Advertisement

Pediatric Nephrology

, Volume 28, Issue 1, pp 33–49 | Cite as

Cystic kidney diseases: many ways to form a cyst

  • Hannah Loftus
  • Albert C. M. Ong
Educational Review

Abstract

Renal cysts are a common radiological finding in both adults and children. They occur in a variety of conditions, and the clinical presentation, management, and prognosis varies widely. In this article, we discuss the major causes of renal cysts in children and adults with a particular focus on the most common genetic forms. Many cystoproteins have been localized to the cilia centrosome complex (CCC). We consider the evidence for a universal ‘cilia hypothesis’ for cyst formation and the evidence for non-ciliary proteins in cyst formation.

Keywords

Renal cysts Primary cilia Centrosomes Ciliopathies 

Notes

References

  1. 1.
    Bergmann C, Senderek J, Kupper F, Schneider F, Dornia C, Windelen E, Eggermann T, Rudnik-Schoneborn S, Kirfel J, Furu L, Onuchic LF, Rossetti S, Harris PC, Somlo S, Guay-Woodford L, Germino GG, Moser M, Buttner R, Zerres K (2004) PKHD1 mutations in autosomal recessive polycystic kidney disease (ARPKD). Hum Mutat 23:453–463PubMedCrossRefGoogle Scholar
  2. 2.
    Ward CJ, Hogan MC, Rossetti S, Walker D, Sneddon T, Wang X, Kubly V, Cunningham JM, Bacallao R, Ishibashi M, Milliner DS, Torres VE, Harris PC (2002) The gene mutated in autosomal recessive polycystic kidney disease encodes a large, receptor-like protein. Nat Genet 30:259–269PubMedCrossRefGoogle Scholar
  3. 3.
    Onuchic LF, Furu L, Nagasawa Y, Hou X, Eggermann T, Ren Z, Bergmann C, Senderek J, Esquivel E, Zeltner R, Rudnik-Schoneborn S, Mrug M, Sweeney W, Avner ED, Zerres K, Guay-Woodford LM, Somlo S, Germino GG (2002) PKHD1, the polycystic kidney and hepatic disease 1 gene, encodes a novel large protein containing multiple immunoglobulin-like plexin-transcription-factor domains and parallel beta-helix 1 repeats. Am J Hum Genet 70:1305–1317PubMedCrossRefGoogle Scholar
  4. 4.
    Ward CJ, Yuan D, Masyuk TV, Wang X, Punyashthiti R, Whelan S, Bacallao R, Torra R, LaRusso NF, Torres VE, Harris PC (2003) Cellular and subcellular localization of the ARPKD protein; fibrocystin is expressed on primary cilia. Hum Mol Genet 12:2703–2710PubMedCrossRefGoogle Scholar
  5. 5.
    Follit JA, Li L, Vucica Y, Pazour GJ (2010) The cytoplasmic tail of fibrocystin contains a ciliary targeting sequence. J Cell Biol 188:21–28PubMedCrossRefGoogle Scholar
  6. 6.
    Hildebrandt F, Benzing T, Katsanis N (2011) Ciliopathies. N Engl J Med 364:1533–1543Google Scholar
  7. 7.
    Sun L, Wang S, Hu C, Zhang X (2011) Down-regulation of PKHD1 induces cell apoptosis through PI3K and NF-kappaB pathways. Ex Cell Res 317:932–940CrossRefGoogle Scholar
  8. 8.
    Kim I, Fu Y, Hui K, Moeckel G, Mai W, Li C, Liang D, Zhao P, Ma J, Chen XZ, George AL Jr, Coffey RJ, Feng ZP, Wu G (2008) Fibrocystin/polyductin modulates renal tubular formation by regulating polycystin-2 expression and function. J Am Soc Nephrol 19:455–468PubMedCrossRefGoogle Scholar
  9. 9.
    Wang S, Zhang J, Nauli SM, Li X, Starremans PG, Luo Y, Roberts KA, Zhou J (2007) Fibrocystin/polyductin, found in the same protein complex with polycystin-2, regulates calcium responses in kidney epithelia. Mol Cell Biol 27:3241–3252PubMedCrossRefGoogle Scholar
  10. 10.
    Garcia-Gonzalez MA, Menezes LF, Piontek KB, Kaimori J, Huso DL, Watnick T, Onuchic LF, Guay-Woodford LM, Germino GG (2007) Genetic interaction studies link autosomal dominant and recessive polycystic kidney disease in a common pathway. Hum Mol Genet 16:1940–1950PubMedCrossRefGoogle Scholar
  11. 11.
    Denamur E, Delezoide AL, Alberti C, Bourillon A, Gubler MC, Bouvier R, Pascaud O, Elion J, Grandchamp B, Michel-Calemard L, Missy P, Zaccaria I, Le Nagard H, Gerard B, Loirat C, Barbet J, Beaufrere AM, Berchel C, Bessieres B, Boudjemaa S, Buenerd A, Carles D, Clemenson A, Dechelotte P, Devisme L, Dijoud F, Esperandieu O, Fallet C, Gonzales M, Hillion Y, Jacob B, Joubert M, Kermanach P, Lallemand A, Laquerriere A, Laurent N, Liprandi A, Loeuillet L, Loget P, Martinovic J, Menez F, Narcy F, Roux JJ, Rouleau-Dubois C, Sinico M, Tantau J, Wann AR (2010) Genotype-phenotype correlations in fetuses and neonates with autosomal recessive polycystic kidney disease. Kidney Int 77:350–358PubMedCrossRefGoogle Scholar
