are essential tools for studying the mechanisms of action of abnormalities in individual components of the podocyte and glomerular basement membrane. In recent years a variety of in vivo models have been developed to elucidate the function of specific podocyte proteins and their role in the pathogenesis of proteinuria and glomerulosclerosis. In this overview of the animal models currently available we discuss their contribution to our mechanistic understanding and their potential use in screening for novel targeted therapies of steroid-resistant nephrotic syndrome.


Steroid-resistant nephrotic syndrome Mouse Zebrafish Knock-out Knock-in 



This work was supported by research grants from E-Rare (PodoNet) and the 7th Framework Programme of the EU Commission (EURenOmics). The authors thank Thomas Weber for kindly providing a figure used in this publication.


  1. 1.
    Mizuno S, Mizuno-Horikawa Y, Yue BF, Okamoto M, Kurosawa T (1999) Nephrotic mice (ICGN strain): A model of diffuse mesangial sclerosis in infantile nephrotic syndrome. Am J Nephrol 19:73–82PubMedCrossRefGoogle Scholar
  2. 2.
    Antignac C (2002) Genetic models: clues for understanding the pathogenesis of idiopathic nephrotic syndrome. J Clin Invest 109:447–449PubMedGoogle Scholar
  3. 3.
    Okamoto K, Tokunaga K, Doi K, Fujita T, Suzuki H, Katoh T, Watanabe T, Nishida N, Mabuchi A, Takahashi A, Kubo M, Maeda S, Nakamura Y, Noiri E (2011) Common variation in GPC5 is associated with acquired nephrotic syndrome. Nat Genet 43:459–465PubMedCrossRefGoogle Scholar
  4. 4.
    Roselli S, Heidet L, Sich M, Henger A, Kretzler M, Gubler MC, Antignac C (2004) Early glomerular filtration defect and severe renal disease in podocin-deficient mice. Mol Cell Biol 24:550–560PubMedCrossRefGoogle Scholar
  5. 5.
    Kerjaschki D (2001) Caught flat-footed: podocyte damage and the molecular bases of focal glomerulosclerosis. J Clin Invest 108:1583–1587PubMedGoogle Scholar
  6. 6.
    Deen WM, Maddox DA, Robertson CR, Brenner BM (1974) Dynamics of glomerular ultrafiltration in the rat. VII: response to reduced renal mass. Am J Physiol 227:556–562PubMedGoogle Scholar
  7. 7.
    Hostetter TH, Olson JL, Rennke HG, Venkatachalam MA, Brenner BM (1981) Hyperfiltration in remnant nephrons: a potentially adverse response to renal ablation. Am J Physiol 241:F85–F93PubMedGoogle Scholar
  8. 8.
    Gude WD, Lupton AC (1960) Spontaneous glomerulosclerosis in aging RF mice. J Gerontol 15:373–376PubMedCrossRefGoogle Scholar
  9. 9.
    Abramowsky CR, Aikawa M, Swinehart GL, Snajdar RM (1984) Spontaneous nephrotic syndrome in a genetic rat model. Am J Pathol 116:175–178Google Scholar
  10. 10.
    Nakamura T, Oite T, Shimizu F, Matsuyama M, Kazama T, Koda Y, Arakawa M (1986) Sclerotic lesions in the glomeruli of Buffalo/Mna rats. Nephron 43:50–55PubMedCrossRefGoogle Scholar
  11. 11.
    Le Berre L, Godfrin Y, Günther E, Buzelin F, Perretto S, Smit H, Kerjaschki D, Usal C, Cuturi C, Soulillou J-P, Dantal J (2002) Extrarenal effects on the pathogenesis and relapse of idiopathic nephrotic syndrome in Buffalo/Mna rats. J Clin Invest 109:491–498PubMedGoogle Scholar
  12. 12.
    Fassi A, Sangalli F, Maffi R, Colombi F, Mohamed EI, Brenner BM, Remuzzi G, Remuzzi A (1998) Progressive glomerular injury in the MWF rat is predicted by inborn nephron deficit. J Am Soc Nephrol 9:1399–1406PubMedGoogle Scholar
  13. 13.
    Schulz A, Litfin A, Kossmehl P, Kreutz R (2002) Genetic dissection of increased urinary albumin excretion in the Munich Wistar Frömter rat. J Am Soc Nephrol 13:2706–2714PubMedCrossRefGoogle Scholar
  14. 14.
