Advertisement

Pediatric Nephrology

, Volume 28, Issue 8, pp 1195–1206 | Cite as

Disorders of calcium and magnesium balance: a physiology-based approach

  • Ewout J. HoornEmail author
  • Robert Zietse
Educational Review

Abstract

Disorders of calcium and magnesium balance are physiologically interesting and clinically challenging. In this review, we attempt to bridge the gap between physiology and practice by providing a physiology-based approach to understanding hypocalcemia, hypercalcemia and hypomagnesemia. Calcium and, to a lesser extent, magnesium balance is achieved through a complex interplay between the parathyroid gland, bone, the intestine and the kidney. Our understanding of the molecular physiology of calcium and magnesium balance has grown considerably following the discovery of the calcium-sensing receptor (CaSR) and the main intestinal and renal transporters for calcium and magnesium, namely, the transient receptor potential channels TRPV5, TRPV6 and TRPM6. The regulation of parathyroid hormone (PTH) secretion by CaSR and the subsequent effects of PTH and vitamin D on TRPV5 constitute an increasingly characterized regulatory loop. In contrast, no truly magnesiotropic hormones have been identified, although the recently established interactions between the epidermal growth factor and TRPM6 suggest a possible candidate. Overall, the aim of this review is to illustrate the clinical disorders of calcium and magnesium balance from the perspective of their integrated physiology.