  12. 12.
    Gunay-Aygun M (2009) Liver and kidney disease in ciliopathies. Am J Med Genet C Semin Med Genet 151C:296–306PubMedCrossRefGoogle Scholar
  13. 13.
    Adeva M, El-Youssef M, Rossetti S, Kamath PS, Kubly V, Consugar MB, Milliner DM, King BF, Torres VE, Harris PC (2006) Clinical and molecular characterization defines a broadened spectrum of autosomal recessive polycystic kidney disease (ARPKD). Medicine 85:1–21PubMedCrossRefGoogle Scholar
  14. 14.
    Roy S, Dillon MJ, Trompeter RS, Barratt TM (1997) Autosomal recessive polycystic kidney disease: long-term outcome of neonatal survivors. Pediatr Nephrol 11:302–306PubMedCrossRefGoogle Scholar
  15. 15.
    Bergmann C, Senderek J, Windelen E, Kupper F, Middeldorf I, Schneider F, Dornia C, Rudnik-Schoneborn S, Konrad M, Schmitt CP, Seeman T, Neuhaus TJ, Vester U, Kirfel J, Buttner R, Zerres K (2005) Clinical consequences of PKHD1 mutations in 164 patients with autosomal-recessive polycystic kidney disease (ARPKD). Kidney Int 67:829–848PubMedCrossRefGoogle Scholar
  16. 16.
    Blickman JG, Bramson RT, Herrin JT (1995) Autosomal recessive polycystic kidney disease: long-term sonographic findings in patients surviving the neonatal period. Am J Roentgenol 164:1247–1250Google Scholar
  17. 17.
    Bergmann C, Senderek J, Sedlacek B, Pegiazoglou I, Puglia P, Eggermann T, Rudnik-Schoneborn S, Furu L, Onuchic LF, De Baca M, Germino GG, Guay-Woodford L, Somlo S, Moser M, Buttner R, Zerres K (2003) Spectrum of mutations in the gene for autosomal recessive polycystic kidney disease (ARPKD/PKHD1). J Am Soc Nephrol 14:76–89PubMedCrossRefGoogle Scholar
  18. 18.
    Dell KM, Avner ED (2011) GeneReviews. Polycystic kidney disease, autosomal recessive. In: Pagon RA, Bird TD, Dolan CR, Stephens K, Adam MP, (eds) http://www.ncbi.nlm.nih.gov/books/NBK1326/
  19. 19.
    Becker JU, Saez AO, Zerres K, Witzke O, Hoyer PF, Schmid KW, Kribben A, Bergmann C, Nurnberger J (2010) The mTOR pathway is activated in human autosomal-recessive polycystic kidney disease. Kidney Blood Press Res 33:129–138PubMedCrossRefGoogle Scholar
  20. 20.
    Wuthrich RP, Kistler AD, Serra AL (2010) Impact of mammalian target of rapamycin inhibition on autosomal-dominant polycystic kidney disease. Transplant Proc 42:S44–S46PubMedCrossRefGoogle Scholar
  21. 21.
    Pei ADPY (1998) Is there a third gene for autosomal dominant polycystic kidney disease? Kidney Intl 54:1759–1761CrossRefGoogle Scholar
  22. 22.
    Turco AE, Clementi M, Rossetti S, Tenconi R, Pignatti PF (1996) An Italian family with autosomal dominant polycystic kidney disease unlinked to either the PKD1 or PKD2 gene. Am J Kidney Dis 28:759–761PubMedCrossRefGoogle Scholar
  23. 23.
    Hateboer N, van Dijk MA, Bogdanova N, Coto E, Saggar-Malik AK, San Millan JL, Torra R, Breuning M, Ravine D (1999) Comparison of phenotypes of polycystic kidney disease types 1 and 2. European PKD1-PKD2 Study Group. Lancet 353:103–107PubMedCrossRefGoogle Scholar
  24. 24.
    Pei Y, Paterson AD, Wang KR, He N, Hefferton D, Watnick T, Germino GG, Parfrey P, Somlo S, St George-Hyslop P (2001) Bilineal disease and trans-heterozygotes in autosomal dominant polycystic kidney disease. Am J Hum Genet 68:355–363PubMedCrossRefGoogle Scholar
  25. 25.
    Giamarchi A, Feng S, Rodat-Despoix L, Xu Y, Bubenshchikova E, Newby LJ, Hao J, Gaudioso C, Crest M, Lupas AN, Honore E, Williamson MP, Obara T, Ong AC, Delmas P (2010) A polycystin-2 (TRPP2) dimerization domain essential for the function of heteromeric polycystin complexes. EMBO J 29:1176–1191PubMedCrossRefGoogle Scholar
  26. 26.
    Newby LJ, Streets AJ, Zhao Y, Harris PC, Ward CJ, Ong AC (2002) Identification, characterization, and localization of a novel kidney polycystin-1-polycystin-2 complex. J Biol Chem 277:20763–20773PubMedCrossRefGoogle Scholar
  27. 27.