    Schulz A, Standke D, Kovacevic L, Mostler M, Kossmehl P, Stoll M, Kreutz R (2003) A major gene locus links early onset albuminuria with renal interstitial fibrosis in the MWF rat with polygenetic albuminuria. J Am Soc Nephrol 14:3081–3089PubMedCrossRefGoogle Scholar
  15. 15.
    Cho AR, Uchio-Yamada K, Torigai T, Miyamoto T, Miyoshi I, Matsuda J, Kurosawa T, Kon Y, Asano A, Sasaki N, Agui T (2006) Deficiency of the tensin2 gene in the ICGN mouse: an animal model for congenital nephrotic syndrome. Mamm Genome 17:407–416PubMedCrossRefGoogle Scholar
  16. 16.
    Seiler MW, Venkatachalam MA, Cotran RS (1975) Glomerular epithelium: structural alterations induced by polycations. Science 189:390–393PubMedCrossRefGoogle Scholar
  17. 17.
    Fernandez-Llama P, Andrews P, Ecelbarger CA, Nielsen S, Knepper MA (1998) Concentrating defect in experimental nephrotic syndrome: altered expression of aquaporins and thick ascending limb Na + transporters. Kidney Int 54:170–179PubMedCrossRefGoogle Scholar
  18. 18.
    Chen CA, Hwang JC, Guh JY, Chang JM, Lai YH, Chen HC (2006) Reduced podocyte expression of α3β1 integrins and podocyte depletion in patients with primary focal segmental glomerulosclerosis and chronic PAN-treated rats. J Lab Clin Med 147:74–82PubMedCrossRefGoogle Scholar
  19. 19.
    Diamond JR, Karnovsky MJ (1986) Focal and segmental glomerulosclerosis following a single intravenous dose of puromycin aminonucleoside. Am J Pathol 122:481–487PubMedGoogle Scholar
  20. 20.
    Heymann W, Hackel DB, Harwood S, Wilson SGF, Hunter JLP (1959) Production of nephrotic syndrome in rats by Freund’s adjuvants and rat kidney suspensions. Proc Soc Exp Biol Med 100:660–664PubMedCrossRefGoogle Scholar
  21. 21.
    Van Damme BJ, Fleuren GJ, Bakker WW, Vernier RL, Hoedemaeker PJ (1978) Experimental glomerulonephritis in the rat induced by antibodies directed against tubular antigens. V. Fixed glomerular antigens in the pathogenesis of heterologous immune complex glomerulonephritis. Lab Invest 38:502–510PubMedGoogle Scholar
  22. 22.
    Kerjaschki D, Farquhar MG (1983) Immunocytochemical localization of the Heymann nephritis antigen (GP330) in glomerular epithelial cells of normal Lewis rats. J Exp Med 197:667–686CrossRefGoogle Scholar
  23. 23.
    Ronco P, Debiec H (2005) Molecular pathomechanism of membranous nephropathy: from Heymann nephritis to alloimmunisation. J Am Soc Nephrol 16:1205–1213PubMedCrossRefGoogle Scholar
  24. 24.
    Ronco P, Allegri L, Melcion C, Pirotsky E, Appay MD, Bariety J, Pontillon F, Verroust P (1984) A monoclonal antibody to brush border and passive Heymann nephritis. Clin Exp Immunol 55:319–332PubMedGoogle Scholar
  25. 25.
    Ronco P, Allegri L, Brianti E, Chatelet F, Van Leer EHG, Verroust P (1989) Antigenic targets in epimembranous glomerulonephritis. Experimental data and potential application in human pathology. Appl Pathol 7:85–98PubMedGoogle Scholar
  26. 26.
    Assmann KJ, van Son JP, Dijkman HB, Koene RA (1992) A nephritogenic rat monoclonal antibody to mouse aminopeptidase A. Induction of massive albuminuria after a single intravenous injection. J Exp Med 175:623–635PubMedCrossRefGoogle Scholar
  27. 27.
    Debiec H, Guigonis V, Mougenot M, Decobert F, Heymann JP, Bensman A, Deschenes G, Ronco PM (2002) Antenatal membranous glomerulonephritis due to anti-neural endopeptidase antibodies. N Engl J Med 346:2053–2060PubMedCrossRefGoogle Scholar
  28. 28.
