Pediatric Nephrology

, Volume 27, Issue 2, pp 269–275

The possible role of esRAGE and sRAGE in the natural history of diabetic nephropathy in childhood

  • Cosimo Giannini
  • Ebe D’Adamo
  • Tommaso de Giorgis
  • Valentina Chiavaroli
  • Alberto Verrotti
  • Francesco Chiarelli
  • Angelika Mohn
Original Article

Abstract

The advanced glycation end products/receptor for advanced glycation end products (AGE–RAGE) pathway is a key mediator of glomerular changes in type 1 diabetes. We evaluated endogenous secretory (es)RAGE and soluble (s)RAGE concentrations in 64 pre-pubertal and pubertal normoalbuminuric patients with type 1 diabetes and compared the values with those of 62 controls matched for age, gender and Tanner pubertal stages. We also explored the possible association of their concentrations with early signs of diabetic nephropathy, defined as changes in kidney volume and estimated glomerular filtration rate (eGFR). Significantly lower concentrations of both esRAGE and sRAGE were documented in pre-pubertal (p = 0.003 and p = 0.001) and pubertal (p = 0.002 and p = 0.001) subjects with type 1 diabetes than in the controls. In both groups of patients with type 1 diabetes, the eGFR (pre-pubertal p = 0.01 and pubertal p = 0.01) and the mean value of kidney volume adjusted for body surface (pre-pubertal p = 0.003 and pubertal p = 0.002) were higher than those of the controls. The regression analysis showed an inverse relationship between esRAGE and body surface-adjusted mean kidney volume (p = 0.0004, r = −0.503). esRAGE and sRAGE concentrations were lower in normoalbuminuric youths with type 1 diabetes than in their healthy peers. The inverse association between esRAGE levels and early kidney alterations suggests a potential role of esRAGE in diabetic nephropathy.