Keywords

Calcium-sensing receptor Hypercalcemia Hypocalcemia Hypomagnesemia TRPM6 TRPV5 

Notes

References

  1. 1.
    Bindels RJ (2010) 2009 Homer W. Smith Award: minerals in motion: from new ion transporters to new concepts. J Am Soc Nephrol 21:1263–1269CrossRefPubMedGoogle Scholar
  2. 2.
    Smogorzweski MJ, Rude RK, Yu ASL (2011) Disorders of calcium, magnesium, and phosphate balance. In: Taal MW, Chertow GM, Marsden PA, Skorecki K, Yu ASL, Brenner BM (eds) Brenner & Rector’s the kidney. Philadelphia, Saunders Elsevier, pp 689–714Google Scholar
  3. 3.
    Moore EW (1970) Ionized calcium in normal serum, ultrafiltrates, and whole blood determined by ion-exchange electrodes. J Clin Invest 49:318–334CrossRefPubMedGoogle Scholar
  4. 4.
    Phillips P, Pain R (1977) Correcting the calcium. Br Med J 1:1473CrossRefPubMedGoogle Scholar
  5. 5.
    Escuela MP, Guerra M, Anon JM, Martinez-Vizcaino V, Zapatero MD, Garcia-Jalon A, Celaya S (2005) Total and ionized serum magnesium in critically ill patients. Intensive Care Med 31:151–156CrossRefPubMedGoogle Scholar
  6. 6.
    Arnaud MJ (2008) Update on the assessment of magnesium status. Br J Nutr 99[Suppl 3]:S24–S36PubMedGoogle Scholar
  7. 7.
    Cox IM, Campbell MJ, Dowson D (1991) Red blood cell magnesium and chronic fatigue syndrome. Lancet 337:757–760CrossRefPubMedGoogle Scholar
  8. 8.
    Clark BA, Brown RS (1992) Unsuspected morbid hypermagnesemia in elderly patients. Am J Nephrol 12:336–343CrossRefPubMedGoogle Scholar
  9. 9.
    Coburn JW, Popovtzer MM, Massry SG, Kleeman CR (1969) The physicochemical state and renal handling of divalent ions in chronic renal failure. Arch Intern Med 124:302–311CrossRefPubMedGoogle Scholar
  10. 10.
    Quamme GA (1997) Renal magnesium handling: new insights in understanding old problems. Kidney Int 52:1180–1195CrossRefPubMedGoogle Scholar
  11. 11.
    Huang CL, Kuo E (2007) Mechanism of hypokalemia in magnesium deficiency. J Am Soc Nephrol 18:2649–2652CrossRefPubMedGoogle Scholar
  12. 12.
    Touyz RM (2008) Transient receptor potential melastatin 6 and 7 channels, magnesium transport, and vascular biology: implications in hypertension. Am J Physiol Heart Circ Physiol 294:H1103–H1118CrossRefPubMedGoogle Scholar
  13. 13.
    Kao WH, Folsom AR, Nieto FJ, Mo JP, Watson RL, Brancati FL (1999) Serum and dietary magnesium and the risk for type 2 diabetes mellitus: the Atherosclerosis Risk in Communities Study. Arch Intern Med 159:2151–2159CrossRefPubMedGoogle Scholar
  14. 14.
    Van Laecke S, Van Biesen W, Verbeke F, De Bacquer D, Peeters P, Vanholder R (2009) Posttransplantation hypomagnesemia and its relation with immunosuppression as predictors of new-onset diabetes after transplantation. Am J Transplant 9:2140–2149CrossRefPubMedGoogle Scholar
  15. 15.
    Dai LJ, Ritchie G, Kerstan D, Kang HS, Cole DE, Quamme GA (2001) Magnesium transport in the renal distal convoluted tubule. Physiol Rev 81:51–84PubMedGoogle Scholar
  16. 16.
    Hoenderop JG, Nilius B, Bindels RJ (2005) Calcium absorption across epithelia. Physiol Rev 85:373–422CrossRefPubMedGoogle Scholar
  17. 17.
    Alexander RT, Hoenderop JG, Bindels RJ (2008) Molecular determinants of magnesium homeostasis: insights from human disease. J Am Soc Nephrol 19:1451–1458CrossRefPubMedGoogle Scholar
  18. 18.
    Dimke H, Hoenderop JG, Bindels RJ (2011) Molecular basis of epithelial Ca2+ and Mg2+ transport: insights from the TRP channel family. J Physiol 589:1535–1542CrossRefPubMedGoogle Scholar
  19. 19.
    Kumar R, Thompson JR (2011) The regulation of parathyroid hormone secretion and synthesis. J Am Soc Nephrol 22:216–224CrossRefPubMedGoogle Scholar
  20. 20.