    Beck LH, Bonegio RG, Lambeau G, Beck DM, Powell DW, Cummins TD, Klein JB, Salant DJ (2009) M-type phospholipase A2 receptor as target antigen in idiopathic membranous nephropathy. N Engl J Med 361:11–21PubMedCrossRefGoogle Scholar
  29. 29.
    Meyer-Schwesinger C, Dehde S, Klug P, Becker JU, Mathey S, Arefi K, Balabanov S, Venz S, Endlich KH, Pekna M, Gessner JE, Thaiss F, Meyer TN (2011) Nephrotic syndrome and subepithelial deposits in a mouse model of immune-mediated anti-podocyte glomerulonephritis. J Immunol 187:3218–3229PubMedCrossRefGoogle Scholar
  30. 30.
    Reiser J, von Gersdorff G, Loos M, Oh J, Asanuma K, Giardino L, Rastaldi MP, Calvaresi N, Watanabe H, Schwarz K, Faul C, Kretzler M, Davidson A, Sugimoto H, Kalluri R, Sharpe AH, Kreidberg JA, Mundel P (2004) Induction of B7-1 in podocytes is associated with nephrotic syndrome. J Clin Invest 113:1390–1397PubMedGoogle Scholar
  31. 31.
    Wei C, Möller CC, Altintas MM, Li J, Schwarz K, Zacchigna S, Xie L, Henger A, Schmid H, Rastaldi MP, Cowan P, Kretzler M, Parrilla R, Bendayan M, Gupta V, Nikolic B, Kalluri R, Carmeliet P, Mundel P, Reiser J (2008) Modification of kidney barrier function by the urokinase receptor. Nat Med 14:55–63PubMedCrossRefGoogle Scholar
  32. 32.
    Bugeon L, Danou A, Carpentier D, Langridge P, Syed N, Dallman MJ (2003) Inducible gene silencing in podocytes: new tool for studying glomerular function. J Am Soc Nephrol 14:786–791PubMedCrossRefGoogle Scholar
  33. 33.
    Nagy A (2000) Cre recombinase: the universal reagent for genome tailoring. Genesis 26:99–109PubMedCrossRefGoogle Scholar
  34. 34.
    Kestila M, Lenkkeri U, Mannikko M, Lamerdin J, McCready P, Putaala H, Ruotsalainen V, Morita T, Nissinen M, Herva R, Kashtan CE, Peltonen L, Holmberg C, Olsen A, Tryggvason K (1998) Positionally cloned gene for a novel glomerular protein—nephrin—is mutated in congenital nephrotic syndrome. Mol Cell 1:575–582PubMedCrossRefGoogle Scholar
  35. 35.
    Putaala H, Soininen R, Kilpelainen P, Wartiovaara J, Tryggvason K (2001) The murine nephrin gene is specifically expressed in kidney, brain and pancreas: inactivation of the gene leads to massive proteinuria and neonatal death. Hum Mol Genet 10:1–8PubMedCrossRefGoogle Scholar
  36. 36.
    Rantanen M, Palmén T, Pätäri A, Ahola H, Lehtonen S, Åström FT, Vauti F, Wurst W, Ruiz P, Kerjaschki D, Holthöfer H (2002) Nephrin TRAP mice lack slit diaphragms and show fibrotic glomeruli and cystic tubular lesions. J Am Soc Nephrol 13:1586–1594PubMedCrossRefGoogle Scholar
  37. 37.
    Juhila J, Lassila M, Roozendaal R, Lethonen E, Messing M, Langer B, Kerjaschki D, Verbeek JS, Holthofer H (2010) Inducible nephrin transgene expression in podocytes rescues nephrin-deficient mice from perinatal death. Am J Pathol 176:51–63PubMedCrossRefGoogle Scholar
  38. 38.
    Huber TB, Kottgen M, Schilling B, Walz G, Benzing T (2001) Interaction with podocin facilitates nephrin signalling. J Biol Chem 276:41543–41546PubMedCrossRefGoogle Scholar
  39. 39.
    Philippe A, Weber S, Esquivel EL, Ratelade J, Houbron C, Hamard G, Kriz W, Schaefer F, Gubler MC, Antignac C (2008) A missense podocin mutant mislocalizes in podocytes and leads to early, severe renal disease in mice. Kidney Int 73:1038–1047PubMedCrossRefGoogle Scholar
  40. 40.