Keywords

Type 1 diabetes AGE esRAGE sRAGE Diabetic nephropathy 

Abbreviations

AGEs

Advanced glycation end products

DBP

Diastolic blood pressure

DN

Diabetic nephropathy

eGFR

Estimated glomerular filtration rate

esRAGE

Endogenous secretory receptor of advanced glycation end products

MA

Microalbuminuria

SBP

Systolic blood pressure

sRAGE

Soluble receptor of advanced glycation end products

References

  1. 1.
    Gross JL, de Azevedo MJ, Silveiro SP, Canani LH, Caramori ML, Zelmanovitz T (2005) Diabetic nephropathy: diagnosis, prevention, and treatment. Diabetes Care 28:164–176PubMedCrossRefGoogle Scholar
  2. 2.
    Bogdanovic R (2008) Diabetic nephropathy in children and adolescents. Pediatr Nephrol 23:507–525PubMedCrossRefGoogle Scholar
  3. 3.
    Thomson SC, Vallon V, Blantz RC (2004) Kidney function in early diabetes: the tubular hypothesis of glomerular filtration. Am J Physiol Renal Physiol 286:F8–F15PubMedCrossRefGoogle Scholar
  4. 4.
    Bak M, Thomsen K, Christiansen T, Flyvbjerg A (2000) Renal enlargement precedes renal hyperfiltration in early experimental diabetes in rats. J Am Soc Nephrol 11:1287–1292PubMedGoogle Scholar
  5. 5.
    Thomson SC, Deng A, Bao D, Satriano J, Blantz RC, Vallon V (2001) Ornithine decarboxylase, kidney size, and the tubular hypothesis of glomerular hyperfiltration in experimental diabetes. J Clin Invest 107:217–224PubMedCrossRefGoogle Scholar
  6. 6.
    Wolf G, Ziyadeh FN (1999) Molecular mechanisms of diabetic renal hypertrophy. Kidney Int 56:393–405PubMedCrossRefGoogle Scholar
  7. 7.
    Ohta Y, Fujii K, Arima H, Matsumura K, Tsuchihashi T, Tokumoto M, Tsuruya K, Kanai H, Iwase M, Hirakata H, Iida M (2005) Increased renal resistive index in atherosclerosis and diabetic nephropathy assessed by Doppler sonography. J Hypertens 23:1905–1911PubMedCrossRefGoogle Scholar
  8. 8.
    Frauchiger B, Nussbaumer P, Hugentobler M, Staub D (2000) Duplex sonographic registration of age and diabetes-related loss of renal vasodilatory response to nitroglycerine. Nephrol Dial Transplant 15:827–832PubMedCrossRefGoogle Scholar
  9. 9.
    Platt JF, Rubin JM, Ellis JH (1994) Diabetic nephropathy: evaluation with renal duplex Doppler US. Radiology 190:343–346PubMedGoogle Scholar
  10. 10.
    Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 414:813–820PubMedCrossRefGoogle Scholar
  11. 11.
    Bierhaus A, Nawroth PP (2009) Multiple levels of regulation determine the role of the receptor for AGE (RAGE) as common soil in inflammation, immune responses and diabetes mellitus and its complications. Diabetologia 52:2251–2263PubMedCrossRefGoogle Scholar
  12. 12.
    Sakurai S, Yonekura H, Yamamoto Y, Watanabe T, Tanaka N, Li H, Rahman AK, Myint KM, Kim CH, Yamamoto H (2003) The AGE-RAGE system and diabetic nephropathy. J Am Soc Nephrol 14:S259–S263PubMedCrossRefGoogle Scholar
  13. 13.
    Yonekura H, Yamamoto Y, Sakurai S, Petrova RG, Abedin MJ, Li H, Yasui K, Takeuchi M, Makita Z, Takasawa S, Okamoto H, Watanabe T, Yamamoto H (2003) Novel splice variants of the receptor for advanced glycation end-products expressed in human vascular endothelial cells and pericytes, and their putative roles in diabetes-induced vascular injury. Biochem J 370:1097–1109PubMedCrossRefGoogle Scholar
  14. 14.
    Shoji T, Koyama H, Morioka T, Tanaka S, Kizu A, Motoyama K, Mori K, Fukumoto S, Shioi A, Shimogaito N, Takeuchi M, Yamamoto Y, Yonekura H, Yamamoto H, Nishizawa Y (2006) Receptor for advanced glycation end products is involved in impaired angiogenic response in diabetes. Diabetes 55:2245–2255PubMedCrossRefGoogle Scholar
  15. 15.
    Park L, Raman KG, Lee KJ, Lu Y, Ferran LJ Jr, Chow WS, Stern D, Schmidt AM (1998) Suppression of accelerated diabetic atherosclerosis by the soluble receptor for advanced glycation endproducts. Nat Med 4:1025–1031PubMedCrossRefGoogle Scholar
  16. 16.
    Bucciarelli LG, Wendt T, Qu W, Lu Y, Lalla E, Rong LL, Goova MT, Moser B, Kislinger T, Lee DC, Kashyap Y, Stern DM, Schmidt AM (2002) RAGE blockade stabilizes established atherosclerosis in diabetic apolipoprotein E-null mice. Circulation 106:2827–2835PubMedCrossRefGoogle Scholar
  17. 17.
    National High Blood Pressure Education Program Working Group on High Blood Pressure in Children and Adolescents (2004) The fourth report on the diagnosis, evaluation, and treatment of high blood pressure in children and adolescents. Pediatrics 114:555–576.Google Scholar
  18. 18.
    Rolland-Cachera MF, Cole TJ, Sempe M, Tichet J, Rossignol C, Charraud A (1991) Body Mass Index variations: centiles from birth to 87 years. Eur J Clin Nutr 45:13–21PubMedGoogle Scholar
  19. 19.
    Savino A, Pelliccia P, Giannini C, de Giorgis T, Cataldo I, Chiarelli F, Mohn A (2011) Implications for kidney disease in obese children and adolescents. Pediatr Nephrol 26:749–758PubMedCrossRefGoogle Scholar
  20. 20.
    Hogg RJ, Furth S, Lemley KV, Portman R, Schwartz GJ, Coresh J, Balk E, Lau J, Levin A, Kausz AT, Eknoyan G, Levey AS (2003) National Kidney Foundation’s Kidney Disease Outcomes Quality Initiative clinical practice guidelines for chronic kidney disease in children and adolescents: evaluation, classification, and stratification. Pediatrics 111:1416–1421PubMedCrossRefGoogle Scholar
  21. 21.