    Quamme GA (2008) Recent developments in intestinal magnesium absorption. Curr Opin Gastroenterol 24:230–235CrossRefPubMedGoogle Scholar
  21. 21.
    Shoback D (2008) Clinical practice. Hypoparathyroidism. N Engl J Med 359:391–403CrossRefPubMedGoogle Scholar
  22. 22.
    Brown EM, Gamba G, Riccardi D, Lombardi M, Butters R, Kifor O, Sun A, Hediger MA, Lytton J, Hebert SC (1993) Cloning and characterization of an extracellular Ca(2+)-sensing receptor from bovine parathyroid. Nature 366:575–580CrossRefPubMedGoogle Scholar
  23. 23.
    Nechama M, Uchida T, Mor Yosef-Levi I, Silver J, Naveh-Many T (2009) The peptidyl-prolyl isomerase Pin1 determines parathyroid hormone mRNA levels and stability in rat models of secondary hyperparathyroidism. J Clin Invest 119:3102–3114CrossRefPubMedGoogle Scholar
  24. 24.
    Rachner TD, Khosla S, Hofbauer LC (2011) Osteoporosis: now and the future. Lancet 377:1276–1287CrossRefPubMedGoogle Scholar
  25. 25.
    Bland R, Zehnder D, Hewison M (2000) Expression of 25-hydroxyvitamin D3-1alpha-hydroxylase along the nephron: new insights into renal vitamin D metabolism. Curr Opin Nephrol Hypertens 9:17–22CrossRefPubMedGoogle Scholar
  26. 26.
    Bouillon R, Van Cromphaut S, Carmeliet G (2003) Intestinal calcium absorption: molecular vitamin D mediated mechanisms. J Cell Biochem 88:332–339CrossRefPubMedGoogle Scholar
  27. 27.
    Perez AV, Picotto G, Carpentieri AR, Rivoira MA, Peralta Lopez ME, Tolosa de Talamoni NG (2008) Minireview on regulation of intestinal calcium absorption. Emphasis on molecular mechanisms of transcellular pathway. Digestion 77:22–34CrossRefPubMedGoogle Scholar
  28. 28.
    Nijenhuis T, Hoenderop JG, Bindels RJ (2005) TRPV5 and TRPV6 in Ca(2+) (re)absorption: regulating Ca(2+) entry at the gate. Pflugers Arch 451:181–192CrossRefPubMedGoogle Scholar
  29. 29.
    de Groot T, Lee K, Langeslag M, Xi Q, Jalink K, Bindels RJ, Hoenderop JG (2009) Parathyroid hormone activates TRPV5 via PKA-dependent phosphorylation. J Am Soc Nephrol 20:1693–1704CrossRefPubMedGoogle Scholar
  30. 30.
    de Groot T, Kovalevskaya NV, Verkaart S, Schilderink N, Felici M, van der Hagen EA, Bindels RJ, Vuister GW, Hoenderop JG (2011) Molecular mechanisms of calmodulin action on TRPV5 and modulation by parathyroid hormone. Mol Cell Biol 31:2845–2853CrossRefPubMedGoogle Scholar
  31. 31.
    Rodriguez-Ortiz ME, Lopez I, Munoz-Castaneda JR, Martinez-Moreno JM, Ramirez AP, Pineda C, Canalejo A, Jaeger P, Aguilera-Tejero E, Rodriguez M, Felsenfeld A, Almaden Y (2012) Calcium deficiency reduces circulating levels of FGF23. J Am Soc Nephrol 23:1190–1197CrossRefPubMedGoogle Scholar
  32. 32.
    Renkema KY, Velic A, Dijkman HB, Verkaart S, van der Kemp AW, Nowik M, Timmermans K, Doucet A, Wagner CA, Bindels RJ, Hoenderop JG (2009) The calcium-sensing receptor promotes urinary acidification to prevent nephrolithiasis. J Am Soc Nephrol 20:1705–1713CrossRefPubMedGoogle Scholar
  33. 33.
    Renkema KY, Bindels RJ, Hoenderop JG (2011) Role of the calcium-sensing receptor in reducing the risk for calcium stones. Clin J Am Soc Nephrol 6:2076–2082CrossRefPubMedGoogle Scholar
  34. 34.
    Kato S (1999) Genetic mutation in the human 25-hydroxyvitamin D3 1alpha-hydroxylase gene causes vitamin D-dependent rickets type I. Mol Cell Endocrinol 156:7–12CrossRefPubMedGoogle Scholar
  35. 35.
    Malloy PJ, Feldman D (2010) Genetic disorders and defects in vitamin d action. Endocrinol Metab Clin N Am 39:333–346CrossRefGoogle Scholar
  36. 36.
    Quitterer U, Hoffmann M, Freichel M, Lohse MJ (2001) Paradoxical block of parathormone secretion is mediated by increased activity of G alpha subunits. J Biol Chem 276:6763–6769CrossRefPubMedGoogle Scholar
  37. 37.
    Vetter T, Lohse MJ (2002) Magnesium and the parathyroid. Curr Opin Nephrol Hypertens 11:403–410CrossRefPubMedGoogle Scholar
