Pediatric Nephrology

, Volume 28, Issue 6, pp 843–854 | Cite as

The EYA-SO/SIX complex in development and disease



Eyes absent (EYA) and Sine oculis (SO/SIX) proteins function as transcriptional activation complexes and play essential roles in organogenesis during embryonic development in regulating cell proliferation and survival and coordination of particular differentiation programs. Mutations of the Eya and So/Six genes cause profound developmental defects in organisms as diverse as flies, frogs, fish, mice, and humans. EYA proteins also possess an intrinsic phosphatase activity, which is essential for normal development. Here, we review crucial roles of EYA and SO/SIX in development and disease in mice and humans.


Transcription factor Phosphatase Sensory placode Specification of metanephric mesenchyme Induction of ureteric bud Ureter Cell proliferation Cell survival 


  1. 1.
    Serikaku MA, O'Tousa JE (1994) sine oculis is a homeobox gene required for Drosophila visual system development. Genetics 138:1137–1150PubMedGoogle Scholar
  2. 2.
    Xu PX, Woo I, Her H, Beier DR, Maas RL (1997) Mouse Eya homologues of the Drosophila Eyes absent gene require Pax6 for expression in lens and nasal placode. Development 124:219–231PubMedGoogle Scholar
  3. 3.
    Abdelhak S, Kalatzis V, Heilig R, Compain S, Samson D, Vincent C, Weil D, Cruaud C, Sahly I, Leibovici M, Bitner-Glindzicz M, Francis M, Lacombe D, Vigneron J, Charachon R, Boven K, Bedbeder P, Van Regemorter N, Weissenbach J, Petit C (1997) A human homologue of the Drosophila Eyes absent gene underlies branchio-oto-renal (BOR) syndrome and identifies a novel gene family. Nat Genet 15:157–164PubMedCrossRefGoogle Scholar
  4. 4.
    Bonini NM, Leiserson WM, Benzer S (1993) The Eyes absent gene: genetic control of cell survival and differentiation in the developing Drosophila eye. Cell 72:379–395PubMedCrossRefGoogle Scholar
  5. 5.
    Cheyette BN, Green PJ, Martin K, Garren H, Hartenstein V, Zipursky SL (1994) The Drosophila sine oculis locus encodes a homeodomain-containing protein required for the development of the entire visual system. Neuron 12:977–996PubMedCrossRefGoogle Scholar
  6. 6.
    Zimmerman JE, Bui QT, Steingrimsson E, Nagle DL, Fu W, Genin A, Spinner NB, Copeland NG, Jenkins NA, Bucan M, Bonini NM (1997) Cloning and characterization of two vertebrate homologs of the Drosophila Eyes absent gene. Genome Res 7:128–141PubMedCrossRefGoogle Scholar
  7. 7.
    Sahly I, Andermann P, Petit C (1999) The zebrafish eya1 gene and its expression pattern during embryogenesis. Dev Genes Evol 209:399–410PubMedCrossRefGoogle Scholar
  8. 8.
    Seo HC, Curtiss J, Mlodzik M, Fjose A (1999) Six class homeobox genes in Drosophila belong to three distinct families and are involved in head development. Mech Dev 83:127–139PubMedCrossRefGoogle Scholar
  9. 9.
    Kawakami K, Sato S, Ozaki H, Ikeda K (2000) Six family genes–structure and function as transcription factors and their roles in development. Bioessays 22:616–626PubMedCrossRefGoogle Scholar
  10. 10.
    Dozier C, Kagoshima H, Niklaus G, Cassata G, Burglin TR (2001) The Caenorhabditis elegans Six/sine oculis class homeobox gene ceh-32 is required for head morphogenesis. Dev Biol 236:289–303PubMedCrossRefGoogle Scholar
  11. 11.
    Hoshiyama D, Iwabe N, Miyata T (2007) Evolution of the gene families forming the Pax/Six regulatory network: isolation of genes from primitive animals and molecular phylogenetic analyses. FEBS Lett 581:1639–1643PubMedCrossRefGoogle Scholar
  12. 12.
    Pineda D, Gonzalez J, Callaerts P, Ikeo K, Gehring WJ, Salo E (2000) Searching for the prototypic eye genetic network: sine oculis is essential for eye regeneration in planarians. Proc Natl Acad Sci USA 97:4525–4529PubMedCrossRefGoogle Scholar
  13. 13.
    Bessarab DA, Chong SW, Korzh V (2004) Expression of zebrafish six1 during sensory organ development and myogenesis. Dev Dyn 230:781–786PubMedGoogle Scholar
  14. 14.