    Bakker J, Olree M, Kaatee R, de Lange EE, Moons KG, Beutler JJ, Beek FJ (1999) Renal volume measurements: accuracy and repeatability of US compared with that of MR imaging. Radiology 211:623–628PubMedGoogle Scholar
  22. 22.
    Konus OL, Ozdemir A, Akkaya A, Erbas G, Celik H, Isik S (1998) Normal liver, spleen, and kidney dimensions in neonates, infants, and children: evaluation with sonography. AJR Am J Roentgenol 171:1693–1698PubMedGoogle Scholar
  23. 23.
    Koyama H, Shoji T, Yokoyama H, Motoyama K, Mori K, Fukumoto S, Emoto M, Shoji T, Tamei H, Matsuki H, Sakurai S, Yamamoto Y, Yonekura H, Watanabe T, Yamamoto H, Nishizawa Y (2005) Plasma level of endogenous secretory RAGE is associated with components of the metabolic syndrome and atherosclerosis. Arterioscler Thromb Vasc Biol 25:2587–2593PubMedCrossRefGoogle Scholar
  24. 24.
    Geroldi D, Falcone C, Emanuele E, D’Angelo A, Calcagnino M, Buzzi MP, Scioli GA, Fogari R (2005) Decreased plasma levels of soluble receptor for advanced glycation end-products in patients with essential hypertension. J Hypertens 23:1725–1729PubMedCrossRefGoogle Scholar
  25. 25.
    Tan KC, Shiu SW, Chow WS, Leng L, Bucala R, Betteridge DJ (2006) Association between serum levels of soluble receptor for advanced glycation end products and circulating advanced glycation end products in type 2 diabetes. Diabetologia 49:2756–2762PubMedCrossRefGoogle Scholar
  26. 26.
    Humpert PM, Djuric Z, Kopf S, Rudofsky G, Morcos M, Nawroth PP, Bierhaus A (2007) Soluble RAGE but not endogenous secretory RAGE is associated with albuminuria in patients with type 2 diabetes. Cardiovasc Diabetol 6:9PubMedCrossRefGoogle Scholar
  27. 27.
    Katakami N, Matsuhisa M, Kaneto H, Matsuoka TA, Sakamoto K, Yasuda T, Umayahara Y, Kosugi K, Yamasaki Y (2009) Serum endogenous secretory RAGE level is an independent risk factor for the progression of carotid atherosclerosis in type 1 diabetes. Atherosclerosis 204:288–292PubMedCrossRefGoogle Scholar
  28. 28.
    Zerbini G, Bonfanti R, Meschi F, Bognetti E, Paesano PL, Gianolli L, Querques M, Maestroni A, Calori G, Del Maschio A, Fazio F, Luzi L, Chiumello G (2006) Persistent renal hypertrophy and faster decline of glomerular filtration rate precede the development of microalbuminuria in type 1 diabetes. Diabetes 55:2620–2625PubMedCrossRefGoogle Scholar
  29. 29.
    Katakami N, Matsuhisa M, Kaneto H, Matsuoka TA, Sakamoto K, Nakatani Y, Ohtoshi K, Hayaishi-Okano R, Kosugi K, Hori M, Yamasaki Y (2005) Decreased endogenous secretory advanced glycation end product receptor in type 1 diabetic patients: its possible association with diabetic vascular complications. Diabetes Care 28:2716–2721PubMedCrossRefGoogle Scholar
  30. 30.
    Miura J, Yamamoto Y, Osawa M, Watanabe T, Yonekura H, Uchigata Y, Yamamoto H, Iwamoto Y (2007) Endogenous secretory receptor for advanced glycation endproducts levels are correlated with serum pentosidine and CML in patients with type 1 diabetes. Arterioscler Thromb Vasc Biol 27:253–254PubMedCrossRefGoogle Scholar
  31. 31.
    Marcovecchio ML, Giannini C, Dalton RN, Widmer B, Chiarelli F, Dunger DB (2009) Reduced endogenous secretory receptor for advanced glycation end products (esRAGE) in young people with Type 1 diabetes developing microalbuminuria. Diabet Med 26:815–819PubMedCrossRefGoogle Scholar
  32. 32.
    Bierhaus A, Humpert PM, Morcos M, Wendt T, Chavakis T, Arnold B, Stern DM, Nawroth PP (2005) Understanding RAGE, the receptor for advanced glycation end products. J Mol Med 83:876–886PubMedCrossRefGoogle Scholar
  33. 33.
    Basta G, Lazzerini G, Massaro M, Simoncini T, Tanganelli P, Fu C, Kislinger T, Stern DM, Schmidt AM, De Caterina R (2002) Advanced glycation end products activate endothelium through signal-transduction receptor RAGE: a mechanism for amplification of inflammatory responses. Circulation 105:816–822PubMedCrossRefGoogle Scholar
  34. 34.
    Bucciarelli LG, Wendt T, Rong L, Lalla E, Hofmann MA, Goova MT, Taguchi A, Yan SF, Yan SD, Stern DM, Schmidt AM (2002) RAGE is a multiligand receptor of the immunoglobulin superfamily: implications for homeostasis and chronic disease. Cell Mol Life Sci 59:1117–1128PubMedCrossRefGoogle Scholar
  35. 35.
    Rossing P (2006) Prediction, progression and prevention of diabetic nephropathy. The Minkowski lecture 2005. Diabetologia 49:11–19PubMedCrossRefGoogle Scholar
  36. 36.
    Caramori ML, Fioretto P, Mauer M (2006) Enhancing the predictive value of urinary albumin for diabetic nephropathy. J Am Soc Nephrol 17:339–352PubMedCrossRefGoogle Scholar
  37. 37.
    Dahlquist G, Stattin EL, Rudberg S (2001) Urinary albumin excretion rate and glomerular filtration rate in the prediction of diabetic nephropathy; a long-term follow-up study of childhood onset type-1 diabetic patients. Nephrol Dial Transplant 16:1382–1386PubMedCrossRefGoogle Scholar

Copyright information

© IPNA 2011

Authors and Affiliations

  • Cosimo Giannini
    • 1
    • 2
  • Ebe D’Adamo
    • 1
  • Tommaso de Giorgis
    • 1
  • Valentina Chiavaroli
    • 1
  • Alberto Verrotti
    • 1
  • Francesco Chiarelli
    • 1
    • 2
  • Angelika Mohn
    • 1
    • 2
  1. 1.Department of PediatricsUniversity of ChietiChietiItaly
  2. 2.Clinical Research CenterUniversity of ChietiChietiItaly

Personalised recommendations