Pediatric Nephrology

, Volume 27, Issue 9, pp 1565–1574 | Cite as

Left ventricular function in children and adults after renal transplantation in childhood

  • Asle Hirth
  • Nicola C. Edwards
  • Gottfried Greve
  • Trine Tangeraas
  • Eva Gerdts
  • Kjetil Lenes
  • Gunnar Norgård
Original Article

Abstract

Background

Renal transplantation improves left ventricular (LV) function, but cardiovascular mortality remains elevated. The aim of this cross-sectional study was to determine whether subclinical abnormalities of LV longitudinal function also persist in patients who underwent renal transplant in childhood.

Methods

Conventional and speckle tracking echocardiography was performed in 68 renal transplant recipients (34 children and 34 adults, median 9.8 years (range 2.0–28.4 years) after first transplantation and 68 age- and sex-matched healthy controls.

Results

Mean age at first transplantation was 8.8 ± 4.8 years. Forty-three percent had a pre-emptive transplant. Of the remaining, 70% received haemodialysis and 30% peritoneal dialysis on average for 6.9 months. Thirty-one percent of paediatric and 35% of adult patients had hypertension. LV mass index was increased in adult patients (92 ± 24 vs 75 ± 11 g/m2, P< 0.01). LV diastolic function and exercise capacity were impaired in both paediatric and adult patients. LV longitudinal peak systolic strain and strain rate were comparable in patients and controls. In multivariate analysis, systolic blood pressure and LV diastolic relaxation were the main covariates of LV peak systolic strain and strain rate (all P < 0.01).

Conclusions

Patients who underwent renal transplantation in childhood have abnormal LV diastolic function and impaired exercise capacity, despite preserved LV longitudinal systolic deformation.

Keywords

Cardiovascular disease Children Speckle tracking Cardiac function Deformation Diastolic function 

