Pediatric Nephrology

, Volume 28, Issue 4, pp 521–526

Ghrelin and cachexia in chronic kidney disease

  • Hajime Suzuki
  • Akihiro Asakawa
  • Haruka Amitani
  • Norifumi Nakamura
  • Akio Inui
Review

Abstract

Ghrelin is a growth hormone (GH) secretagogue and a potent orexigenic factor that stimulates feeding by interacting with hypothalamic feeding–regulatory nuclei. Its multifaceted effects are potentially beneficial as a treatment in human disease states. In both adult and pediatric chronic kidney disease (CKD) patients, decreased appetite plays a major role in wasting, which in turn is linked to morbidity and mortality; wasting has also been linked to high levels of leptin and proinflammatory cytokines. The beneficial effects of ghrelin treatment in CKD are potentially mediated by multiple concurrent actions, including the stimulation of appetite-regulating centers, anti-inflammatory effects, and direct kidney effects. Further evaluation of this appetite-regulating hormone in CKD is needed to confirm previous findings and to determine the underlying mechanisms.

Keywords

Ghrelin Cachexia Chronic kidney disease Feeding-regulatory peptide Cytokine 

Abbreviations

AgRP

Agouti-related protein

CKD

Chronic kidney disease

GH

Growth hormone

GOAT

Ghrelin O-acyltransferase

IGF-1

Insulin-like growth factor 1

MC4R

Melanocortin-4 receptor

α-MSH

α-Melanocyte stimulating hormone

NPY

Neuropeptide Y

POMC

Pro-opiomelanocortin

PPAR

Peroxisome proliferator-activated receptor

References

  1. 1.
    Deboer MD, Marks DL (2006) Therapy insight: Use of melanocortin antagonists in the treatment of cachexia in chronic disease. Nat Clin Pract Endocrinol Metab 2:459–466PubMedCrossRefGoogle Scholar
  2. 2.
    Mak RH, Cheung W (2006) Energy homeostasis and cachexia in chronic kidney disease. Pediatr Nephrol 21:1807–1814PubMedCrossRefGoogle Scholar
  3. 3.
    Deboer MD, Zhu X, Levasseur PR, Inui A, Hu Z, Han G, Mitch WE, Taylor JE, Halem HA, Dong JZ, Datta R, Culler MD, Marks DL (2008) Ghrelin treatment of chronic kidney disease: improvements in lean body mass and cytokine profile. Endocrinology 149:827–835PubMedCrossRefGoogle Scholar
  4. 4.
    Deboer MD (2007) Melanocortin interventions in cachexia: how soon from bench to bedside? Curr Opin Clin Nutr Metab Care 10:457–462PubMedCrossRefGoogle Scholar
  5. 5.
    Nakazato M, Murakami N, Date Y, Kojima M, Matsuo H, Kangawa K, Matsukura S (2001) A role for ghrelin in the central regulation of feeding. Nature 409:194–198PubMedCrossRefGoogle Scholar
  6. 6.
    Sun Y (2004) Ghrelin stimulation of growth hormone release and appetite is mediated through the growth hormone secretagogue receptor. Proc Natl Acad Sci USA 101:4679–4684PubMedCrossRefGoogle Scholar
  7. 7.
    Mak RH, Ikizler AT, Kovesdy CP, Raj DS, Stenvinkel P, Kalantar-Zadeh K (2011) Wasting in chronic kidney disease. J Cachex Sarcopenia Muscle 2:9–25CrossRefGoogle Scholar
  8. 8.
    Nass RM, Gaylinn BD, Rogol AD, Thorner MO (2010) Ghrelin and growth hormone: story in reverse. Proc Natl Acad Sci USA 107:8501–8502PubMedCrossRefGoogle Scholar
  9. 9.
    Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K (1999) Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 402:656–660PubMedCrossRefGoogle Scholar
  10. 10.
    Kirchner H, Gutierrez JA, Solenberg PJ, Pfluger PT, Czyzyk TA, Willency JA, Schürmann A, Joost HG, Jandacek RJ, Hale JE, Heiman ML, Tschöp MH (2009) GOAT links dietary lipids with the endocrine control of energy balance. Nat Med 15:741–745PubMedCrossRefGoogle Scholar