    Pazour GJ (2004) Intraflagellar transport and cilia-dependent renal disease: the ciliary hypothesis of polycystic kidney disease. J Am Soc Nephrol 15:2528–2536PubMedCrossRefGoogle Scholar
  28. 28.
    Ong AC, Wheatley DN (2003) Polycystic kidney disease–the ciliary connection. Lancet 361:774–776PubMedCrossRefGoogle Scholar
  29. 29.
    Gabow PA (1993) Autosomal dominant polycystic kidney disease. N Engl J Med 329:332–342PubMedCrossRefGoogle Scholar
  30. 30.
    Pei Y, Obaji J, Dupuis A, Paterson AD, Magistroni R, Dicks E, Parfrey P, Cramer B, Coto E, Torra R, San Millan JL, Gibson R, Breuning M, Peters D, Ravine D (2009) Unified criteria for ultrasonographic diagnosis of ADPKD. J Am Soc Nephrol 20:205–212PubMedCrossRefGoogle Scholar
  31. 31.
    Zand MS, Strang J, Dumlao M, Rubens D, Erturk E, Bronsther O (2001) Screening a living kidney donor for polycystic kidney disease using heavily T2-weighted MRI. Am J Kidney Dis 37:612–619PubMedCrossRefGoogle Scholar
  32. 32.
    Zhao X, Paterson AD, Zahirieh A, He N, Wang K, Pei Y (2008) Molecular diagnostics in autosomal dominant polycystic kidney disease: utility and limitations. Clin J Am Soc Nephrol: CJASN 3:146–152PubMedCrossRefGoogle Scholar
  33. 33.
    Pei Y (2011) Practical genetics for autosomal dominant polycystic kidney disease. Nephron Clin Pract 118:c19–c30PubMedCrossRefGoogle Scholar
  34. 34.
    Rossetti S, Consugar MB, Chapman AB, Torres VE, Guay-Woodford LM, Grantham JJ, Bennett WM, Meyers CM, Walker DL, Bae K, Zhang QJ, Thompson PA, Miller JP, Harris PC (2007) Comprehensive molecular diagnostics in autosomal dominant polycystic kidney disease. J Am Soc Nephrol 18:2143–2160PubMedCrossRefGoogle Scholar
  35. 35.
    Huang E, Samaniego-Picota M, McCune T, Melancon JK, Montgomery RA, Ugarte R, Kraus E, Womer K, Rabb H, Watnick T (2009) DNA testing for live kidney donors at risk for autosomal dominant polycystic kidney disease. Transplantation 87:133–137PubMedCrossRefGoogle Scholar
  36. 36.
    Zerres K, Rudnik-Schoneborn S, Deget F (1993) Childhood onset autosomal dominant polycystic kidney disease in sibs: clinical picture and recurrence risk. German working group on paediatric nephrology (Arbeitsgemeinschaft fur padiatrische Nephrologie). J Med Genet 30:583–588PubMedCrossRefGoogle Scholar
  37. 37.
    Rossetti S, Kubly VJ, Consugar MB, Hopp K, Roy S, Horsley SW, Chauveau D, Rees L, Barratt TM, van’t Hoff WG, Niaudet WP, Torres VE, Harris PC (2009) Incompletely penetrant PKD1 alleles suggest a role for gene dosage in cyst initiation in polycystic kidney disease. Kidney Int 75:848–855PubMedCrossRefGoogle Scholar
  38. 38.
    Peral B, Ong AC, San Millan JL, Gamble V, Rees L, Harris PC (1996) A stable, nonsense mutation associated with a case of infantile onset polycystic kidney disease 1 (PKD1). Hum Mol Genet 5:539–542PubMedCrossRefGoogle Scholar
  39. 39.
    Bergmann C, von Bothmer J, Ortiz Bruchle N, Venghaus A, Frank V, Fehrenbach H, Hampel T, Pape L, Buske A, Jonsson J, Sarioglu N, Santos A, Ferreira JC, Becker JU, Cremer R, Hoefele J, Benz MR, Weber LT, Buettner R, Zerres K (2011) Mutations in multiple PKD genes may explain early and severe polycystic kidney disease. J Am Soc Nephrol: JASN 22:2047–2056PubMedCrossRefGoogle Scholar
  40. 40.
    Connor A, Lunt PW, Dolling C, Patel Y, Meredith AL, Gardner A, Hamilton NK, Dudley CR (2008) Mosaicism in autosomal dominant polycystic kidney disease revealed by genetic testing to enable living related renal transplantation. Am J Transplant 8:232–237PubMedGoogle Scholar
  41. 41.
    Mekahli D, Woolf AS, Bockenhauer D (2010) Similar renal outcomes in children with ADPKD diagnosed by screening or presenting with symptoms. Pediatr Nephrol 25:2275–2282PubMedCrossRefGoogle Scholar
  42. 42.
    Cadnapaphornchai MA, McFann K, Strain JD, Masoumi A, Schrier RW (2008) Increased left ventricular mass in children with autosomal dominant polycystic kidney disease and borderline hypertension. Kidney Int 74:1192–1196PubMedCrossRefGoogle Scholar
  43. 43.
