Advertisement

Pediatric Nephrology

, Volume 27, Issue 8, pp 1411–1415 | Cite as

Acute kidney injury in two children caused by renal hypouricaemia type 2

  • Blanka StiburkovaEmail author
  • Judy Taylor
  • Anthony M. Marinaki
  • Ivan Sebesta
Brief Report

Abstract

Background

Renal hypouricaemia is a heterogeneous inherited disorder characterized by impaired tubular uric acid transport with severe complications, such as acute kidney injury and nephrolithiasis. Type 1 is caused by a loss-of-function mutation in the SLC22A12 gene (OMIM #220150), while type 2 is caused by defects in the SLC2A9 gene (OMIM #612076).

Case–diagnosis/treatment

The cases of two children, a 12- and a 14-year-old boy with acute kidney injury (proband 1: urea 9.4 mmol/l, creatinine 226 μmol/l; proband 2: urea 11.7 mmol/l, creatinine 202 μmol/l) are described. Both are offspring of nonconsanguineous couples in the UK. The concentrations of serum uric acid were consistently below the normal range (0.03 and 0.04 mmol/l) and expressed as an increase in the fractional excretion of uric acid (46 and 93 %).

Conclusions

A sequencing analysis of the coding region of uric acid transporters SLC22A12 and SLC2A9 was performed. Analysis of genomic DNA revealed two unpublished missense transitions, p.G216R and p.N333S in the SLC2A9 gene. No sequence variants in SLC22A12 were found. Our findings suggest that homozygous and/or compound heterozygous loss-of-function mutations p.G216R and p.N333S cause renal hypouricaemia via loss of uric acid absorption and do lead to acute kidney injury.

Keywords

Acute kidney injury Renal hypouricemia SLC2A9 Uric acid transporters 

Notes

Acknowledgements

This study was supported by grant IGA MZ 11322–4/2010 from the Ministry of Health of the Czech Republic and by the Institutional support PRVOUK-P24/LF1/3 program of the Charles University in Prague.