    Takeda Y, Hatano S, Sentoku N, Matsuoka M (1999) Homologs of animal Eyes absent (eya) genes are found in higher plants. Mol Gen Genet 262:131–138PubMedCrossRefGoogle Scholar
  15. 15.
    Bebenek IG, Gates RD, Morris J, Hartenstein V, Jacobs DK (2004) sine oculis in basal Metazoa. Dev Genes Evol 214:342–351PubMedCrossRefGoogle Scholar
  16. 16.
    Treisman JE (1999) A conserved blueprint for the eye? Bioessays 21:843–850PubMedCrossRefGoogle Scholar
  17. 17.
    Xu PX, Zheng W, Huang L, Maire P, Laclef C, Silvius D (2003) Six1 is required for the early organogenesis of mammalian kidney. Development 130:3085–3094PubMedCrossRefGoogle Scholar
  18. 18.
    Zheng W, Huang L, Wei ZB, Silvius D, Tang B, Xu PX (2003) The role of Six1 in mammalian auditory system development. Development 130:3989–4000PubMedCrossRefGoogle Scholar
  19. 19.
    Chen R, Amoui M, Zhang Z, Mardon G (1997) Dachshund and Eyes absent proteins form a complex and function synergistically to induce ectopic eye development in Drosophila. Cell 91:893–903PubMedCrossRefGoogle Scholar
  20. 20.
    Pignoni F, Hu B, Zavitz KH, Xiao J, Garrity PA, Zipursky SL (1997) The eye-specification proteins So and Eya form a complex and regulate multiple steps in Drosophila eye development. Cell 91:881–891PubMedCrossRefGoogle Scholar
  21. 21.
    Halder G, Callaerts P, Flister S, Walldorf U, Kloter U, Gehring WJ (1998) Eyeless initiates the expression of both sine oculis and Eyes absent during Drosophila compound eye development. Development 125:2181–2191PubMedGoogle Scholar
  22. 22.
    Halder G, Callaerts P, Gehring WJ (1995) Induction of ectopic eyes by targeted expression of the eyeless gene in Drosophila. Science 267:1788–1792PubMedCrossRefGoogle Scholar
  23. 23.
    Borsani G, DeGrandi A, Ballabio A, Bulfone A, Bernard L, Banfi S, Gattuso C, Mariani M, Dixon M, Donnai D, Metcalfe K, Winter R, Robertson M, Axton R, Brown A, van Heyningen V, Hanson I (1999) EYA4, a novel vertebrate gene related to Drosophila Eyes absent. Hum Mol Genet 8:11–23PubMedCrossRefGoogle Scholar
  24. 24.
    Oliver G, Wehr R, Jenkins NA, Copeland NG, Cheyette BN, Hartenstein V, Zipursky SL, Gruss P (1995) Homeobox genes and connective tissue patterning. Development 121:693–705PubMedGoogle Scholar
  25. 25.
    Oliver G, Mailhos A, Wehr R, Copeland NG, Jenkins NA, Gruss P (1995) Six3, a murine homologue of the sine oculis gene, demarcates the most anterior border of the developing neural plate and is expressed during eye development. Development 121:4045–4055PubMedGoogle Scholar
  26. 26.
    Xu PX, Cheng J, Epstein JA, Maas RL (1997) Mouse Eya genes are expressed during limb tendon development and encode a transcriptional activation function. Proc Natl Acad Sci USA 94:11974–11979PubMedCrossRefGoogle Scholar
  27. 27.
    Rayapureddi JP, Kattamuri C, Steinmetz BD, Frankfort BJ, Ostrin EJ, Mardon G, Hegde RS (2003) Eyes absent represents a class of protein tyrosine phosphatases. Nature 426:295–298PubMedCrossRefGoogle Scholar
  28. 28.
    Tootle TL, Silver SJ, Davies EL, Newman V, Latek RR, Mills IA, Selengut JD, Parlikar BE, Rebay I (2003) The transcription factor Eyes absent is a protein tyrosine phosphatase. Nature 426:299–302PubMedCrossRefGoogle Scholar
  29. 29.
    Li X, Oghi KA, Zhang J, Krones A, Bush KT, Glass CK, Nigam SK, Aggarwal AK, Maas R, Rose DW, Rosenfeld MG (2003) Eya protein phosphatase activity regulates Six1-Dach-Eya transcriptional effects in mammalian organogenesis. Nature 426:247–254PubMedCrossRefGoogle Scholar
  30. 30.