    Walz G, Budde K, Mannaa M, Nurnberger J, Wanner C, Sommerer C, Kunzendorf U, Banas B, Horl WH, Obermuller N, Arns W, Pavenstadt H, Gaedeke J, Buchert M, May C, Gschaidmeier H, Kramer S, Eckardt KU (2010) Everolimus in patients with autosomal dominant polycystic kidney disease. N Engl J Med 363:830–840PubMedCrossRefGoogle Scholar
  44. 44.
    Serra AL, Poster D, Kistler AD, Krauer F, Raina S, Young J, Rentsch KM, Spanaus KS, Senn O, Kristanto P, Scheffel H, Weishaupt D, Wuthrich RP (2010) Sirolimus and kidney growth in autosomal dominant polycystic kidney disease. N Engl J Med 363:820–829PubMedCrossRefGoogle Scholar
  45. 45.
    Chang MY, Ong AC (2011) Mechanism-based therapeutics for autosomal dominant polycystic kidney disease: recent progress and future prospects. Nephron Clin Pract 120:c25–c35PubMedCrossRefGoogle Scholar
  46. 46.
    Belibi FA, Edelstein CL (2010) Novel targets for the treatment of autosomal dominant polycystic kidney disease. Expert Opin Invest Drugs 19:315–328CrossRefGoogle Scholar
  47. 47.
    Perrone RD, Ruthazer R, Terrin NC (2001) Survival after end-stage renal disease in autosomal dominant polycystic kidney disease: contribution of extrarenal complications to mortality. Am J Kidney Dis 38:777–784PubMedCrossRefGoogle Scholar
  48. 48.
    Fick GM, Johnson AM, Hammond WS, Gabow PA (1995) Causes of death in autosomal dominant polycystic kidney disease. J Am Soc Nephrol 5:2048–2056PubMedGoogle Scholar
  49. 49.
    Torres VE, Harris PC (2009) Autosomal dominant polycystic kidney disease: the last 3 years. Kidney Int 76:149–168PubMedCrossRefGoogle Scholar
  50. 50.
    Chaki M, Hoefele J, Allen SJ, Ramaswami G, Janssen S, Bergmann C, Heckenlively JR, Otto EA, Hildebrandt F (2011) Genotype-phenotype correlation in 440 patients with NPHP-related ciliopathies. Kidney Int 80:1239–1245PubMedCrossRefGoogle Scholar
  51. 51.
    Hildebrandt F, Zhou W (2007) Nephronophthisis-associated ciliopathies. J Am Soc Nephrol 18:1855–1871PubMedCrossRefGoogle Scholar
  52. 52.
    Salomon R, Saunier S, Niaudet P (2009) Nephronophthisis. Pediatr Nephrol 24:2333–2344PubMedCrossRefGoogle Scholar
  53. 53.
    Simms RJ, Eley L, Sayer JA (2009) Nephronophthisis. Eur J Hum Genet 17:406–416PubMedCrossRefGoogle Scholar
  54. 54.
    Zollinger HU, Mihatsch MJ, Edefonti A, Gaboardi F, Imbasciati E, Lennert T (1980) Nephronophthisis (medullary cystic disease of the kidney). A study using electron microscopy, immunofluorescence, and a review of the morphological findings. Helv Paediatr Acta 35:509–530PubMedGoogle Scholar
  55. 55.
    Gagnadoux MF, Bacri JL, Broyer M, Habib R (1989) Infantile chronic tubulo-interstitial nephritis with cortical microcysts: variant of nephronophthisis or new disease entity? Pediatr Nephrol 3:50–55PubMedCrossRefGoogle Scholar
  56. 56.
    Otto EA, Ramaswami G, Janssen S, Chaki M, Allen SJ, Zhou W, Airik R, Hurd TW, Ghosh AK, Wolf MT, Hoppe B, Neuhaus TJ, Bockenhauer D, Milford DV, Soliman NA, Antignac C, Saunier S, Johnson CA, Hildebrandt F (2011) Mutation analysis of 18 nephronophthisis associated ciliopathy disease genes using a DNA pooling and next generation sequencing strategy. J Med Genet 48:105–116PubMedCrossRefGoogle Scholar
  57. 57.
    Delous M, Hellman NE, Gaude HM, Silbermann F, Le Bivic A, Salomon R, Antignac C, Saunier S (2009) Nephrocystin-1 and nephrocystin-4 are required for epithelial morphogenesis and associate with PALS1/PATJ and Par6. Hum Mol Genet 18:4711–4723PubMedCrossRefGoogle Scholar
  58. 58.
    Mollet G, Silbermann F, Delous M, Salomon R, Antignac C, Saunier S (2005) Characterization of the nephrocystin/nephrocystin-4 complex and subcellular localization of nephrocystin-4 to primary cilia and centrosomes. Hum Mol Genet 14:645–656PubMedCrossRefGoogle Scholar
  59. 59.
    Otto EA, Hurd TW, Airik R, Chaki M, Zhou W, Stoetzel C, Patil SB, Levy S, Ghosh AK, Murga-Zamalloa CA, van Reeuwijk J, Letteboer SJ, Sang L, Giles RH, Liu Q, Coene KL, Estrada-Cuzcano A, Collin RW, McLaughlin HM, Held S, Kasanuki JM, Ramaswami G, Conte J, Lopez I, Washburn J, Macdonald J, Hu J, Yamashita Y, Maher ER, Guay-Woodford LM, Neumann HP, Obermuller N, Koenekoop RK, Bergmann C, Bei X, Lewis RA, Katsanis N, Lopes V, Williams DS, Lyons RH, Dang CV, Brito DA, Dias MB, Zhang X, Cavalcoli JD, Nurnberg G, Nurnberg P, Pierce EA, Jackson PK, Antignac C, Saunier S, Roepman R, Dollfus H, Khanna H, Hildebrandt F (2010) Candidate exome capture identifies mutation of SDCCAG8 as the cause of a retinal-renal ciliopathy. Nature Genet 42:840–850PubMedCrossRefGoogle Scholar