  38. 38.
    McKnight RF, Adida M, Budge K, Stockton S, Goodwin GM, Geddes JR (2012) Lithium toxicity profile: a systematic review and meta-analysis. Lancet 379:721–728CrossRefPubMedGoogle Scholar
  39. 39.
    Jones G (2008) Pharmacokinetics of vitamin D toxicity. Am J Clin Nutr 88:582S–586SPubMedGoogle Scholar
  40. 40.
    Jacobs TP, Bilezikian JP (2005) Clinical review: rare causes of hypercalcemia. J Clin Endocrinol Metab 90:6316–6322CrossRefPubMedGoogle Scholar
  41. 41.
    Davies JH, Shaw NJ (2012) Investigation and management of hypercalcaemia in children. Arch Dis Child 97:533–538CrossRefPubMedGoogle Scholar
  42. 42.
    Rodd C, Goodyer P (1999) Hypercalcemia of the newborn: etiology, evaluation, and management. Pediatr Nephrol 13:542–547CrossRefPubMedGoogle Scholar
  43. 43.
    Aljaser F, Weinstein M (2008) A 1-week-old newborn with hypercalcemia and palpable nodules: subcutaneous fat necrosis. Can Med Assoc J 178:1653–1654CrossRefGoogle Scholar
  44. 44.
    Kausalya PJ, Amasheh S, Gunzel D, Wurps H, Muller D, Fromm M, Hunziker W (2006) Disease-associated mutations affect intracellular traffic and paracellular Mg2+ transport function of Claudin-16. J Clin Invest 116:878–891CrossRefPubMedGoogle Scholar
  45. 45.
    Weber S, Schneider L, Peters M, Misselwitz J, Ronnefarth G, Boswald M, Bonzel KE, Seeman T, Sulakova T, Kuwertz-Broking E, Gregoric A, Palcoux JB, Tasic V, Manz F, Scharer K, Seyberth HW, Konrad M (2001) Novel paracellin-1 mutations in 25 families with familial hypomagnesemia with hypercalciuria and nephrocalcinosis. J Am Soc Nephrol 12:1872–1881PubMedGoogle Scholar
  46. 46.
    Himmerkus N, Shan Q, Goerke B, Hou J, Goodenough DA, Bleich M (2008) Salt and acid–base metabolism in claudin-16 knockdown mice: impact for the pathophysiology of FHHNC patients. Am J Physiol Renal Physiol 295:F1641–F1647CrossRefPubMedGoogle Scholar
  47. 47.
    Walder RY, Landau D, Meyer P, Shalev H, Tsolia M, Borochowitz Z, Boettger MB, Beck GE, Englehardt RK, Carmi R, Sheffield VC (2002) Mutation of TRPM6 causes familial hypomagnesemia with secondary hypocalcemia. Nat Genet 31:171–174CrossRefPubMedGoogle Scholar
  48. 48.
    Schlingmann KP, Weber S, Peters M, Niemann Nejsum L, Vitzthum H, Klingel K, Kratz M, Haddad E, Ristoff E, Dinour D, Syrrou M, Nielsen S, Sassen M, Waldegger S, Seyberth HW, Konrad M (2002) Hypomagnesemia with secondary hypocalcemia is caused by mutations in TRPM6, a new member of the TRPM gene family. Nat Genet 31:166–170CrossRefPubMedGoogle Scholar
  49. 49.
    Runnels LW, Yue L, Clapham DE (2001) TRP-PLIK, a bifunctional protein with kinase and ion channel activities. Science 291:1043–1047CrossRefPubMedGoogle Scholar
  50. 50.
    Takezawa R, Schmitz C, Demeuse P, Scharenberg AM, Penner R, Fleig A (2004) Receptor-mediated regulation of the TRPM7 channel through its endogenous protein kinase domain. Proc Natl Acad Sci USA 101:6009–6014CrossRefPubMedGoogle Scholar
  51. 51.
    Cahalan MD (2001) Cell biology. Channels as enzymes. Nature 411:542–543CrossRefPubMedGoogle Scholar
  52. 52.
    Whang R, Ryder KW (1990) Frequency of hypomagnesemia and hypermagnesemia. Requested vs routine. JAMA 263:3063–3064CrossRefPubMedGoogle Scholar
  53. 53.
    Epstein M, McGrath S, Law F (2006) Proton-pump inhibitors and hypomagnesemic hypoparathyroidism. N Engl J Med 355:1834–1836CrossRefPubMedGoogle Scholar
  54. 54.
    Hess MW, Hoenderop JG, Bindels RJ, Drenth JP (2012) Systematic review: hypomagnesaemia induced by proton pump inhibition. Aliment Pharmacol Ther 36:405–413CrossRefPubMedGoogle Scholar
  55. 55.
    Hoorn EJ, van der Hoek J, de Man RA, Kuipers EJ, Bolwerk C, Zietse R (2010) A case series of proton pump inhibitor-induced hypomagnesemia. Am J Kidney Dis 56:112–116CrossRefPubMedGoogle Scholar