    Cook PJ, Ju BG, Telese F, Wang X, Glass CK, Rosenfeld MG (2009) Tyrosine dephosphorylation of H2AX modulates apoptosis and survival decisions. Nature 458:591–596PubMedCrossRefGoogle Scholar
  31. 31.
    Krishnan N, Jeong DG, Jung SK, Ryu SE, Xiao A, Allis CD, Kim SJ, Tonks NK (2009) Dephosphorylation of the C-terminal tyrosyl residue of the DNA damage-related histone H2A.X is mediated by the protein phosphatase Eyes absent. J Biol Chem 284:16066–16070PubMedCrossRefGoogle Scholar
  32. 32.
    Kawakami K, Ohto H, Ikeda K, Roeder RG (1996) Structure, function and expression of a murine homeobox protein AREC3, a homologue of Drosophila sine oculis gene product, and implication in development. Nucleic Acids Res 24:303–310PubMedCrossRefGoogle Scholar
  33. 33.
    Kawakami K, Ohto H, Takizawa T, Saito T (1996) Identification and expression of six family genes in mouse retina. FEBS Lett 393:259–263PubMedCrossRefGoogle Scholar
  34. 34.
    Spitz F, Demignon J, Porteu A, Kahn A, Concordet JP, Daegelen D, Maire P (1998) Expression of myogenin during embryogenesis is controlled by Six/sine oculis homeoproteins through a conserved MEF3 binding site. Proc Natl Acad Sci USA 95:14220–14225PubMedCrossRefGoogle Scholar
  35. 35.
    Suh CS, Ellingsen S, Austbo L, Zhao XF, Seo HC, Fjose A (2010) Autoregulatory binding sites in the zebrafish six3a promoter region define a new recognition sequence for Six3 proteins. FEBS J 277:1761–1775PubMedCrossRefGoogle Scholar
  36. 36.
    Ohto H, Kamada S, Tago K, Tominaga SI, Ozaki H, Sato S, Kawakami K (1999) Cooperation of six and eya in activation of their target genes through nuclear translocation of Eya. Mol Cell Biol 19:6815–6824PubMedGoogle Scholar
  37. 37.
    Silver SJ, Davies EL, Doyon L, Rebay I (2003) Functional dissection of Eyes absent reveals new modes of regulation within the retinal determination gene network. Mol Cell Biol 23:5989–5999PubMedCrossRefGoogle Scholar
  38. 38.
    Li X, Perissi V, Liu F, Rose DW, Rosenfeld MG (2002) Tissue-specific regulation of retinal and pituitary precursor cell proliferation. Science 297:1180–1183PubMedGoogle Scholar
  39. 39.
    Ahmed M, Wong EY, Sun J, Xu J, Wang F, Xu PX (2010) Eya1-six1 interaction is sufficient to induce hair cell fate in the cochlea by activating atoh1 expression in cooperation with sox2. Dev Cell 22:377–390CrossRefGoogle Scholar
  40. 40.
    Ahmed M, Xu J, Xu PX (2012) EYA1 and SIX1 drive the neuronal developmental program in cooperation with the SWI/SNF chromatin-remodeling complex and SOX2 in the mammalian inner ear. Development 139:1965–1977PubMedCrossRefGoogle Scholar
  41. 41.
    Ozaki H, Watanabe Y, Ikeda K, Kawakami K (2002) Impaired interactions between mouse Eyal harboring mutations found in patients with branchio-oto-renal syndrome and Six, Dach, and G proteins. J Hum Genet 47:107–116PubMedCrossRefGoogle Scholar
  42. 42.
    Embry AC, Glick JL, Linder ME, Casey PJ (2004) Reciprocal signaling between the transcriptional co-factor Eya2 and specific members of the Galphai family. Mol Pharmacol 66:1325–1331PubMedCrossRefGoogle Scholar
  43. 43.
    Fan X, Brass LF, Poncz M, Spitz F, Maire P, Manning DR (2000) The alpha subunits of Gz and Gi interact with the Eyes absent transcription cofactor Eya2, preventing its interaction with the six class of homeodomain-containing proteins. J Biol Chem 275:32129–32134PubMedCrossRefGoogle Scholar
  44. 44.
    Landgraf K, Bollig F, Trowe MO, Besenbeck B, Ebert C, Kruspe D, Kispert A, Hanel F, Englert C (2010) Sipl1 and Rbck1 are novel Eya1-binding proteins with a role in craniofacial development. Mol Cell Biol 30:5764–5775PubMedCrossRefGoogle Scholar
  45. 45.
    Nie X, Sun J, Gordon RE, Cai CL, Xu PX (2010) SIX1 acts synergistically with TBX18 in mediating ureteral smooth muscle formation. Development 137:755–765PubMedCrossRefGoogle Scholar
  46. 46.