    Mollet G, Ratelade J, Boyer O, Muda AO, Morisset L, Lavin TA, Kitzis D, Dallman MJ, Bugeon L, Hubner N, Gubler MC, Antignac C, Esquivel EL (2009) Podocin inactivation in mature kidneys causes focal segmental glomerulosclerosis and nephrotic syndrome. J Am Soc Nephrol 20:2181–2189PubMedCrossRefGoogle Scholar
  41. 41.
    Shih NY, Li J, Karpitskii V, Nguyen A, Dustin ML, Kanagawa O, Miner JH, Shaw AS (1999) Congenital nephrotic syndrome in mice lacking CD2-associated protein. Science 286:312–315PubMedCrossRefGoogle Scholar
  42. 42.
    Huber TB, Kwoh C, Wu H, Asanuma K, Gödel M, Hartleben B, Blumer KJ, Miner JH, Mundel P, Shaw AS (2006) Bigenic mouse models of focal segmental glomerulosclerosis involving pairwise interaction of CD2AP, Fyn, and synaptopodin. J Clin Invest 116:1337–1345PubMedCrossRefGoogle Scholar
  43. 43.
    Krall P, Canales CP, Kairath P, Carmona-Mora P, Molina J, Carpio JD, Ruiz P, Mezzano SA, Li J, Wei C, Reiser J, Young JI, Walz K (2010) Podocyte-specific overexpression of wild type or mutant Trpc6 in mice is sufficient to cause glomerular disease. PLoS One 5:e12859PubMedCrossRefGoogle Scholar
  44. 44.
    Doyonnas R, Kershaw DB, Duhme C, Merkens H, Chelliah S, Graf T, McNagny KM (2001) Anuria, omphalocele, and perinatal lethality in mice lacking the CD34-related protein podocalyxin. J Exp Med 194:13–27PubMedCrossRefGoogle Scholar
  45. 45.
    Appel D, Kershaw DB, Smeets B, Yuan G, Fuss A, Frye B, Elger M, Kriz W, Floege J, Moeller MJ (2009) Recruitment of podocytes from glomerular parietal epithelial cells. J Am Soc Nephrol 20:333–343PubMedCrossRefGoogle Scholar
  46. 46.
    Kakani S, Yardeni T, Poling J, Ciccone C, Niethamer T, Klootwijk ED, Manoli I, Darvish D, Hoogstraten-Miller S, Zerfas P, Tian E, Hagen KGT, Kopp JB, Gahl WA, Huizing M (2012) The Gne M712T mouse as a model for human glomerulopathy. Am J Pathol 180:1431–1440PubMedCrossRefGoogle Scholar
  47. 47.
    Sanes JR, Engvall E, Butkowski R, Hunter DD (1990) Molecular heterogeneity of basal laminae: isoforms of laminin and collagen IV at the neuromuscular junction and elsewhere. J Cell Biol 111:1685–1699PubMedCrossRefGoogle Scholar
  48. 48.
    Noakes PG, Miner JH, Gautam M, Cunningham JM, Sanes JR, Merlie JP (1995) The renal glomerulus of mice lacking s-laminin/laminin β2: nephrosis despite molecular compensation by laminin β1. Nature Genetics 10:400–406PubMedCrossRefGoogle Scholar
  49. 49.
    Suh JH, Jarad G, VanDeVoorde RG, Miner JH (2011) Forced expression of laminin β1 in podocytes prevents nephrotic syndrome in mice lacking laminin β2, a model of Pierson syndrome. Proc Natl Acad Sci USA 108:15348–15353PubMedCrossRefGoogle Scholar
  50. 50.
    Abrahamson DR, Prettyman AC, Robert B, St. John PL (2003) Laminin-1 reexpression in Alport’s mouse glomerular basement membranes. Kidney Int 63:826–834PubMedCrossRefGoogle Scholar
  51. 51.
    Wienholds E, van Eeden F, Kosters M, Mudde J, Plasterk RH, Cuppen E (2003) Efficient target-selected mutagenesis in zebrafish. Genome Res 13:2700–2707PubMedCrossRefGoogle Scholar
  52. 52.
    Doyon Y, Vo TD, Mendel MC, Greenberg SG, Wang J, Xia DF, Miller JC, Urnov FD, Gregory PD, Holmes MC (2011) Enhancing zinc-finger-nuclease activity with improved obligate heterodimeric architectures. Nat Methods 8:74–79PubMedCrossRefGoogle Scholar
  53. 53.