  56. 56.
    Cundy T, Dissanayake A (2008) Severe hypomagnesaemia in long-term users of proton-pump inhibitors. Clin Endocrinol (Oxf) 69:338–341CrossRefGoogle Scholar
  57. 57.
    Zietse R, Zoutendijk R, Hoorn EJ (2009) Fluid, electrolyte and acid–base disorders associated with antibiotic therapy. Nat Rev Nephrol 5:193–202CrossRefPubMedGoogle Scholar
  58. 58.
    Groenestege WM, Thebault S, van der Wijst J, van den Berg D, Janssen R, Tejpar S, van den Heuvel LP, van Cutsem E, Hoenderop JG, Knoers NV, Bindels RJ (2007) Impaired basolateral sorting of pro-EGF causes isolated recessive renal hypomagnesemia. J Clin Invest 117:2260–2267CrossRefPubMedGoogle Scholar
  59. 59.
    Hoorn EJ, Walsh SB, McCormick JA, Furstenberg A, Yang CL, Roeschel T, Paliege A, Howie AJ, Conley J, Bachmann S, Unwin RJ, Ellison DH (2011) The calcineurin inhibitor tacrolimus activates the renal sodium chloride cotransporter to cause hypertension. Nat Med 17:1304–1309CrossRefPubMedGoogle Scholar
  60. 60.
    Nijenhuis T, Hoenderop JG, Bindels RJ (2004) Downregulation of Ca(2+) and Mg(2+) transport proteins in the kidney explains tacrolimus (FK506)-induced hypercalciuria and hypomagnesemia. J Am Soc Nephrol 15:549–557CrossRefPubMedGoogle Scholar
  61. 61.
    Nijenhuis T, Vallon V, van der Kemp AW, Loffing J, Hoenderop JG, Bindels RJ (2005) Enhanced passive Ca2+ reabsorption and reduced Mg2+ channel abundance explains thiazide-induced hypocalciuria and hypomagnesemia. J Clin Invest 115:1651–1658CrossRefPubMedGoogle Scholar
  62. 62.
    Thebault S, Alexander RT, Tiel Groenestege WM, Hoenderop JG, Bindels RJ (2009) EGF increases TRPM6 activity and surface expression. J Am Soc Nephrol 20:78–85CrossRefPubMedGoogle Scholar
  63. 63.
    Walsh TJ, Finberg RW, Arndt C, Hiemenz J, Schwartz C, Bodensteiner D, Pappas P, Seibel N, Greenberg RN, Dummer S, Schuster M, Holcenberg JS (1999) Liposomal amphotericin B for empirical therapy in patients with persistent fever and neutropenia. National Institute of Allergy and Infectious Diseases Mycoses Study Group. N Engl J Med 340:764–771CrossRefPubMedGoogle Scholar
  64. 64.
    Sontia B, Montezano AC, Paravicini T, Tabet F, Touyz RM (2008) Downregulation of renal TRPM7 and increased inflammation and fibrosis in aldosterone-infused mice: effects of magnesium. Hypertension 51:915–921CrossRefPubMedGoogle Scholar
  65. 65.
    Bockenhauer D, Feather S, Stanescu HC, Bandulik S, Zdebik AA, Reichold M, Tobin J, Lieberer E, Sterner C, Landoure G, Arora R, Sirimanna T, Thompson D, Cross JH, van’t Hoff W, Al Masri O, Tullus K, Yeung S, Anikster Y, Klootwijk E, Hubank M, Dillon MJ, Heitzmann D, Arcos-Burgos M, Knepper MA, Dobbie A, Gahl WA, Warth R, Sheridan E, Kleta R (2009) Epilepsy, ataxia, sensorineural deafness, tubulopathy, and KCNJ10 mutations. N Engl J Med 360:1960–1970CrossRefPubMedGoogle Scholar
  66. 66.
    Bandulik S, Schmidt K, Bockenhauer D, Zdebik AA, Humberg E, Kleta R, Warth R, Reichold M (2011) The salt-wasting phenotype of EAST syndrome, a disease with multifaceted symptoms linked to the KCNJ10 K+ channel. Pflugers Arch 461:423–435CrossRefPubMedGoogle Scholar
  67. 67.
    Glaudemans B, van der Wijst J, Scola RH, Lorenzoni PJ, Heister A, van der Kemp AW, Knoers NV, Hoenderop JG, Bindels RJ (2009) A missense mutation in the Kv1.1 voltage-gated potassium channel-encoding gene KCNA1 is linked to human autosomal dominant hypomagnesemia. J Clin Invest 119:936–942CrossRefPubMedGoogle Scholar

Copyright information

© IPNA 2012

Authors and Affiliations

  1. 1.Department of Internal Medicine—NephrologyErasmus Medical CenterRotterdamThe Netherlands

Personalised recommendations