Pediatric Nephrology

, Volume 27, Issue 2, pp 243–249

High serum adiponectin concentration in children with chronic kidney disease

  • Kristina F. Möller
  • Christina Dieterman
  • Lena Herich
  • Ilka A. Klaassen
  • Markus J. Kemper
  • Dirk E. Müller-Wiefel
Original Article


Adiponectin (ADPN) counteracts the inflammatory response of the endothelium, which plays an important role in the development of atherosclerosis in patients with chronic kidney disease (CKD). Data in children with CKD are scarce. We examined serum ADPN concentration in 90 children with various renal disorders: 28 with CKD on conservative treatment (CKD), 21 on regular dialysis treatment (D), and 41 after kidney transplantation (Tx); 27 age-matched healthy children served as controls (C). Body mass index (BMI), estimated glomerular filtration rate (eGFR), lipids, homocysteine, high sensitivity CRP (hsCRP), and systolic blood pressure (SBP) were also measured. Mean serum ADPN concentration was significantly higher in patients with CKD (27.3 μg/ml ±15.0), on D (34.2 μg/ml ±14.9), and after Tx (23.6 μg/ml ±9.5) compared with ADPN levels in C (13.5 μg/ml ±6.1) (p < 0.0001). Serum ADPN concentration was inversely related to BMI (p = 0.001) and SBP (p = 0.004). In the multiple linear regression analysis, only SBP remained independently associated with ADPN plasma levels. Data show that children with CKD have significantly higher serum ADPN, even after Tx. The protective antiarthrosclerotic effect of ADPN may be mediated by lower SBP, a finding that deserves further study.


Adiponectin Uremic atherosclerosis Chronic kidney disease Dialysis treatment Kidney transplantation Systolic blood pressure 