  60. 60.
    Shiba D, Manning DK, Koga H, Beier DR, Yokoyama T (2010) Inv acts as a molecular anchor for Nphp3 and Nek8 in the proximal segment of primary cilia. Cytoskeleton (Hoboken) 67:112–119Google Scholar
  61. 61.
    Wodarczyk C, Distefano G, Rowe I, Gaetani M, Bricoli B, Muorah M, Spitaleri A, Mannella V, Ricchiuto P, Pema M, Castelli M, Casanova AE, Mollica L, Banzi M, Boca M, Antignac C, Saunier S, Musco G, Boletta A (2010) Nephrocystin-1 forms a complex with polycystin-1 via a polyproline motif/SH3 domain interaction and regulates the apoptotic response in mammals. PLoS One 5:e12719PubMedCrossRefGoogle Scholar
  62. 62.
    Sang L, Miller JJ, Corbit KC, Giles RH, Brauer MJ, Otto EA, Baye LM, Wen X, Scales SJ, Kwong M, Huntzicker EG, Sfakianos MK, Sandoval W, Bazan JF, Kulkarni P, Garcia-Gonzalo FR, Seol AD, O'Toole JF, Held S, Reutter HM, Lane WS, Rafiq MA, Noor A, Ansar M, Devi AR, Sheffield VC, Slusarski DC, Vincent JB, Doherty DA, Hildebrandt F, Reiter JF, Jackson PK (2011) Mapping the NPHP-JBTS-MKS protein network reveals ciliopathy disease genes and pathways. Cell 145:513–528PubMedCrossRefGoogle Scholar
  63. 63.
    Garcia-Gonzalo FR, Corbit KC, Sirerol-Piquer MS, Ramaswami G, Otto EA, Noriega TR, Seol AD, Robinson JF, Bennett CL, Josifova DJ, Garcia-Verdugo JM, Katsanis N, Hildebrandt F, Reiter JF (2011) A transition zone complex regulates mammalian ciliogenesis and ciliary membrane composition. Nature Genet 43:776–784PubMedCrossRefGoogle Scholar
  64. 64.
    Williams CL, Li C, Kida K, Inglis PN, Mohan S, Semenec L, Bialas NJ, Stupay RM, Chen N, Blacque OE, Yoder BK, Leroux MR (2011) MKS and NPHP modules cooperate to establish basal body/transition zone membrane associations and ciliary gate function during ciliogenesis. J Cell Biol 192:1023–1041PubMedCrossRefGoogle Scholar
  65. 65.
    Huang L, Szymanska K, Jensen VL, Janecke AR, Innes AM, Davis EE, Frosk P, Li C, Willer JR, Chodirker BN, Greenberg CR, McLeod DR, Bernier FP, Chudley AE, Muller T, Shboul M, Logan CV, Loucks CM, Beaulieu CL, Bowie RV, Bell SM, Adkins J, Zuniga FI, Ross KD, Wang J, Ban MR, Becker C, Nurnberg P, Douglas S, Craft CM, Akimenko MA, Hegele RA, Ober C, Utermann G, Bolz HJ, Bulman DE, Katsanis N, Blacque OE, Doherty D, Parboosingh JS, Leroux MR, Johnson CA, Boycott KM (2011) TMEM237 is mutated in individuals with a Joubert syndrome related disorder and expands the role of the TMEM family at the ciliary transition zone. Am J Hum Genet 89:713–730PubMedCrossRefGoogle Scholar
  66. 66.
    Ala-Mello S, Kivivuori SM, Ronnholm KA, Koskimies O, Siimes MA (1996) Mechanism underlying early anaemia in children with familial juvenile nephronophthisis. Pediatr Nephrol 10:578–581PubMedCrossRefGoogle Scholar
  67. 67.
    Hildebrandt F, Strahm B, Nothwang HG, Gretz N, Schnieders B, Singh-Sawhney I, Kutt R, Vollmer M, Brandis M (1997) Molecular genetic identification of families with juvenile nephronophthisis type 1: rate of progression to renal failure. APN Study Group. Arbeitsgemeinschaft fur padiatrische Nephrologie. Kidney Int 51:261–269PubMedCrossRefGoogle Scholar
  68. 68.
    Olbrich H, Fliegauf M, Hoefele J, Kispert A, Otto E, Volz A, Wolf MT, Sasmaz G, Trauer U, Reinhardt R, Sudbrak R, Antignac C, Gretz N, Walz G, Schermer B, Benzing T, Hildebrandt F, Omran H (2003) Mutations in a novel gene, NPHP3, cause adolescent nephronophthisis, tapeto-retinal degeneration and hepatic fibrosis. Nat Genet 34:455–459PubMedCrossRefGoogle Scholar
  69. 69.
    Tory K, Rousset-Rouviere C, Gubler MC, Moriniere V, Pawtowski A, Becker C, Guyot C, Gie S, Frishberg Y, Nivet H, Deschenes G, Cochat P, Gagnadoux MF, Saunier S, Antignac C, Salomon R (2009) Mutations of NPHP2 and NPHP3 in infantile nephronophthisis. Kidney Int 75:839–847PubMedCrossRefGoogle Scholar
  70. 70.