References

  1. 1.
    Parekh RS, Carroll CE, Wolfe RA, Port FK (2002) Cardiovascular mortality in children and young adults with end-stage kidney disease. J Pediatr 141:191–197PubMedCrossRefGoogle Scholar
  2. 2.
    McDonald SP, Craig JC (2004) Long-term survival of children with end-stage renal disease. N Engl J Med 350:2654–2662PubMedCrossRefGoogle Scholar
  3. 3.
    Tangeraas T, Bjerre A, Lien B, Kyte A, Monn E, Cvancarova M, Leivestad T, Reisaeter AV (2008) Long-term outcome of pediatric renal transplantation: the Norwegian experience in three eras 1970–2006. Pediatr Transplant 12:762–768PubMedCrossRefGoogle Scholar
  4. 4.
    Wilson AC, Greenbaum LA, Barletta GM, Chand D, Lin JJ, Patel HP, Mitsnefes M (2010) High prevalence of the metabolic syndrome and associated left ventricular hypertrophy in pediatric renal transplant recipients. Pediatr Transplant 14:52–60PubMedCrossRefGoogle Scholar
  5. 5.
    Alvares S, Mota C, Soares L, Henriques C, Pereira E, Sarmento AM, Lima CA (1998) Cardiac consequences of renal transplantation changes in left ventricular morphology. Rev Port Cardiol 17:145–152PubMedGoogle Scholar
  6. 6.
    Weaver DJ Jr, Kimball T, Witt SA, Glascock BJ, Khoury PR, Kartal J, Mitsnefes MM (2008) Subclinical systolic dysfunction in pediatric patients with chronic kidney disease. J Pediatr 153:565–569PubMedCrossRefGoogle Scholar
  7. 7.
    Bullington N, Kartel J, Khoury P, Mitsnefes M (2006) Left ventricular hypertrophy in pediatric kidney transplant recipients: long-term follow-up study. Pediatr Transplant 10:811–815PubMedCrossRefGoogle Scholar
  8. 8.
    Rakhit DJ, Zhang XH, Leano R, Armstrong KA, Isbel NM, Marwick TH (2007) Prognostic role of subclinical left ventricular abnormalities and impact of transplantation in chronic kidney disease. Am Heart J 153:656–664PubMedCrossRefGoogle Scholar
  9. 9.
    Fathi R, Isbel N, Haluska B, Case C, Johnson DW, Marwick TH (2003) Correlates of subclinical left ventricular dysfunction in ESRD. Am J Kidney Dis 41:1016–1025PubMedCrossRefGoogle Scholar
  10. 10.
    Mitsnefes MM, Kimball TR, Border WL, Witt SA, Glascock BJ, Khoury PR, Daniels SR (2004) Impaired left ventricular diastolic function in children with chronic renal failure. Kidney Int 65:1461–1466PubMedCrossRefGoogle Scholar
  11. 11.
    Mitsnefes MM, Kimball TR, Kartal J, Witt SA, Glascock BJ, Khoury PR, Daniels SR (2005) Cardiac and vascular adaptation in pediatric patients with chronic kidney disease: role of calcium-phosphorus metabolism. J Am Soc Nephrol 16:2796–2803PubMedCrossRefGoogle Scholar
  12. 12.
    KDOQI (2006) Clinical practice guidelines and clinical practice recommendations for anemia in chronic kidney disease. Am J Kidney Dis 47:S11–145CrossRefGoogle Scholar
  13. 13.
    Ganesh SK, Stack AG, Levin NW, Hulbert-Shearon T, Port FK (2001) Association of elevated serum PO(4), Ca x PO(4) product, and parathyroid hormone with cardiac mortality risk in chronic hemodialysis patients. J Am Soc Nephrol 12:2131–2138PubMedGoogle Scholar
  14. 14.
    Dudziak M, Debska-Slizien A, Rutkowski B (2005) Cardiovascular effects of successful renal transplantation: a 30-month study on left ventricular morphology, systolic and diastolic functions. Transplant Proc 37:1039–1043PubMedCrossRefGoogle Scholar
  15. 15.
    Edvardsen T, Helle-Valle T, Smiseth OA (2006) Systolic dysfunction in heart failure with normal ejection fraction: speckle-tracking echocardiography. Prog Cardiovasc Dis 49:207–214PubMedCrossRefGoogle Scholar
  16. 16.
    Edwards NC, Hirth A, Ferro CJ, Townend JN, Steeds RP (2008) Subclinical abnormalities of left ventricular myocardial deformation in early-stage chronic kidney disease: the precursor of uremic cardiomyopathy? J Am Soc Echocardiogr 21:1293–1298PubMedCrossRefGoogle Scholar
  17. 17.
    Kim GB, Kwon BS, Kang HG, Ha JW, Ha IS, Noh CI, Choi JY, Kim SJ, Yun YS, Bae EJ (2009) Cardiac dysfunction after renal transplantation; incomplete resolution in pediatric population. Transplantation 87:1737–1743PubMedCrossRefGoogle Scholar
  18. 18.
    Mancia G, De Backer G, Dominiczak A, Cifkova R, Fagard R, Germano G, Grassi G, Heagerty AM, Kjeldsen SE, Laurent S, Narkiewicz K, Ruilope L, Rynkiewicz A, Schmieder RE, Struijker Boudier HA, Zanchetti A, Vahanian A, Camm J, De Caterina R, Dean V, Dickstein K, Filippatos G, Funck-Brentano C, Hellemans I, Kristensen SD, McGregor K, Sechtem U, Silber S, Tendera M, Widimsky P, Zamorano JL, Kjeldsen SE, Erdine S, Narkiewicz K, Kiowski W, Agabiti-Rosei E, Ambrosioni E, Cifkova R, Dominiczak A, Fagard R, Heagerty AM, Laurent S, Lindholm LH, Mancia G, Manolis A, Nilsson PM, Redon J, Schmieder RE, Struijker-Boudier HA, Viigimaa M, Filippatos G, Adamopoulos S, Agabiti-Rosei E, Ambrosioni E, Bertomeu V, Clement D, Erdine S, Farsang C, Gaita D, Kiowski W, Lip G, Mallion JM, Manolis AJ, Nilsson PM, O’Brien E, Ponikowski P, Redon J, Ruschitzka F, Tamargo J, van Zwieten P, Viigimaa M, Waeber B, Williams B, Zamorano JL, The task force for the management of arterial hypertension of the European Society of H, The task force for the management of arterial hypertension of the European Society of C (2007) 2007 Guidelines for the management of arterial hypertension: the task force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Eur Heart J 28:1462–1536PubMedGoogle Scholar