    Meng X, Noyes MB, Zhu LJ, Lawson ND, Wolfe SA (2008) Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases. Nat Biotechnol 26:695–701PubMedCrossRefGoogle Scholar
  54. 54.
    Wheeler GN, Brändli AW (2009) Simple vertebrate models for chemical genetics and drug discovery screens: lessons from zebrafish and Xenopus. Dev Dyn 238:1287–1308PubMedCrossRefGoogle Scholar
  55. 55.
    Zhong H, Lin S (2011) Chemical screening with zebrafish embryos. Methods Mol Biol 716:193–205PubMedCrossRefGoogle Scholar
  56. 56.
    Ebarasi L, Oddsson A, Hultenby K, Betsholtz C, Tryggvason K (2011) Zebrafish: a model system for the study of vertebrate renal development, function, and pathophysiology. Curr Opin Nephrol Hypertens 20:416–424PubMedCrossRefGoogle Scholar
  57. 57.
    Van Rooijen E, Voest EE, Logister I, Bussmann J, Korving J, van Eeden FJ, Giles RH, Schulte-Merker S (2010) Von Hippel-Lindau tumor suppressor mutants faithfully model pathological hypoxia-driven angiogenesis and vascular retinopathies in zebrafish. Dis Model Mech 3:343–353PubMedCrossRefGoogle Scholar
  58. 58.
    Ekker SC, Larson JD (2001) Morphant technology in model developmental systems. Genesis 30:89–93PubMedCrossRefGoogle Scholar
  59. 59.
    Kramer-Zucker AG, Wiessner S, Jensen AM, Drummond IA (2005) Organization of the pronephric filtration apparatus in zebrafish requires Nephrin, Podocin and the FERM domain protein Mosaic eyes. Dev Biol 285:316–329PubMedCrossRefGoogle Scholar
  60. 60.
    Hinkes B, Wiggins RC, Gbadegesin R, Vlangos CN, Seelow D, Nürnberg G, Garg P, Verma R, Chaib H, Hoskins BE, Ashraf S, Becker C, Hennies HC, Goyal M, Wharram BL, Schachter AD, Mudumana S, Drummond I, Kerjaschki D, Waldherr R, Dietrich A, Ozaltin F, Bakkaloglu A, Cleper R, Basel-Vanagaite L, Pohl M, Griebel M, Tsygin AN, Soylu A, Müller D, Sorli CS, Bunney TD, Katan M, Liu J, Attanasio M, O’Toole JF, Hasselbacher K, Mucha B, Otto EA, Airik R, Kispert A, Kelley GG, Smrcka AV, Gudermann T, Holzman LB, Nürnberg P, Hildebrandt F (2006) Positional cloning uncovers mutations in PLCE1 responsible for a nephrotic syndrome variant that may be reversible. Nat Genet 38:1397–1405PubMedCrossRefGoogle Scholar
  61. 61.
    He B, Ebarasi L, Hultenby K, Tryggvason K, Betsholtz C (2011) Podocin-green fluorescence protein allows visualization and functional analysis of podocytes. J Am Soc Nephrol 22:1019–1023PubMedCrossRefGoogle Scholar
  62. 62.
    Zhou W, Hildebrandt F (2012) Inducible podocyte injury and proteinuria in transgenic zebrafish. J Am Soc Nephrol 23:1039–1047PubMedCrossRefGoogle Scholar
  63. 63.
    Wright NG, Mohammed NA, Eckersall PD, Nash AS (1985) Experimental immune complex glomerulonephritis in dogs receiving cationized bovine serum albumin. Res Vet Sci 38:322–328PubMedGoogle Scholar
  64. 64.
    Nash AS, Mohammed NA, Wright NG (1990) Experimental immune complex glomerulonephritis and the nephrotic syndrome in cats immunized with cationized bovine serum albumin. Res Vet Sci 49:370–372PubMedGoogle Scholar
  65. 65.
    Border WA, Ward HJ, Kamil ES, Cohen AH (1982) Induction of membranous nephropathy in rabbits by administration of an exogenous cationic antigen. J Clin Invest 69:451–461PubMedCrossRefGoogle Scholar
  66. 66.