    Wolf MT, Beck BB, Zaucke F, Kunze A, Misselwitz J, Ruley J, Ronda T, Fischer A, Eifinger F, Licht C, Otto E, Hoppe B, Hildebrandt F (2007) The Uromodulin C744G mutation causes MCKD2 and FJHN in children and adults and may be due to a possible founder effect. Kidney Int 71:574–581PubMedCrossRefGoogle Scholar
  71. 71.
    Chamberlin BC, Hagge WW, Stickler GB (1977) Juvenile nephronophthisis and medullary cystic disease. Mayo Clin Proc 52:485–491PubMedGoogle Scholar
  72. 72.
    Wolf MT, van Vlem B, Hennies HC, Zalewski I, Karle SM, Puetz M, Panther F, Otto E, Fuchshuber A, Lameire N, Loeys B, Hildebrandt F (2004) Telomeric refinement of the MCKD1 locus on chromosome 1q21. Kidney Int 66:580–585PubMedCrossRefGoogle Scholar
  73. 73.
    Hart TC, Gorry MC, Hart PS, Woodard AS, Shihabi Z, Sandhu J, Shirts B, Xu L, Zhu H, Barmada MM, Bleyer AJ (2002) Mutations of the UMOD gene are responsible for medullary cystic kidney disease 2 and familial juvenile hyperuricaemic nephropathy. J Med Genet 39:882–892PubMedCrossRefGoogle Scholar
  74. 74.
    Zivna M, Hulkova H, Matignon M, Hodanova K, Vylet'al P, Kalbacova M, Baresova V, Sikora J, Blazkova H, Zivny J, Ivanek R, Stranecky V, Sovova J, Claes K, Lerut E, Fryns JP, Hart PS, Hart TC, Adams JN, Pawtowski A, Clemessy M, Gasc JM, Gubler MC, Antignac C, Elleder M, Kapp K, Grimbert P, Bleyer AJ, Kmoch S (2009) Dominant renin gene mutations associated with early-onset hyperuricemia, anemia, and chronic kidney failure. Am J Hum Genet 85:204–213PubMedCrossRefGoogle Scholar
  75. 75.
    Kroiss SHK, Berthold S, Rüschendorf F, Scolari F, Caridi G, Ghiggeri GM, Hildebrandt F, Fuchshuber A (2000) Evidence of further genetic heterogeneity in autosomal dominant medullary cystic kidney disease. Nephro Dial Transplant 15:818–821CrossRefGoogle Scholar
  76. 76.
    Stavrou C, Koptides M, Tombazos C, Psara E, Patsias C, Zouvani I, Kyriacou K, Hildebrandt F, Christofides T, Pierides A, Deltas CC (2002) Autosomal-dominant medullary cystic kidney disease type 1: clinical and molecular findings in six large Cypriot families. Kidney Int 62:1385–1394PubMedCrossRefGoogle Scholar
  77. 77.
    Hoyer JRSS, Vernier RL (1979) Tamm-Horsfall glycoprotein: ultrastructural immunoperoxidase localization in rat kidney. Lab Invest 41:168–173PubMedGoogle Scholar
  78. 78.
    Serafini-Cessi F, Malagolini N, Cavallone D (2003) Tamm-Horsfall glycoprotein: biology and clinical relevance. Am J Kidney Dis 42:658–676PubMedCrossRefGoogle Scholar
  79. 79.
    Bleyer AJHT, Willingham MC, Iskandar SS, Gorry MC, Trachtman H (2005) Clinico-pathologic findings in medullary cystic kidney disease type 2. Pediatr Nephrol 20:824–827PubMedCrossRefGoogle Scholar
  80. 80.
    Zaucke F, Boehnlein JM, Steffens S, Polishchuk RS, Rampoldi L, Fischer A, Pasch A, Boehm CW, Baasner A, Attanasio M, Hoppe B, Hopfer H, Beck BB, Sayer JA, Hildebrandt F, Wolf MT (2010) Uromodulin is expressed in renal primary cilia and UMOD mutations result in decreased ciliary uromodulin expression. Hum Mol Genet 19:1985–1997PubMedCrossRefGoogle Scholar
  81. 81.
    Puig JG, Miranda ME, Mateos FA, Picazo ML, Jimenez ML, Calvin TS, Gil AA (1993) Hereditary nephropathy associated with hyperuricemia and gout. Arch Intern Med 153:357–365PubMedCrossRefGoogle Scholar
  82. 82.
    Auranen MA-MS, Turunen JA, JärveläI (2001) Further evidence for linkage of autosomal-dominant medullary cystic kidney disease on chromosome 1q21. Kidney Int 60:1225–1232PubMedCrossRefGoogle Scholar
  83. 83.
    Bleyer AJ, Woodard AS, Shihabi Z, Sandhu J, Zhu H, Satko SG, Weller N, Deterding E, McBride D, Gorry MC, Xu L, Ganier D, Hart TC (2003) Clinical characterization of a family with a mutation in the uromodulin (Tamm-Horsfall glycoprotein) gene. Kidney Intl 64:36–42CrossRefGoogle Scholar
  84. 84.
    Scolari F, Caridi G, Rampoldi L, Tardanico R, Izzi C, Pirulli D, Amoroso A, Casari G, Ghiggeri GM (2004) Uromodulin storage diseases: clinical aspects and mechanisms. Am J Kidney Dis 44:987–999PubMedCrossRefGoogle Scholar
  85. 85.
    Kiser RL, Wolf MT, Martin JL, Zalewski I, Attanasio M, Hildebrandt F, Klemmer P (2004) Medullary cystic kidney disease type 1 in a large Native-American kindred. Am J Kidney Dis 44:611–617PubMedGoogle Scholar