  19. 19.
    National High Blood Pressure Education Program Working Group on High Blood Pressure in Children and Adolescents (2004) The fourth report on the diagnosis, evaluation, and treatment of high blood pressure in children and adolescents. Pediatrics 114:555–576CrossRefGoogle Scholar
  20. 20.
    Stake G, Monn E, Rootwelt K, Monclair T (1991) A single plasma sample method for estimation of the glomerular filtration rate in infants and children using iohexol. II. Establishment of the optimal plasma sampling time and a comparison with the 99Tcm-DTPA method. Scand J Clin Lab Invest 51:343–348PubMedCrossRefGoogle Scholar
  21. 21.
    Tangeraas T, Midtvedt K, Cvancarova M, Hirth A, Fredriksen PM, Tonstad S, Isaksen GA, Bjerre A (2011) Cardiorespiratory fitness in young adults with a history of renal transplantation in childhood. Pediatr Nephrol 26:2041–2049PubMedCrossRefGoogle Scholar
  22. 22.
    Fredriksen PM, Ingjer F, Nystad W, Thaulow E (1999) A comparison of VO2(peak) between patients with congenital heart disease and healthy subjects, all aged 8–17 years. Eur J Appl Physiol Occup Physiol 80:409–416PubMedCrossRefGoogle Scholar
  23. 23.
    Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, Picard MH, Roman MJ, Seward J, Shanewise JS, Solomon SD, Spencer KT, Sutton MS, Stewart WJ (2005) Recommendations for chamber quantification: a report from the American Society of Echocardiography’s Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiogr 18:1440–1463PubMedCrossRefGoogle Scholar
  24. 24.
    Devereux RB, Alonso DR, Lutas EM, Gottlieb GJ, Campo E, Sachs I, Reichek N (1986) Echocardiographic assessment of left ventricular hypertrophy: comparison to necropsy findings. Am J Cardiol 57:450–458PubMedCrossRefGoogle Scholar
  25. 25.
    Daniels SR, Kimball TR, Morrison JA, Khoury P, Meyer RA (1995) Indexing left ventricular mass to account for differences in body size in children and adolescents without cardiovascular disease. Am J Cardiol 76:699–701PubMedCrossRefGoogle Scholar
  26. 26.
    Gerdts E, Cramariuc D, de Simone G, Wachtell K, Dahlof B, Devereux RB (2008) Impact of left ventricular geometry on prognosis in hypertensive patients with left ventricular hypertrophy (the LIFE study). Eur J Echocardiogr 9:809–815PubMedCrossRefGoogle Scholar
  27. 27.
    Palmieri V, de Simone G, Arnett DK, Bella JN, Kitzman DW, Oberman A, Hopkins PN, Province MA, Devereux RB (2001) Relation of various degrees of body mass index in patients with systemic hypertension to left ventricular mass, cardiac output, and peripheral resistance (The Hypertension Genetic Epidemiology Network Study). Am J Cardiol 88:1163–1168PubMedCrossRefGoogle Scholar
  28. 28.
    Alam M, Wardell J, Andersson E, Samad BA, Nordlander R (1999) Characteristics of mitral and tricuspid annular velocities determined by pulsed wave Doppler tissue imaging in healthy subjects. J Am Soc Echocardiogr 12:618–628PubMedCrossRefGoogle Scholar
  29. 29.
    Bland JM, Altman DG (1999) Measuring agreement in method comparison studies. Stat Methods Med Res 8:135–160PubMedCrossRefGoogle Scholar
  30. 30.
    Wuhl E, Witte K, Soergel M, Mehls O, Schaefer F (2002) Distribution of 24-h ambulatory blood pressure in children: normalized reference values and role of body dimensions. J Hypertens 20:1995–2007PubMedCrossRefGoogle Scholar
  31. 31.
    Dalen H, Thorstensen A, Aase SA, Ingul CB, Torp H, Vatten LJ, Stoylen A (2010) Segmental and global longitudinal strain and strain rate based on echocardiography of 1266 healthy individuals: the HUNT study in Norway. Eur J Echocardiogr 11:176–183PubMedCrossRefGoogle Scholar
  32. 32.
    Hanevold CD, Ho PL, Talley L, Mitsnefes MM (2005) Obesity and renal transplant outcome: a report of the North American Pediatric Renal Transplant Cooperative Study. Pediatrics 115:352–356PubMedCrossRefGoogle Scholar
  33. 33.
    Becker-Cohen R, Nir A, Ben-Shalom E, Rinat C, Feinstein S, Farber B, Frishberg Y (2008) Improved left ventricular mass index in children after renal transplantation. Pediatr Nephrol 23:1545–1550PubMedCrossRefGoogle Scholar
  34. 34.