    Bonini NM, Leiserson WM, Benzer S (1998) Multiple roles of the Eyes absent gene in Drosophila. Dev Biol 196:42–57PubMedCrossRefGoogle Scholar
  47. 47.
    Bane BC, Van Rybroek JM, Kolker SJ, Weeks DL, Manaligod JM (2005) EYA1 expression in the developing inner ear. Ann Otol Rhinol Laryngol 114:853–858PubMedGoogle Scholar
  48. 48.
    Buller C, Xu X, Marquis V, Schwanke R, Xu PX (2001) Molecular effects of Eya1 domain mutations causing organ defects in BOR syndrome. Hum Mol Genet 10:2775–2781PubMedCrossRefGoogle Scholar
  49. 49.
    Zhang Y, Knosp BM, Maconochie M, Friedman RA, Smith RJ (2004) A comparative study of Eya1 and Eya4 protein function and its implication in branchio-oto-renal syndrome and DFNA10. J Assoc Res Otolaryngol 5:295–304PubMedCrossRefGoogle Scholar
  50. 50.
    Xiong W, Dabbouseh NM, Rebay I (2009) Interactions with the Abelson tyrosine kinase reveal compartmentalization of Eyes absent function between nucleus and cytoplasm. Dev Cell 16:271–279PubMedCrossRefGoogle Scholar
  51. 51.
    Okabe Y, Sano T, Nagata S (2009) Regulation of the innate immune response by threonine-phosphatase of Eyes absent. Nature 460:520–524PubMedGoogle Scholar
  52. 52.
    Pandey RN, Rani R, Yeo EJ, Spencer M, Hu S, Lang RA, Hegde RS (2010) The Eyes absent phosphatase-transactivator proteins promote proliferation, transformation, migration, and invasion of tumor cells. Oncogene 29:3715–3722PubMedCrossRefGoogle Scholar
  53. 53.
    Chen B, Kim EH, Xu PX (2009) Initiation of olfactory placode development and neurogenesis is blocked in mice lacking both Six1 and Six4. Dev Biol 326:75–85PubMedCrossRefGoogle Scholar
  54. 54.
    Liu W, Lagutin OV, Mende M, Streit A, Oliver G (2006) Six3 activation of Pax6 expression is essential for mammalian lens induction and specification. EMBO J 25:5383–5395PubMedCrossRefGoogle Scholar
  55. 55.
    Purcell P, Oliver G, Mardon G, Donner AL, Maas RL (2005) Pax6-dependence of Six3, Eya1 and Dach1 expression during lens and nasal placode induction. Gene Expr Patterns 6:110–118PubMedCrossRefGoogle Scholar
  56. 56.
    Nica G, Herzog W, Sonntag C, Nowak M, Schwarz H, Zapata AG, Hammerschmidt M (2006) Eya1 is required for lineage-specific differentiation, but not for cell survival in the zebrafish adenohypophysis. Dev Biol 292:189–204PubMedCrossRefGoogle Scholar
  57. 57.
    Xu PX, Adams J, Peters H, Brown MC, Heaney S, Maas R (1999) Eya1-deficient mice lack ears and kidneys and show abnormal apoptosis of organ primordia. Nat Genet 23:113–117PubMedCrossRefGoogle Scholar
  58. 58.
    Laclef C, Souil E, Demignon J, Maire P (2003) Thymus, kidney and craniofacial abnormalities in Six 1 deficient mice. Mech Dev 120:669–679PubMedCrossRefGoogle Scholar
  59. 59.
    Ozaki H, Nakamura K, Funahashi J, Ikeda K, Yamada G, Tokano H, Okamura HO, Kitamura K, Muto S, Kotaki H, Sudo K, Horai R, Iwakura Y, Kawakami K (2004) Six1 controls patterning of the mouse otic vesicle. Development 131:551–562PubMedCrossRefGoogle Scholar
  60. 60.
    Zou D, Silvius D, Fritzsch B, Xu PX (2004) Eya1 and Six1 are essential for early steps of sensory neurogenesis in mammalian cranial placodes. Development 131:5561–5572PubMedCrossRefGoogle Scholar
  61. 61.
    Brugmann SA, Pandur PD, Kenyon KL, Pignoni F, Moody SA (2004) Six1 promotes a placodal fate within the lateral neurogenic ectoderm by functioning as both a transcriptional activator and repressor. Development 131:5871–5881PubMedCrossRefGoogle Scholar
  62. 62.