  86. 86.
    Fairbanks LD, Cameron JS, Venkat-Raman G, Rigden SP, Rees L, Van THW, Mansell M, Pattison J, Goldsmith DJ, Simmonds HA (2002) Early treatment with allopurinol in familial juvenile hyerpuricaemic nephropathy (FJHN) ameliorates the long-term progression of renal disease. QJM 95:597–607PubMedCrossRefGoogle Scholar
  87. 87.
    Horikawa Y, Iwasaki N, Hara M, Furuta H, Hinokio Y, Cockburn BN, Lindner T, Yamagata K, Ogata M, Tomonaga O, Kuroki H, Kasahara T, Iwamoto Y, Bell GI (1997) Mutation in hepatocyte nuclear factor-1 beta gene (TCF2) associated with MODY. Nat Genet 17:384–385PubMedCrossRefGoogle Scholar
  88. 88.
    Heidet L, Decramer S, Pawtowski A, Moriniere V, Bandin F, Knebelmann B, Lebre AS, Faguer S, Guigonis V, Antignac C, Salomon R (2010) Spectrum of HNF1B mutations in a large cohort of patients who harbor renal diseases. Clin J Am Soc Nephrol: CJASN 5:1079–1090PubMedCrossRefGoogle Scholar
  89. 89.
    Gresh L, Fischer E, Reimann A, Tanguy M, Garbay S, Shao X, Hiesberger T, Fiette L, Igarashi P, Yaniv M, Pontoglio M (2004) A transcriptional network in polycystic kidney disease. EMBO J 23:1657–1668PubMedCrossRefGoogle Scholar
  90. 90.
    Coffinier C, Barra J, Babinet C, Yaniv M (1999) Expression of the vHNF1/HNF1beta homeoprotein gene during mouse organogenesis. Mech Dev 89:211–213PubMedCrossRefGoogle Scholar
  91. 91.
    Reber M, Cereghini S (2001) Variant hepatocyte nuclear factor 1 expression in the mouse genital tract. Mech Dev 100:75–78PubMedCrossRefGoogle Scholar
  92. 92.
    Bingham C, Hattersley AT (2004) Renal cysts and diabetes syndrome resulting from mutations in hepatocyte nuclear factor-1beta. Nephrol Dial Transplant 19:2703–2708PubMedCrossRefGoogle Scholar
  93. 93.
    Edghill EL, Bingham C, Ellard S, Hattersley AT (2006) Mutations in hepatocyte nuclear factor-1beta and their related phenotypes. J Med Genet 43:84–90PubMedCrossRefGoogle Scholar
  94. 94.
    Bingham C, Ellard S, van’t Hoff WG, Simmonds HA, Marinaki AM, Badman MK, Winocour PH, Stride A, Lockwood CR, Nicholls AJ, Owen KR, Spyer G, Pearson ER, Hattersley AT (2003) Atypical familial juvenile hyperuricemic nephropathy associated with a hepatocyte nuclear factor-1beta gene mutation. Kidney Int 63:1645–1651PubMedCrossRefGoogle Scholar
  95. 95.
    Adalat S, Woolf AS, Johnstone KA, Wirsing A, Harries LW, Long DA, Hennekam RC, Ledermann SE, Rees L, van’t Hoff W, Marks SD, Trompeter RS, Tullus K, Winyard PJ, Cansick J, Mushtaq I, Dhillon HK, Bingham C, Edghill EL, Shroff R, Stanescu H, Ryffel GU, Ellard S, Bockenhauer D (2009) HNF1B mutations associate with hypomagnesemia and renal magnesium wasting. J Am Soc Nephrol: JASN 20:1123–1131PubMedCrossRefGoogle Scholar
  96. 96.
    Meij IC, Koenderink JB, van Bokhoven H, Assink KF, Groenestege WT, de Pont JJ, Bindels RJ, Monnens LA, van den Heuvel LP, Knoers NV (2000) Dominant isolated renal magnesium loss is caused by misrouting of the Na(+), K(+)-ATPase gamma-subunit. Nature Genet 26:265–266PubMedCrossRefGoogle Scholar
  97. 97.
    Bernstein J, Landing BH (1989) Glomerulocystic kidney diseases. Prog Clin Biol Res 305:27–43PubMedGoogle Scholar
  98. 98.
    Lennerz JK, Spence DC, Iskandar SS, Dehner LP, Liapis H (2010) Glomerulocystic kidney: one hundred-year perspective. Arch Pathol Lab Med 134:583–605PubMedGoogle Scholar
  99. 99.
    Bissler JJ, Siroky BJ, Yin H (2010) Glomerulocystic kidney disease. Pediatr Nephrol 25:2049–2056PubMedCrossRefGoogle Scholar
  100. 100.
    Fitch SJ, Stapleton FB (1986) Ultrasonographic features of glomerulocystic disease in infancy: similarity to infantile polycystic kidney disease. Pediatr Radiol 16:400–402PubMedCrossRefGoogle Scholar
  101. 101.
    Borges Oliva MR, Hsing J, Rybicki FJ, Fennessy F, Mortele KJ, Ros PR (2003) Glomerulocystic kidney disease: MRI findings. Abdom Imaging 28:889–892PubMedGoogle Scholar
  102. 102.
    Zimmerman KW (1898) Beitrage zur kenntnis einiger Drusen und Epithelien. Arch Mikrosk Anat 52:552–706CrossRefGoogle Scholar
  103. 103.