    El-Husseini AA, Sheashaa HA, Hassan NA, El-Demerdash FM, Sobh MA, Ghoneim MA (2004) Echocardiographic changes and risk factors for left ventricular hypertrophy in children and adolescents after renal transplantation. Pediatr Transplant 8:249–254PubMedCrossRefGoogle Scholar
  35. 35.
    Mitsnefes MM, Kimball TR, Border WL, Witt SA, Glascock BJ, Khoury PR, Daniels SR (2004) Abnormal cardiac function in children after renal transplantation. Am J Kidney Dis 43:721–726PubMedCrossRefGoogle Scholar
  36. 36.
    Mall G, Huther W, Schneider J, Lundin P, Ritz E (1990) Diffuse intermyocardiocytic fibrosis in uraemic patients. Nephrol Dial Transplant 5:39–44PubMedGoogle Scholar
  37. 37.
    Weidemann F, Strotmann JM (2007) Use of tissue Doppler imaging to identify and manage systemic diseases. Clin Res Cardiol 96:1–9CrossRefGoogle Scholar
  38. 38.
    Marcus KA, Mavinkurve-Groothuis AM, Barends M, van Dijk A, Feuth T, de Korte C, Kapusta L (2011) Reference values for myocardial two-dimensional strain echocardiography in a healthy pediatric and young adult cohort. J Am Soc Echocardiogr 6:625–636Google Scholar
  39. 39.
    Guizar-Mendoza JM, Amador-Licona N, Lozada EE, Rodriguez L, Gutierrez-Navarro M, Dubey-Ortega LA, Trejo-Bellido J, Encarnacion Jde J, Ruiz-Jaramillo Mde L (2006) Left ventricular mass and heart sympathetic activity after renal transplantation in children and young adults. Pediatr Nephrol 21:1413–1418PubMedCrossRefGoogle Scholar
  40. 40.
    Colan SD, Sanders SP, Ingelfinger JR, Harmon W (1987) Left ventricular mechanics and contractile state in children and young adults with end-stage renal disease: effect of dialysis and renal transplantation. J Am Coll Cardiol 10:1085–1094PubMedCrossRefGoogle Scholar
  41. 41.
    Baluarte HJ, Gruskin AB, Ingelfinger JR, Stablein D, Tejani A (1994) Analysis of hypertension in children post renal transplantation—a report of the North American Pediatric Renal Transplant Cooperative Study (NAPRTCS). Pediatr Nephrol 8:570–573PubMedCrossRefGoogle Scholar
  42. 42.
    Mitsnefes MM, Khoury PR, McEnery PT (2003) Early posttransplantation hypertension and poor long-term renal allograft survival in pediatric patients. J Pediatr 143:98–103PubMedCrossRefGoogle Scholar
  43. 43.
    Kessler M, Zannad F, Lehert P, Grunfeld JP, Thuilliez C, Leizorovicz A, Lechat P (2007) Predictors of cardiovascular events in patients with end-stage renal disease: an analysis from the Fosinopril in dialysis study. Nephrol Dial Transplant 22:3573–3579PubMedCrossRefGoogle Scholar
  44. 44.
    Flynn JT, Mitsnefes M, Pierce C, Cole SR, Parekh RS, Furth SL, Warady BA (2008) Blood pressure in children with chronic kidney disease: a report from the Chronic Kidney Disease in Children study. Hypertension 52:631–637PubMedCrossRefGoogle Scholar
  45. 45.
    Mearns BM (2011) Biomarkers: even low cTnT levels are indicative of structural heart disease and might be useful in screening. Nat Rev Cardiol 8:61PubMedCrossRefGoogle Scholar
  46. 46.
    Hallen J, Madsen L, Ladefoged S, Fagerland MW, Serebruany VL, Agewall S, Atar D (2011) Incremental value of a combination of cardiac troponin T, N-terminal pro-brain natriuretic peptide and C-reactive protein for prediction of mortality in end-stage renal disease. Scand J Urol Nephrol 45:151–158PubMedCrossRefGoogle Scholar
  47. 47.
    Eidem BW, McMahon CJ, Cohen RR, Wu J, Finkelshteyn I, Kovalchin JP, Ayres NA, Bezold LI, O’Brian Smith E, Pignatelli RH (2004) Impact of cardiac growth on Doppler tissue imaging velocities: a study in healthy children. J Am Soc Echocardiogr 17:212–221PubMedCrossRefGoogle Scholar
  48. 48.
    Chahal NS, Lim TK, Jain P, Chambers JC, Kooner JS, Senior R (2010) Normative reference values for the tissue Doppler imaging parameters of left ventricular function: a population-based study. Eur J Echocardiogr 11:51–56PubMedCrossRefGoogle Scholar
  49. 49.
    European Study Group on Diastolic Heart Failure (1998) How to diagnose diastolic heart failure. Eur Heart J 19:990–1003CrossRefGoogle Scholar

Copyright information

© IPNA 2012

Authors and Affiliations

  • Asle Hirth
    • 1
    • 2
  • Nicola C. Edwards
    • 3
  • Gottfried Greve
    • 1
    • 4
  • Trine Tangeraas
    • 5
  • Eva Gerdts
    • 4
    • 6
  • Kjetil Lenes
    • 5
  • Gunnar Norgård
    • 5
  1. 1.Department of Clinical MedicineUniversity of BergenBergenNorway
  2. 2.Department of PaediatricsHaukeland University HospitalBergenNorway
  3. 3.Department of CardiologyUniversity Hospital BirminghamBirminghamUnited Kingdom
  4. 4.Department of Heart DiseaseHaukeland University HospitalBergenNorway
  5. 5.Department of Paediatric MedicineOslo University HospitalRikshospitaletNorway
  6. 6.Institute of MedicineUniversity of BergenBergenNorway

Personalised recommendations