    Ruf RG, Xu PX, Silvius D, Otto EA, Beekmann F, Muerb UT, Kumar S, Neuhaus TJ, Kemper MJ, Raymond RM Jr, Brophy PD, Berkman J, Gattas M, Hyland V, Ruf EM, Schwartz C, Chang EH, Smith RJ, Stratakis CA, Weil D, Petit C, Hildebrandt F (2004) SIX1 mutations cause branchio-oto-renal syndrome by disruption of EYA1-SIX1-DNA complexes. Proc Natl Acad Sci USA 101:8090–8095PubMedCrossRefGoogle Scholar
  63. 63.
    Kozlowski DJ, Whitfield TT, Hukriede NA, Lam WK, Weinberg ES (2005) The zebrafish dog-eared mutation disrupts eya1, a gene required for cell survival and differentiation in the inner ear and lateral line. Dev Biol 277:27–41PubMedCrossRefGoogle Scholar
  64. 64.
    Bricaud O, Collazo A (2006) The transcription factor six1 inhibits neuronal and promotes hair cell fate in the developing zebrafish (Danio rerio) inner ear. J Neurosci 26:10438–10451PubMedCrossRefGoogle Scholar
  65. 65.
    Schlosser G (2005) Evolutionary origins of vertebrate placodes: insights from developmental studies and from comparisons with other deuterostomes. J Exp Zoolog B Mol Dev Evol 304:347–399CrossRefGoogle Scholar
  66. 66.
    Schlosser G (2006) Induction and specification of cranial placodes. Dev Biol 294:303–351PubMedCrossRefGoogle Scholar
  67. 67.
    Li Y, Manaligod JM, Weeks DL (2010) EYA1 mutations associated with the branchio-oto-renal syndrome result in defective otic development in Xenopus laevis. Biol Cell 102:277–292PubMedCrossRefGoogle Scholar
  68. 68.
    Hoskins BE, Cramer CH, Silvius D, Zou D, Raymond RM, Orten DJ, Kimberling WJ, Smith RJ, Weil D, Petit C, Otto EA, Xu PX, Hildebrandt F (2007) Transcription factor SIX5 is mutated in patients with branchio-oto-renal syndrome. Am J Hum Genet 80:800–804PubMedCrossRefGoogle Scholar
  69. 69.
    Vincent C, Kalatzis V, Abdelhak S, Chaib H, Compain S, Helias J, Vaneecloo FM, Petit C (1997) BOR and BO syndromes are allelic defects of EYA1. Eur J Hum Genet 5:242–246PubMedGoogle Scholar
  70. 70.
    Azuma N, Hirakiyama A, Inoue T, Asaka A, Yamada M (2000) Mutations of a human homologue of the Drosophila Eyes absent gene (EYA1) detected in patients with congenital cataracts and ocular anterior segment anomalies. Hum Mol Genet 9:363–366PubMedCrossRefGoogle Scholar
  71. 71.
    Shimasaki N, Watanabe K, Hara M, Kosaki K (2004) EYA1 mutation in a newborn female presenting with cardiofacial syndrome. Pediatr Cardiol 25:411–413PubMedCrossRefGoogle Scholar
  72. 72.
    Rayapureddi JP, Hegde RS (2006) Branchio-oto-renal syndrome associated mutations in Eyes absent 1 result in loss of phosphatase activity. FEBS Lett 580:3853–3859PubMedCrossRefGoogle Scholar
  73. 73.
    Zou D, Silvius D, Rodrigo-Blomqvist S, Enerback S, Xu PX (2006) Eya1 regulates the growth of otic epithelium and interacts with Pax2 during the development of all sensory areas in the inner ear. Dev Biol 298:430–441PubMedCrossRefGoogle Scholar
  74. 74.
    Ford HL, Kabingu EN, Bump EA, Mutter GL, Pardee AB (1998) Abrogation of the G2 cell cycle checkpoint associated with overexpression of HSIX1: a possible mechanism of breast carcinogenesis. Proc Natl Acad Sci USA 95:12608–12613PubMedCrossRefGoogle Scholar
  75. 75.
    Coletta RD, Christensen K, Reichenberger KJ, Lamb J, Micomonaco D, Huang L, Wolf DM, Muller-Tidow C, Golub TR, Kawakami K, Ford HL (2004) The Six1 homeoprotein stimulates tumorigenesis by reactivation of cyclin A1. Proc Natl Acad Sci USA 101:6478–6483PubMedCrossRefGoogle Scholar
  76. 76.
    Yu Y, Davicioni E, Triche TJ, Merlino G (2006) The homeoprotein six1 transcriptionally activates multiple protumorigenic genes but requires ezrin to promote metastasis. Cancer Res 66:1982–1989PubMedCrossRefGoogle Scholar
  77. 77.