  11. 11.
    Akamizu T, Takaya K, Irako T, Hosoda H, Teramukai S, Matsuyama A, Tada H, Miura K, Shimizu A, Fukushima M, Yokode M, Tanaka K, Kangawa K (2004) Pharmacokinetics, safety, and endocrine and appetite effects of ghrelin administration in young healthy subjects. Eur J Endocrinol 150:447–455PubMedCrossRefGoogle Scholar
  12. 12.
    Hosoda H, Kojima M, Matsuo H, Kangawa K (2000) Ghrelin and des-acyl ghrelin: two major forms of rat ghrelin peptide in gastrointestinal tissue. Biochem Biophys Res Commun 279:909–913PubMedCrossRefGoogle Scholar
  13. 13.
    Asakawa A, Inui A, Fujimiya M, Sakamaki R, Shinfuku N, Ueta Y, Meguid MM, Kasuga M (2005) Stomach regulates energy balance via acylated ghrelin and desacyl ghrelin. Gut 54:18–24PubMedCrossRefGoogle Scholar
  14. 14.
    Chen CY, Inui A, Asakawa A, Fujino K, Kato I, Chen CC, Ueno N, Fujimiya M (2005) Des-acyl ghrelin acts by CRF type 2 receptors to disrupt fasted stomach motility in conscious rats. Gastroenterology 129:8–25PubMedCrossRefGoogle Scholar
  15. 15.
    Inui A (2001) Ghrelin: an orexigenic and somatotrophic signal from the stomach. Nat Rev Neurosci 2:551–560PubMedCrossRefGoogle Scholar
  16. 16.
    Guan XM, Yu H, Palyha OC, McKee KK, Feighner SD, Sirinathsinghji DJ, Smith RG, Van der Ploeg LH, Howard AD (1997) Distribution of mRNA encoding the growth hormone secretagogue receptor in brain and peripheral tissues. Brain Res Mol Brain Res 48:23–29PubMedCrossRefGoogle Scholar
  17. 17.
    Laviano A, Inui A, Marks DL, Meguid MM, Pichard C, Rossi Fanelli F, Seelaender M (2008) Neural control of the anorexia-cachexia syndrome. Am J Physiol Endocrinol Metab 295:E1000–E1008PubMedCrossRefGoogle Scholar
  18. 18.
    Wardlaw SL (2011) Hypothalamic proopiomelanocortin processing and the regulation of energy balance. Eur J Pharmacol 660:213–219PubMedCrossRefGoogle Scholar
  19. 19.
    Cone RD (2005) Anatomy and regulation of the central melanocortin system. Nat Neurosci 8:571–578PubMedCrossRefGoogle Scholar
  20. 20.
    Büscher AK, Büscher R, Hauffa BP, Hoyer PF (2010) Alterations in appetite-regulating hormones influence protein-energy wasting in pediatric patients with chronic kidney disease. Pediatr Nephrol 25:2295–2301PubMedCrossRefGoogle Scholar
  21. 21.
    Bergström J (1995) Why are dialysis patients malnourished? Am J Kidney Dis 26:229–241PubMedCrossRefGoogle Scholar
  22. 22.
    Mitch WE (1998) Robert H Herman Memorial Award in Clinical Nutrition Lecture, 1997. Mechanisms causing loss of lean body mass in kidney disease. Am J Clin Nutr 67:359–366PubMedGoogle Scholar
  23. 23.
    Heimbürger O, Lönnqvist F, Danielsson A, Nordenström J, Stenvinkel P (1997) Serum immunoreactive leptin concentration and its relation to the body fat content in chronic renal failure. J Am Soc Nephrol 8:1423–1430PubMedGoogle Scholar
  24. 24.
    Shinohara K, Shoji T, Emoto M, Tahara H, Koyama H, Ishimura E, Miki T, Tabata T, Nishizawa Y (2002) Insulin resistance as an independent predictor of cardiovascular mortality in patients with end-stage renal disease. J Am Soc Nephrol 13:1894–1900PubMedCrossRefGoogle Scholar
  25. 25.
    Siew ED, Pupim LB, Majchrzak KM, Shintani A, Flakoll PJ, Ikizler TA (2007) Insulin resistance is associated with skeletal muscle protein breakdown in non-diabetic chronic hemodialysis patients. Kidney Int 71:146–152PubMedCrossRefGoogle Scholar