    Soares VA, Fan CD, Ward H (1992) Mesangial overload in experimental membranous nephropathy. Brazilian J Med Biol Res 25:477–486Google Scholar
  67. 67.
    Chen JS, Chen A, Chang LC, Chang WS, Lee HS, Lin SH, Lin YF (2004) Mouse model of membranous nephropathy induced by cationic bovine serum albumin: antigen dose–response relations and strain differences. Nephrol Dial Transplant 19:2721–2728PubMedCrossRefGoogle Scholar
  68. 68.
    Kreidberg JA, Donovan MJ, Goldstein SL, Rennke H, Shepherd K, Jones RC, Jaenisch R (1996) Alpha 3 beta 1 integrin has a crucial role in kidney and lung organogenesis. Development 122:3537–3547PubMedGoogle Scholar
  69. 69.
    Kos CH, Le TC, Sinha S, Henderson JM, Kim SH, Sugimoto H, Kalluri R, Gerszten RE, Pollak MR (2003) Mice deficient in α-actinin-4 have severe glomerular disease. J Clin Invest 111:1683–1690PubMedGoogle Scholar
  70. 70.
    Michaud JL, Lemieux LI, Dubé M, Vanderhyden BC, Robertson S, Kennedy CRJ (2003) Focal and segmental glomerulosclerosis in mice with podocyte-specific expression of mutant α-actinin-4. J Am Soc Nephrol 14:1200–1211PubMedCrossRefGoogle Scholar
  71. 71.
    Dietrich A, Mederos Y, Schnitzler M, Gollasch M, Gross V, Storch U, Dubrovska G, Obst M, Yildirim E, Salanova B, Kalwa H, Essin K, Pinkenburg O, Luft FC, Gudermann T, Birnbaumer L (2005) Increased vascular smooth muscle contractility in TRPC6-/- mice. Mol Cell Biol 25:6980–6989PubMedCrossRefGoogle Scholar
  72. 72.
    Kreidberg JA, Sariola H, Loring JM, Maeda M, Pelletier J, Housman D, Jaenisch R (1993) WT-1 is required for early kidney development. Cell 74:679–691PubMedCrossRefGoogle Scholar
  73. 73.
    Hammes A, Guo JK, Lutsch G, Leheste JR, Landrock D, Ziegler U, Gubler MC, Schedl A (2001) Two splice variants of the Wilms’ tumor 1 gene have distinct functions during sex determination and nephron formation. Cell 106:319–329PubMedCrossRefGoogle Scholar
  74. 74.
    Moore AW, McInnes L, Kreidberg J, Hastie ND, Schedl A (1999) YAC complementation shows a requirement for Wt1 in the development of epicardium, adrenal gland and throughout nephrogenesis. Development 126:1845–1857PubMedGoogle Scholar
  75. 75.
    Miner JH, Go G, Cunningham JM, Patton BL, Jarad G (2006) Transgenic isolation of skeletal muscle and kidney defects in laminin β2 mutant mice: implications for Pierson syndrome. Development 133:967–975PubMedCrossRefGoogle Scholar
  76. 76.
    Cosgrove D, Meehan DT, Grunkemeyer JA, Kornak JM, Sayers R, Hunter WJ, Samuelson GC (1996) Collagen COL4A3 knockout: a mouse model for autosomal Alport syndrome. Genes Dev 10:2981–2992PubMedCrossRefGoogle Scholar
  77. 77.
    Lu W, Phillips CL, Killen PD, Hlaing T, Harrison WR, Elder FF, Miner JH, Overbeek PA, Meisler MH (1999) Insertional mutation of the collagen genes Col4a3 and Col4a4 in a mouse model of Alport syndrome. Genomics 61:113–124PubMedCrossRefGoogle Scholar
  78. 78.
    Krendel M, Kim SV, Willinger T, Wang T, Kashgarian M, Flavell RA, Mooseker MS (2009) Disruption of Myosin 1e promotes podocyte injury. J Am Soc Nephrol 20:86–94PubMedCrossRefGoogle Scholar

Copyright information

© IPNA 2012

Authors and Affiliations

  • Ivana Simic
    • 1
  • Mansoureh Tabatabaeifar
    • 1
  • Franz Schaefer
    • 1
    Email author
  1. 1.Division of Pediatric Nephrology, Center for Pediatrics and Adolescent MedicineUniversity of HeidelbergHeidelbergGermany

Personalised recommendations