    Ozaki H, Watanabe Y, Takahashi K, Kitamura K, Tanaka A, Urase K, Momoi T, Sudo K, Sakagami J, Asano M, Iwakura Y, Kawakami K (2001) Six4, a putative myogenin gene regulator, is not essential for mouse embryonal development. Mol Cell Biol 21:3343–3350PubMedCrossRefGoogle Scholar
  78. 78.
    Konishi Y, Ikeda K, Iwakura Y, Kawakami K (2006) Six1 and Six4 promote survival of sensory neurons during early trigeminal gangliogenesis. Brain Res 1116:93–102PubMedCrossRefGoogle Scholar
  79. 79.
    Grifone R, Demignon J, Houbron C, Souil E, Niro C, Seller MJ, Hamard G, Maire P (2005) Six1 and Six4 homeoproteins are required for Pax3 and Mrf expression during myogenesis in the mouse embryo. Development 132:2235–2249PubMedCrossRefGoogle Scholar
  80. 80.
    Wayne S, Robertson NG, DeClau F, Chen N, Verhoeven K, Prasad S, Tranebjarg L, Morton CC, Ryan AF, Van Camp G, Smith RJ (2001) Mutations in the transcriptional activator EYA4 cause late-onset deafness at the DFNA10 locus. Hum Mol Genet 10:195–200PubMedCrossRefGoogle Scholar
  81. 81.
    Pfister M, Toth T, Thiele H, Haack B, Blin N, Zenner HP, Sziklai I, Nurnberg P, Kupka S (2002) A 4-bp insertion in the eya-homologous region (eyaHR) of EYA4 causes hearing impairment in a Hungarian family linked to DFNA10. Mol Med 8:607–611PubMedGoogle Scholar
  82. 82.
    Schonberger J, Wang L, Shin JT, Kim SD, Depreux FF, Zhu H, Zon L, Pizard A, Kim JB, Macrae CA, Mungall AJ, Seidman JG, Seidman CE (2005) Mutation in the transcriptional coactivator EYA4 causes dilated cardiomyopathy and sensorineural hearing loss. Nat Genet 37:418–422PubMedCrossRefGoogle Scholar
  83. 83.
    Abe Y, Oka A, Mizuguchi M, Igarashi T, Ishikawa S, Aburatani H, Yokoyama S, Asahara H, Nagao K, Yamada M, Miyashita T (2009) EYA4, deleted in a case with middle interhemispheric variant of holoprosencephaly, interacts with SIX3 both physically and functionally. Hum Mutat 30:E946–E955PubMedCrossRefGoogle Scholar
  84. 84.
    Cohen MM Jr (2006) Holoprosencephaly: clinical, anatomic, and molecular dimensions. Birth Defects Res A Clin Mol Teratol 76:658–673PubMedCrossRefGoogle Scholar
  85. 85.
    Ribeiro LA, El-Jaick KB, Muenke M, Richieri-Costa A (2006) SIX3 mutations with holoprosencephaly. Am J Med Genet A 140:2577–2583PubMedGoogle Scholar
  86. 86.
    Christensen KL, Patrick AN, McCoy EL, Ford HL (2008) The six family of homeobox genes in development and cancer. Adv Cancer Res 101:93–126PubMedCrossRefGoogle Scholar
  87. 87.
    Miller SJ, Lan ZD, Hardiman A, Wu J, Kordich JJ, Patmore DM, Hegde RS, Cripe TP, Cancelas JA, Collins MH, Ratner N (2010) Inhibition of Eyes Absent Homolog 4 expression induces malignant peripheral nerve sheath tumor necrosis. Oncogene 29:368–379PubMedCrossRefGoogle Scholar
  88. 88.
    Wang CA, Jedlicka P, Patrick AN, Micalizzi DS, Lemmer KC, Deitsch E, Casas-Selves M, Harrell JC, Ford HL (2012) SIX1 induces lymphangiogenesis and metastasis via upregulation of VEGF-C in mouse models of breast cancer. J Clin Invest 122:1895–1906PubMedCrossRefGoogle Scholar
  89. 89.
    Wang QF, Wu G, Mi S, He F, Wu J, Dong J, Luo RT, Mattison R, Kaberlein JJ, Prabhakar S, Ji H, Thirman MJ (2011) MLL fusion proteins preferentially regulate a subset of wild-type MLL target genes in the leukemic genome. Blood 117:6895–6905PubMedCrossRefGoogle Scholar
  90. 90.