References

  1. 1.
    Enomoto A, Kimura H, Chairoungdua A, Shigeta Y, Jutabha P, Cha SH, Hosoyamada M, Takeda M, Sekine T, Igarashi T, Matsuo H, Kikuchi Y, Oda T, Ichida K, Hosoya T, Shimokata K, Niwa T, Kanai Y, Endou H (2002) Molecular identification of a renal urate anion exchanger that regulates blood urate levels. Nature 417:447–452PubMedGoogle Scholar
  2. 2.
    Vitart V, Rudan I, Hayward C, Gray NK, Floyd J, Palmer CN, Knott SA, Kolcic I, Polasek O, Graessler J, Wilson JF, Marinaki A, Riches PL, Shu X, Janicijevic B, Smolej-Narancic N, Gorgoni B, Morgan J, Campbell S, Biloglav Z, Barac-Lauc L, Pericic M, Klaric IM, Zgaga L, Skaric-Juric T, Wild SH, Richardson WA, Hohenstein P, Kimber CH, Tenesa A, Donnelly LA, Fairbanks LD, Aringer M, McKeigue PM, Ralston SH, Morris AD, Rudan P, Hastie ND, Campbell H, Wright AF (2008) SLC2A9 is a newly identified urate transporter influencing serum urate concentration, urate excretion and gout. Nat Genet 40:437–442PubMedCrossRefGoogle Scholar
  3. 3.
    Doring A, Gieger C, Mehta D, Gohlke H, Prokisch H, Coassin S, Fischer G, Henke K, Klopp N, Kronenberg F, Paulweber B, Pfeufer A, Rosskopf D, Volzke H, Illig T, Meitinger T, Wichmann HE, Meisinger C (2008) SLC2A9 influences uric acid concentrations with pronounced sex-specific effects. Nat Genet 40:430–436PubMedCrossRefGoogle Scholar
  4. 4.
    Augustin R, Carayannopoulos MO, Dowd LO, Phay JE, Moley JF, Moley KH (2004) Identification and characterization of human glucose transporter-like protein-9 (GLUT9): alternative splicing alters trafficking. J Biol Chem 279:16229–16236PubMedCrossRefGoogle Scholar
  5. 5.
    Caulfield MJ, Munroe PB, O'Neill D, Witkowska K, Charchar FJ, Doblado M, Evans S, Eyheramendy S, Onipinla A, Howard P, Shaw-Hawkins S, Dobson RJ, Wallace C, Newhouse SJ, Brown M, Connell JM, Dominiczak A, Farrall M, Lathrop GM, Samani NJ, Kumari M, Marmot M, Brunner E, Chambers J, Elliott P, Kooner J, Laan M, Org E, Veldre G, Viigimaa M, Cappuccio FP, Ji C, Iacone R, Strazzullo P, Moley KH, Cheeseman C (2008) SLC2A9 is a high-capacity urate transporter in humans. PLoS Med 5(10):e197PubMedCrossRefGoogle Scholar
  6. 6.
    Dinour D, Bahn A, Ganon L, Ron R, Geifman-Holtzman O, Knecht A, Gafter U, Rachamimov R, Sela BA, Burckhardt G, Holtzman EJ (2010) Homozygous SLC2A9 mutations cause severe renal hypouricemia. J Am Soc Nephrol 21:64–72PubMedCrossRefGoogle Scholar
  7. 7.
    Dinour D, Gray NK, Ganon L, Knox AJ, Shalev H, Sela BA, Campbell S, Sawyer L, Shu X, Valsamidou E, Landau D, Wright AF, Holtzman EJ (2012) Two novel homozygous SLC2A9 mutations cause renal hypouricemia type 2. Nephrol Dial Transplant 27:1035–1041Google Scholar
  8. 8.
    Matsuo H, Chiba T, Nagamori S, Nakayama A, Domoto H, Phetdee K, Wiriyasermkul P, Kikuchi Y, Oda T, Nishiyama J, Nakamura T, Morimoto Y, Kamakura K, Sakurai Y, Nonoyama S, Kanai Y, Shinomiya N (2008) Mutations in glucose transporter 9 gene SLC2A9 cause renal hypouricemia. Am J Hum Genet 83:744–751PubMedCrossRefGoogle Scholar
  9. 9.
    Shima Y, Nozu K, Nozu Y, Togawa H, Kaito H, Matsuo M, Iijima K, Nakanishi K, Yoshikawa N (2011) Recurrent EIARF and PRES with severe renal hypouricemia by compound heterozygous SLC2A9 mutation. Pediatrics 127:e1621–e1625PubMedCrossRefGoogle Scholar
  10. 10.
    Anzai N, Ichida K, Jutabha P, Kimura T, Babu E, Jin CJ, Srivastava S, Kitamura K, Hisatome I, Endou H, Sakurai H (2008) Plasma urate level is directly regulated by a voltage-driven urate efflux transporter URATv1 (SLC2A9) in humans. J Biol Chem 283:26834–26838PubMedCrossRefGoogle Scholar
  11. 11.
    Stiburkova B, Ichida K, Sebesta I (2011) Novel homozygous insertion in SLC2A9 gene caused renal hypouricemia. Mol Genet Metab 102:430–435PubMedCrossRefGoogle Scholar
  12. 12.
    Dehghan A, Köttgen A, Yang Q, Hwang SJ, Kao WL, Rivadeneira F, Boerwinkle E, Levy D, Hofman A, Astor BC, Benjamin EJ, van Duijn CM, Witteman JC, Coresh J, Fox CS (2008) Association of three genetic loci with uric acid concentration and risk of gout: a genome-wide association study. Lancet 372(9654):1953–1961PubMedCrossRefGoogle Scholar
  13. 13.
    Bell DW, Yeung RS, Bohlander SK, Cheng JQ, Jin F, Testa JR (1995) A microdissection library of the rat renal carcinoma gene region. Cytogenet Cell Genet 70:92–94PubMedCrossRefGoogle Scholar
  14. 14.
    Naitoh M, Suzuki H, Murakami M, Matsumoto A, Ichihara A, Nakamoto H, Yamamura Y, Saruta T (1993) Arginine vasopressin produces renal vasodilation via V2 receptors in conscious dogs. Am J Physiol 265:R934–R942PubMedGoogle Scholar

Copyright information

© IPNA 2012

Authors and Affiliations

  • Blanka Stiburkova
    • 1
    Email author
  • Judy Taylor
    • 3
  • Anthony M. Marinaki
    • 4
  • Ivan Sebesta
    • 1
    • 2
  1. 1.Institute of Inherited Metabolic DisordersCharles University in Prague, First Faculty of Medicine and General University Hospital in PraguePrague 2Czech Republic
  2. 2.Institute of Clinical Biochemistry and Laboratory MedicineCharles University in Prague, First Faculty of Medicine and General University Hospital in PraguePrague 2Czech Republic
  3. 3.Department of Paediatric NephrologyEvelina Children’s Hospital at St Thomas’ HospitalLondonUK
  4. 4.Purine Research Laboratory, GSTS PathologySt Thomas’ HospitalLondonUK

Personalised recommendations