  26. 26.
    Bailey JL, Zheng B, Hu Z, Price SR, Mitch WE (2006) Chronic kidney disease causes defects in signaling through the insulin receptor substrate/ phosphatidylinositol 3-kinase/ Akt pathway: implications for muscle atrophy. J Am Soc Nephrol 17:1388–1394PubMedCrossRefGoogle Scholar
  27. 27.
    Mitch WE, Goldberg AL (1996) Mechanisms of muscle wasting. The role of the ubiquitin-proteasome pathway. N Engl J Med 335:1897–1905PubMedCrossRefGoogle Scholar
  28. 28.
    Mitch WE (2002) Malnutrition: a frequent misdiagnosis for hemodialysis patients. J Clin Invest 110:437–439PubMedGoogle Scholar
  29. 29.
    Goodman MN (1991) Tumor necrosis factor induces skeletal muscle protein breakdown in rats. Am J Physiol 260:E727–E730PubMedGoogle Scholar
  30. 30.
    Du J, Wang X, Miereles C, Bailey JL, Debigare R, Zheng B, Price SR, Mitch WE (2004) Activation of caspase-3 is an initial step triggering accelerated muscle proteolysis in catabolic conditions. J Clin Invest 113:115–123PubMedGoogle Scholar
  31. 31.
    Lee SW, Dai G, Hu Z, Wang X, Du J, Mitch WE (2004) Regulation of muscle protein degradation: coordinated control of apoptotic and ubiquitin-proteasome systems by phosphatidylinositol 3 kinase. J Am Soc Nephrol 15:1537–1545PubMedCrossRefGoogle Scholar
  32. 32.
    Cheung W, Yu PX, Little BM, Cone RD, Marks DL, Mak RH (2005) Role of leptin and melanocortin signaling in uremia-associated cachexia. J Clin Invest 115:1659–1665PubMedCrossRefGoogle Scholar
  33. 33.
    Barazzoni R, Bosutti A, Stebel M, Cattin MR, Roder E, Visintin L, Cattin L, Biolo G, Zanetti M, Guarnieri G (2005) Ghrelin regulates mitochondrial-lipid metabolism gene expression and tissue fat distribution in liver and skeletal muscle. Am J Physiol Endocrinol Metab 288:E228–E235PubMedCrossRefGoogle Scholar
  34. 34.
    Barazzoni R, Zanetti M, Cattin MR, Visintin L, Vinci P, Cattin L, Stebel M, Guarnieri G (2007) Ghrelin enhances in vivo skeletal muscle but not liver AKT signaling in rats. Obesity (Silver Spring) 15:2614–2623CrossRefGoogle Scholar
  35. 35.
    Barazzoni R, Zhu X, Deboer M, Datta R, Culler MD, Zanetti M, Guarnieri G, Marks DL (2010) Combined effects of ghrelin and higher food intake enhance skeletal muscle mitochondrial oxidative capacity and AKT phosphorylation in rats with chronic kidney disease. Kidney Int 77:23–28PubMedCrossRefGoogle Scholar
  36. 36.
    Barazzoni R, Zanetti M, Ferreira C, Vinci P, Pirulli A, Mucci M, Dore F, Fonda M, Ciocchi B, Cattin L, Guarnieri G (2007) Relationships between desacylated and acylated ghrelin and insulin sensitivity in the metabolic syndrome. J Clin Endocrinol Metab 92:3935–3940PubMedCrossRefGoogle Scholar
  37. 37.
    Barazzoni R, Zanetti M, Stulle M, Mucci MP, Pirulli A, Dore F, Panzetta G, Vasile A, Biolo G, Guarnieri G (2008) Higher total ghrelin levels are associated with higher insulin-mediated glucose disposal in non-diabetic maintenance hemodialysis patients. Clin Nutr 27:142–149PubMedCrossRefGoogle Scholar
  38. 38.
    Carrero JJ, Nakashima A, Qureshi AR, Lindholm B, Heimburger O, Barany P, Stenvinkel P (2011) Protein-energy wasting modifies the association of ghrelin with inflammation, leptin, and mortality in hemodialysis patients. Kidney Int 79:749–756PubMedCrossRefGoogle Scholar
  39. 39.