  1. 1.
    Wheeler DC (1996) Cardiovascular disease in patients with chronic renal failure. Lancet 348:1673–1674PubMedCrossRefGoogle Scholar
  2. 2.
    Oh J, Wunsch R, Turzer M, Bahner M, Raggi P, Querfeld U, Mehls O, Schaefer F (2002) Advanced coronary and carotid arteriopathy in young adults with childhood-onset chronic renal failure. Circulation 106:100–105PubMedCrossRefGoogle Scholar
  3. 3.
    Foley RN, Parfrey SP, Sarnak MJ (1998) Cardiovascular disease in chronic renal failure. Clinical epidemiology of cardiovascular disease in chronic renal failure. Am J Kidney Dis 32(Suppl 3):112–119CrossRefGoogle Scholar
  4. 4.
    Panza JA, Quyyumi AA, Brush JE Jr, Epstein SE (1990) Abnormal endothelium-dependent vascular relaxation in patients with essential hypertension. N Engl J Med 323:22–27PubMedCrossRefGoogle Scholar
  5. 5.
    Creager MA, Cooke JP, Mendelsohn ME, Gallagher SJ, Coleman SM, Loscalzo J, Dzau V (1990) Impaired vasodilatation of forearm resistance vessels in hypercholesterolemic humans. J Clin Invest 86:228–234PubMedCrossRefGoogle Scholar
  6. 6.
    Farid FA, Faheem MS, Heshmat NM, Shaheen KY, Saad SS (2004) Study of the homocysteine status in children with chronic renal failure. Am J Nephrol 24:289–295PubMedCrossRefGoogle Scholar
  7. 7.
    Kari JA, Donald AE, Vallance DT, Bruckdorfer KR, Leone A, Mullen MJ, Bruce T (1997) Physiology and biochemistry of endothelial function in children with chronic renal failure. Kidney Int 52:468–472PubMedCrossRefGoogle Scholar
  8. 8.
    Querfeld U (2004) The clinical significance of vascular calcification in young patients with end-stage renal disease. Pediatr Nephrol 19:478–484PubMedCrossRefGoogle Scholar
  9. 9.
    Bilginer Y, Ozaltin F, Basaran C, Aki TF, Karabulut E, Duzova A, Besbas N, Topaloglu R, Ozen S, Bakkaloglu M, Bakkaloglu A (2007) Carotid intima-media thickness in children and young adults with renal transplant: internal carotid artery vs. common carotid artery. Pediatr Transplant 11:888–894PubMedCrossRefGoogle Scholar
  10. 10.
    Flynn JT (2006) Cardiovascular disease in children with chronic renal failure. Growth Horm IGF Res 16(Suppl A):S84–S90PubMedCrossRefGoogle Scholar
  11. 11.
    Ouchi N, Kihara S, Arita Y, Maeda K, Kuriyama H, Okamoto Y, Hotta K, Nishida M, Takahshi M, Nakamura T, Yamashita S, Funahashi T, Matsuzawa Y (1999) Novel modulator for endothelial adhesion molecules: adipocyte-derived plasma protein adiponectin. Circulation 100:2473–2476PubMedGoogle Scholar
  12. 12.
    Ouchi N, Kihara S, Arita Y, Okamoto Y, Maeda K, Kuriyama H, Hotta K, Nishida M, Takahashi M, Muraguchi M, Ohmoto Y, Nakamura T, Yamashita S, Funahashi T, Matsuzawa Y (2000) Adiponectin, an adipocyte-derived plasma protein, inhibits endothelial NF-kappaB signaling through a cAMP-dependent pathway. Circulation 102:1296–1301PubMedGoogle Scholar
  13. 13.
    Wiecek A, Kokot F, Cudek J, Adamczak M (2002) The adipose tissue – a novel endocrine organ of interest to the nephrologist. Nephrol Dial Transplant 17:191–195PubMedCrossRefGoogle Scholar
  14. 14.
    Arita Y, Kihara S, Ouchi N, Maeda K, Kuriyama H, Okamoto Y, Kumada M, Hotta K, Nishida M, Takahashi M, Nakamura T, Shimomura I, Muraguchi M, Ohmoto Y, Funahashi T, Matsuzawa Y (2002) Adipocyte-derives plasma protein adiponectin acts as a platelet-derived growth factor-BB-binding protein and regulates growth factor-induced common postreceptor signal in vascular smooth muscle cell. Circulation 105:2893–2898PubMedCrossRefGoogle Scholar
  15. 15.
    Fesüs G, Dubrovska G, Gorzelniak K, Kluge R, Huang Y, Luft FC, Gollasch M (2007) Adiponectin is a novel humoral vasodilator. Cardiovasc Res 75:719–727PubMedCrossRefGoogle Scholar
  16. 16.
    Chen H, Montagnani M, Funahashi T, Shimomura I, Quon MJ (2003) Adiponectin stimulates production of nitric oxide in vascular endothelial cells. J Biol Chem 278:45021–45026PubMedCrossRefGoogle Scholar
  17. 17.
    Zoccali C, Mallamaci F, Tripepi G, Benedetto F, Cutrupi S, Parlongo S, Malatino L, Bonanno G, Seminara S, Rapisarda F, Fatuzzo P, Buemi M, Nicocia G, Tanaka S, Ouchi N, Kihara S, Funahashi T, Matsuzawa Y (2002) Adiponectin, metabolic risk factors, and cardiovascular events among patients with end-stage renal disease. J Am Soc Nephrol 13:134–141PubMedCrossRefGoogle Scholar
  18. 18.
    Iwashima Y, Katsuya T, Ishikawa K, Ouchi N, Ohishi M, Sugimoto K, Fu Y, Motone M, Yamamoto K, Matsuo A, Ohashi K, Kihara S, Funahashi T, Rakugi H, Matsuzawa Y, Ogihara T (2004) Hypoadiponectinemia is an independent risk factor for hypertension. Hypertension 43:1318–1323PubMedCrossRefGoogle Scholar