    Praetorius HA, Spring KR (2001) Bending the MDCK cell primary cilium increases intracellular calcium. J Membr Biol 184:71–79PubMedCrossRefGoogle Scholar
  104. 104.
    Pennekamp P, Karcher C, Fischer A, Schweickert A, Skryabin B, Horst J, Blum M, Dworniczak B (2002) The ion channel polycystin-2 is required for left-right axis determination in mice. Curr Biol 12:938–943PubMedCrossRefGoogle Scholar
  105. 105.
    Huangfu D, Liu A, Rakeman AS, Murcia NS, Niswander L, Anderson KV (2003) Hedgehog signalling in the mouse requires intraflagellar transport proteins. Nature 426:83–87PubMedCrossRefGoogle Scholar
  106. 106.
    Kramer-Zucker AG, Olale F, Haycraft CJ, Yoder BK, Schier AF, Drummond IA (2005) Cilia-driven fluid flow in the zebrafish pronephros, brain and Kupffer's vesicle is required for normal organogenesis. Development 132:1907–1921PubMedCrossRefGoogle Scholar
  107. 107.
    Ong AC, Wagner B (2005) Detection of proximal tubular motile cilia in a patient with renal sarcoidosis associated with hypercalcemia. Am J Kidney Dis 45:1096–1099PubMedCrossRefGoogle Scholar
  108. 108.
    Patel V, Li L, Cobo-Stark P, Shao X, Somlo S, Lin F, Igarashi P (2008) Acute kidney injury and aberrant planar cell polarity induce cyst formation in mice lacking renal cilia. Hum Mol Genet 17:1578–1590PubMedCrossRefGoogle Scholar
  109. 109.
    Fischer E, Legue E, Doyen A, Nato F, Nicolas JF, Torres V, Yaniv M, Pontoglio M (2006) Defective planar cell polarity in polycystic kidney disease. Nat Genet 38:21–23PubMedCrossRefGoogle Scholar
  110. 110.
    Karner CM, Chirumamilla R, Aoki S, Igarashi P, Wallingford JB, Carroll TJ (2009) Wnt9b signaling regulates planar cell polarity and kidney tubule morphogenesis. Nat Genet 41:793–799PubMedCrossRefGoogle Scholar
  111. 111.
    Simons M, Gloy J, Ganner A, Bullerkotte A, Bashkurov M, Kronig C, Schermer B, Benzing T, Cabello OA, Jenny A, Mlodzik M, Polok B, Driever W, Obara T, Walz G (2005) Inversin, the gene product mutated in nephronophthisis type II, functions as a molecular switch between Wnt signaling pathways. Nat Genet 37:537–543PubMedCrossRefGoogle Scholar
  112. 112.
    Nauli SM, Alenghat FJ, Luo Y, Williams E, Vassilev P, Li X, Elia AE, Lu W, Brown EM, Quinn SJ, Ingber DE, Zhou J (2003) Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat Genet 33:129–137PubMedCrossRefGoogle Scholar
  113. 113.
    Nishio S, Tian X, Gallagher AR, Yu Z, Patel V, Igarashi P, Somlo S (2010) Loss of oriented cell division does not initiate cyst formation. J Am Soc Nephrol 21:295–302PubMedCrossRefGoogle Scholar
  114. 114.
    Luyten A, Su X, Gondela S, Chen Y, Rompani S, Takakura A, Zhou J (2010) Aberrant regulation of planar cell polarity in polycystic kidney disease. J Am Soc Nephrol 21:1521–1532PubMedCrossRefGoogle Scholar
  115. 115.
    Amir G, Rosenmann E, Drukker A (1995) Acquired glomerulocystic kidney disease following haemolytic-uraemic syndrome. Pediatr Nephrol 9:614–616PubMedCrossRefGoogle Scholar
  116. 116.
    Mans DA, Voest EE, Giles RH (2008) All along the watchtower: is the cilium a tumor suppressor organelle? Biochim Biophys Acta 1786:114–125PubMedGoogle Scholar
  117. 117.
    Tee AR, Fingar DC, Manning BD, Kwiatkowski DJ, Cantley LC, Blenis J (2002) Tuberous sclerosis complex-1 and -2 gene products function together to inhibit mammalian target of rapamycin (mTOR)-mediated downstream signaling. Proc Natl Acad Sci USA 99:13571–13576PubMedCrossRefGoogle Scholar
  118. 118.
    Hartman TR, Liu D, Zilfou JT, Robb V, Morrison T, Watnick T, Henske EP (2009) The tuberous sclerosis proteins regulate formation of the primary cilium via a rapamycin-insensitive and polycystin 1-independent pathway. Hum Mol Genet 18:151–163PubMedCrossRefGoogle Scholar

Copyright information

© IPNA 2012

Authors and Affiliations

  1. 1.Kidney Genetics Group, Academic Nephrology Unit, Department of Infection and ImmunityUniversity of Sheffield Medical SchoolSheffieldUK
  2. 2.Kidney Genetics Group, Academic Unit of Nephrology, The Henry Wellcome Laboratories for Medical ResearchUniversity of Sheffield Medical SchoolSheffieldUK

Personalised recommendations