    Spitz F, Demignon J, Demeurie J, Sabourin JC, Kahn A, Daegelen D, Maire P (1998) A binding site for nuclear receptors is required for the differential expression of the aldolase A fast-twitch muscle promoter in body and head muscles. J Biol Chem 273:561–567PubMedCrossRefGoogle Scholar
  91. 91.
    Grifone R, Laclef C, Spitz F, Lopez S, Demignon J, Guidotti JE, Kawakami K, Xu PX, Kelly R, Petrof BJ, Daegelen D, Concordet JP, Maire P (2004) Six1 and Eya1 expression can reprogram adult muscle from the slow-twitch phenotype into the fast-twitch phenotype. Mol Cell Biol 24:6253–6267PubMedCrossRefGoogle Scholar
  92. 92.
    Giordani J, Bajard L, Demignon J, Daubas P, Buckingham M, Maire P (2007) Six proteins regulate the activation of Myf5 expression in embryonic mouse limbs. Proc Natl Acad Sci USA 104:11310–11315PubMedCrossRefGoogle Scholar
  93. 93.
    Dressler GR (2006) The cellular basis of kidney development. Annu Rev Cell Dev Biol 22:509–529PubMedCrossRefGoogle Scholar
  94. 94.
    Kuure S, Vuolteenaho R, Vainio S (2000) Kidney morphogenesis: cellular and molecular regulation. Mech Dev 92:31–45PubMedCrossRefGoogle Scholar
  95. 95.
    Saxen L, Sariola H, Lehtonen E (1986) Sequential cell and tissue interactions governing organogenesis of the kidney. Anat Embryol (Berl) 175:1–6CrossRefGoogle Scholar
  96. 96.
    Saxen L, Sariola H (1987) Early organogenesis of the kidney. Pediatr Nephrol 1:385–392PubMedCrossRefGoogle Scholar
  97. 97.
    Vainio S, Lin Y (2002) Coordinating early kidney development: lessons from gene targeting. Nat Rev Genet 3:533–543PubMedCrossRefGoogle Scholar
  98. 98.
    Davies JA, Fisher CE (2002) Genes and proteins in renal development. Exp Nephrol 10:102–113PubMedCrossRefGoogle Scholar
  99. 99.
    Costantini F (2006) Renal branching morphogenesis: concepts, questions, and recent advances. Differentiation 74:402–421PubMedCrossRefGoogle Scholar
  100. 100.
    Costantini F, Shakya R (2006) GDNF/Ret signaling and the development of the kidney. Bioessays 28:117–127PubMedCrossRefGoogle Scholar
  101. 101.
    Dressler GR (2009) Advances in early kidney specification, development and patterning. Development 136:3863–3874PubMedCrossRefGoogle Scholar
  102. 102.
    Sajithlal G, Zou D, Silvius D, Xu PX (2005) Eya 1 acts as a critical regulator for specifying the metanephric mesenchyme. Dev Biol 284:323–336PubMedCrossRefGoogle Scholar
  103. 103.
    Mugford JW, Sipila P, McMahon JA, McMahon AP (2008) Osr1 expression demarcates a multi-potent population of intermediate mesoderm that undergoes progressive restriction to an Osr1-dependent nephron progenitor compartment within the mammalian kidney. Dev Biol 324:88–98PubMedCrossRefGoogle Scholar
  104. 104.
    Chi X, Michos O, Shakya R, Riccio P, Enomoto H, Licht JD, Asai N, Takahashi M, Ohgami N, Kato M, Mendelsohn C, Costantini F (2009) Ret-dependent cell rearrangements in the Wolffian duct epithelium initiate ureteric bud morphogenesis. Dev Cell 17:199–209PubMedCrossRefGoogle Scholar
  105. 105.
    Fraser FC, Sproule JR, Halal F (1980) Frequency of the branchio-oto-renal (BOR) syndrome in children with profound hearing loss. Am J Med Genet 7:341–349PubMedCrossRefGoogle Scholar
  106. 106.
    Heimler A, Lieber E (1986) Branchio-oto-renal syndrome: reduced penetrance and variable expressivity in four generations of a large kindred. Am J Med Genet 25:15–27PubMedCrossRefGoogle Scholar
  107. 107.
    Chen A, Francis M, Ni L, Cremers CW, Kimberling WJ, Sato Y, Phelps PD, Bellman SC, Wagner MJ, Pembrey M, Smith RJH (1995) Phenotypic manifestations of branchio-oto-renal syndrome. Am J Med Genet 58:365–370PubMedCrossRefGoogle Scholar
  108. 108.