  19. 19.
    Adamczak M, Chudek J, Wiecek A (2009) Adiponectin in patients with chronic kidney disease. Semin Dial 22(4):391–395PubMedCrossRefGoogle Scholar
  20. 20.
    Bakkaloglu SA, Buyan N, Funahashi T, Pasaoglu H, Elhan AH, Hasanoglu E, Soylemezoglu O (2005) Adiponectin levels and atherosclerotic risk factors in pediatric chronic peritoneal dialysis patients. Perit Dial Int 25:357–361PubMedGoogle Scholar
  21. 21.
    Bakkaloglu SA, Soylemezoglu O, Buyan N, Oktar SO, Funahashi T, Pasaoglu H, Elhan AH, Peru H, Hasanoglu E (2006) Adiponectin levels and arteriosclerotic risk factors in pediatric renal transplant recipients. Pediatr Transplant 10:187–192PubMedCrossRefGoogle Scholar
  22. 22.
    Mitsnefes M, Kartal J, Khoury P, Daniels S (2007) Adiponectin in children with chronic kidney disease: role of adiposity and kidney dysfunction. Clin J Am Soc Nephrol 2:46–50PubMedCrossRefGoogle Scholar
  23. 23.
    Arbeiter AK, Büscher R, Petersenn S, Hauffa BP, Mann K, Hoyer PF (2009) Ghrelin and other appetite-regulation hormones in pediatric patients with chronic renal failure during dialysis and following kidney transplantation. Nephrol Dial Transplant 24:643–646PubMedCrossRefGoogle Scholar
  24. 24.
    Büscher AK, Büscher R, Hauffa BP, Hoyer PF (2010) Alterations in appetite-regulating hormones influence protein-energy wasting in pediatric patients with chronic kidney disease. Pediatr Nephrol 25:2295–2301PubMedCrossRefGoogle Scholar
  25. 25.
    Kamariski M, Biscardi M, Cestino L, Miatello R, Guntsche E, Valles PG (2009) Adiponectin in children on peritoneal dialysis: relationship to insulin resistance and nutritional status. Nephron Clin Pract 113:c24–c32PubMedCrossRefGoogle Scholar
  26. 26.
    Iwashima A, Horio T, Kumada M (2006) Adiponectin and renal function, and implication as a risk of cardiocaskular disease. Am J Cardiol 98(12):1603–1608PubMedCrossRefGoogle Scholar
  27. 27.
    Shoji T, Kimoto E, Shinohara K, Hatsuda S, Nishizawa Y (2004) Molecular forms of adiponectin in uremic plasma (Letter to the editor). Nephrol Dial Transplant 19:1938CrossRefGoogle Scholar
  28. 28.
    Shen YY, Charlesworth JA, Kelly JJ, Peake PW (2007) The effect of renal transplantation on adiponectin and its isoforms and receptors. Metabolism 56:1201–1208PubMedCrossRefGoogle Scholar
  29. 29.
    Punthakee Z, Delvin EE, O'loughlin J, Paradis G, Levy E, Platt RW, Lambert M (2006) Adiponectin, adiposity and insulin resitance in children and adolescents. J Clin Endocrinol Metab 91(6):2119–2125PubMedCrossRefGoogle Scholar
  30. 30.
    Guebre-Egziabher F, Bernhard J, Funahashi T (2005) Adiponectin in chronic kidney disease is related more to metabolic disturbance than to decline in renal function. Nephrol Dial Transplant 20(1):129–134PubMedCrossRefGoogle Scholar
  31. 31.
    Schoppen S, Riestra P, García-Anguita A, López-Simón L, Cano B, de Oya I, de Oya M, Garcés C (2010) Leptin and adiponectin levels in pubertal children: relationship with anthropometric variables and body composition. Clin Chem Lab Med 48(5):707–711PubMedCrossRefGoogle Scholar
  32. 32.
    Sethna CB, Leonard MB, Gallagher PR, Meyers KE (2009) Serum adiponectin levels and ambulatory blood pressure monitoring in pediatric renal transplant recipients. Transplantation 88(8):1030–1037PubMedCrossRefGoogle Scholar
  33. 33.
    Agata J, Nagahra D, Kinoshita S, Takagawa Y, Moniwa N, Yoshida D, Ura N, Shimamoto K (2004) Angiotensin II receptor blocker prevents increased arterial stiffness in patients with essential hypertension. Circ J 68(12):1194–119834PubMedCrossRefGoogle Scholar
  34. 34.
    Ouchi N, Kihara S, Funashi T, Nakamura T, Nishida M, Kumada M, Okamoto Y, Ohashi K, Nagaretani H, Kishida K, Nishizawa H, Maeda N, Kobayashi H, Hiraoka H, Matsuzawa Y (2003) Reciprocal association of C-reactive protein with adiponectin in blood stream and adipose tissue. Circulation 107:671–674PubMedCrossRefGoogle Scholar

Copyright information

© IPNA 2011

Authors and Affiliations

  • Kristina F. Möller
    • 1
  • Christina Dieterman
    • 1
  • Lena Herich
    • 2
  • Ilka A. Klaassen
    • 1
  • Markus J. Kemper
    • 1
  • Dirk E. Müller-Wiefel
    • 1
  1. 1.Pediatric Nephrology, Klinik für Kinder- und JugendmedizinUniversitätsklinikum Hamburg EppendorfHamburgGermany
  2. 2.Institut für Medizinische Biometrie und Epidemiologie UKEHamburgGermany

Personalised recommendations