    Yoshimoto A, Mori K, Sugawara A, Mukoyama M, Yahata K, Suganami T, Takaya K, Hosoda H, Kojima M, Kangawa K, Nakao K (2002) Plasma ghrelin and desacyl ghrelin concentrations in renal failure. J Am Soc Nephrol 13:2748–2752PubMedCrossRefGoogle Scholar
  40. 40.
    Naufel MF, Bordon M, de Aquino TM, Ribeiro EB, de Abreu Carvalhaes JT (2010) Plasma levels of acylated and total ghrelin in pediatric patients with chronic kidney disease. Pediatr Nephrol 25:2477–2482PubMedCrossRefGoogle Scholar
  41. 41.
    Arbeiter AK, Büscher R, Petersenn S, Hauffa BP, Mann K, Hoyer PF (2008) Ghrelin and other appetite-regulating hormones in paediatric patients with chronic renal failure during dialysis and following kidney transplantation. Nephrol Dial Transplant 24:643–646PubMedCrossRefGoogle Scholar
  42. 42.
    Iglesias P, Díez JJ, Fernández-Reyes MJ, Codoceo R, Alvarez-Fidalgo P, Bajo MA, Aguilera A, Selgas R (2005) Serum ghrelin concentrations in patients with chronic renal failure undergoing dialysis. Clin Endocrinol (Oxf) 64:68–73CrossRefGoogle Scholar
  43. 43.
    Jarkovská Z, Hodková M, Sazamová M, Rosická M, Dusilová-Sulková S, Marek J, Justová V, Lacinová Z, Haluzík M, Haas T, Krsek M (2005) Plasma levels of active and total ghrelin in renal failure: a relationship with GH/IGF-I axis. Growth Horm IGF Res 15:369–376PubMedCrossRefGoogle Scholar
  44. 44.
    Rodriguez Ayala E, Pecoits-Filho R, Heimbürger O, Lindholm B, Nordfors L, Stenvinkel P (2004) Associations between plasma ghrelin levels and body composition in end-stage renal disease: a longitudinal study. Nephrol Dial Transplant 19:421–426PubMedCrossRefGoogle Scholar
  45. 45.
    Pérez-Fontán M, Cordido F, Rodríguez-Carmona A, García-Naveiro R, Isidro ML, Villaverde P, García-Buela J (2005) Acute plasma ghrelin and leptin responses to oral feeding or intraperitoneal hypertonic glucose-based dialysate in patients with chronic renal failure. Kidney Int 68:2877–2885PubMedCrossRefGoogle Scholar
  46. 46.
    Mak RH, Cheung WW (2011) Is ghrelin a biomarker for mortality in end-stage renal disease? Kidney Int 79:697–699PubMedCrossRefGoogle Scholar
  47. 47.
    DeBoer MD (2008) Emergence of ghrelin as a treatment for cachexia syndromes. Nutrition 24:806–814PubMedCrossRefGoogle Scholar
  48. 48.
    Ashby DR, Ford HE, Wynne KJ, Wren AM, Murphy KG, Busbridge M, Brown EA, Taube DH, Ghatei MA, Tam FW, Bloom SR, Choi P (2009) Sustained appetite improvement in malnourished dialysis patients by daily ghrelin treatment. Kidney Int 76:199–206PubMedCrossRefGoogle Scholar
  49. 49.
    Venables G, Hunne B, Bron R, Cho HJ, Brock JA, Furness JB (2011) Ghrelin receptors are expressed by distal tubules of the mouse kidney. Cell Tissue Res 346:135–139PubMedCrossRefGoogle Scholar
  50. 50.
    Kemp BA, Howell NL, Gray JT, Keller SR, Nass RM, Padia SH (2011) Intrarenal ghrelin infusion stimulates distal nephron-dependent sodium reabsorption in normal rats. Hypertension 57:633–639PubMedCrossRefGoogle Scholar

Copyright information

© IPNA 2012

Authors and Affiliations

  • Hajime Suzuki
    • 1
    • 2
  • Akihiro Asakawa
    • 1
  • Haruka Amitani
    • 1
  • Norifumi Nakamura
    • 2
  • Akio Inui
    • 1
  1. 1.Department of Psychosomatic Internal MedicineKagoshima University Graduate School of Medical and Dental SciencesKagoshimaJapan
  2. 2.Department of Oral and Maxillofacial SurgeryKagoshima University Graduate School of Medical and Dental SciencesKagoshimaJapan

Personalised recommendations