    Kobayashi H, Kawakami K, Asashima M, Nishinakamura R (2007) Six1 and Six4 are essential for Gdnf expression in the metanephric mesenchyme and ureteric bud formation, while Six1 deficiency alone causes mesonephric-tubule defects. Mech Dev 124:290–303PubMedCrossRefGoogle Scholar
  109. 109.
    Self M, Lagutin OV, Bowling B, Hendrix J, Cai Y, Dressler GR, Oliver G (2006) Six2 is required for suppression of nephrogenesis and progenitor renewal in the developing kidney. EMBO J 25:5214–5228PubMedCrossRefGoogle Scholar
  110. 110.
    Kobayashi A, Valerius MT, Mugford JW, Carroll TJ, Self M, Oliver G, McMahon AP (2008) Six2 defines and regulates a multipotent self-renewing nephron progenitor population throughout mammalian kidney development. Cell Stem Cell 3:169–181PubMedCrossRefGoogle Scholar
  111. 111.
    Weber S, Taylor JC, Winyard P, Baker KF, Sullivan-Brown J, Schild R, Knuppel T, Zurowska AM, Caldas-Alfonso A, Litwin M, Emre S, Ghiggeri GM, Bakkaloglu A, Mehls O, Antignac C, Network E, Schaefer F, Burdine RD (2008) SIX2 and BMP4 mutations associate with anomalous kidney development. J Am Soc Nephrol 19:891–903PubMedCrossRefGoogle Scholar
  112. 112.
    Brenner-Anantharam A, Cebrian C, Guillaume R, Hurtado R, Sun TT, Herzlinger D (2007) Tailbud-derived mesenchyme promotes urinary tract segmentation via BMP4 signaling. Development 134:1967–1975PubMedCrossRefGoogle Scholar
  113. 113.
    Miyazaki Y, Oshima K, Fogo A, Hogan BL, Ichikawa I (2000) Bone morphogenetic protein 4 regulates the budding site and elongation of the mouse ureter. J Clin Invest 105:863–873PubMedCrossRefGoogle Scholar
  114. 114.
    Bush KT, Vaughn DA, Li X, Rosenfeld MG, Rose DW, Mendoza SA, Nigam SK (2006) Development and differentiation of the ureteric bud into the ureter in the absence of a kidney collecting system. Dev Biol 298:571–584PubMedCrossRefGoogle Scholar
  115. 115.
    Nie X, Xu J, El-Hashash A, Xu PX (2011) Six1 regulates Grem1 expression in the metanephric mesenchyme to initiate branching morphogenesis. Dev Biol 351:141–151CrossRefGoogle Scholar
  116. 116.
    Pauli T, Seimiya M, Blanco J, Gehring WJ (2005) Identification of functional sine oculis motifs in the autoregulatory element of its own gene, in the eyeless enhancer and in the signalling gene hedgehog. Development 132:2771–2782PubMedCrossRefGoogle Scholar
  117. 117.
    Inaba M, Yuan H, Yamashita YM (2011) String (Cdc25) regulates stem cell maintenance, proliferation and aging in Drosophila testis. Development 138:5079–5086PubMedCrossRefGoogle Scholar
  118. 118.
    Yan H, Canon J, Banerjee U (2003) A transcriptional chain linking eye specification to terminal determination of cone cells in the Drosophila eye. Dev Biol 263:323–329PubMedCrossRefGoogle Scholar
  119. 119.
    Brodbeck S, Besenbeck B, Englert C (2004) The transcription factor Six2 activates expression of the Gdnf gene as well as its own promoter. Mech Dev 121:1211–1222PubMedCrossRefGoogle Scholar
  120. 120.
    Himeda CL, Ranish JA, Angello JC, Maire P, Aebersold R, Hauschka SD (2004) Quantitative proteomic identification of six4 as the trex-binding factor in the muscle creatine kinase enhancer. Mol Cell Biol 24:2132–2143PubMedCrossRefGoogle Scholar
  121. 121.
    Ando Z, Sato S, Ikeda K, Kawakami K (2005) Slc12a2 is a direct target of two closely related homeobox proteins, Six1 and Six4. FEBS J 272:3026–3041PubMedCrossRefGoogle Scholar
  122. 122.
    Airik R, Bussen M, Singh MK, Petry M, Kispert A (2006) Tbx18 regulates the development of the ureteral mesenchyme. J Clin Invest 116:663–674PubMedCrossRefGoogle Scholar

Copyright information

© IPNA 2012

Authors and Affiliations

  1. 1.Department of Genetics and Genomic Sciences and Developmental and Regenerative BiologyMount Sinai School of MedicineNew YorkUSA

Personalised recommendations