Pediatric Nephrology

, Volume 27, Issue 8, pp 1213–1219 | Cite as

The influence of gender and sexual hormones on incidence and outcome of chronic kidney disease

  • Sebastian Kummer
  • Gero von Gersdorff
  • Markus J. Kemper
  • Jun Oh


It has long been known that the female sex is associated with a better clinical outcome in chronic renal diseases. Although many experimental, clinical, and epidemiological studies in adults have attempted to explain the difference in disease progression between females and males, a definitive understanding of the underlying mechanisms is still lacking. Hormone-modulating therapies are being increasingly used for various indications (such as post-menopausal hormone replacement, estrogen- or androgen-receptor antagonists for cancer therapy). Therefore, a deeper knowledge of the interaction between sexual hormones and progression of kidney disease is important, as hormone-modulating therapy for non-renal indication may influence both kidney structure and function. In addition, specific modulation of the sexual hormone system, such as the use of selective estrogen receptor modulators, may represent a therapeutic option for patients with renal diseases. Although conclusive data on this topic in the pediatric population are still lacking, the aim of this review is to familiarize pediatric nephrologists with gender-specific differences in renal physiology, pathophysiology, and the progression of kidney diseases. Experimental models that analyze the effects of sexual hormones on renal structure and function are discussed. It is hoped that this review will stimulate researchers to focus on pediatric studies that will provide a deeper insight into the interaction of gender hormones and the kidney both before and during puberty.


Sex Disease progression Risk factor FSGS Renal disease 


  1. 1.
    Berg UB (2006) Differences in decline in GFR with age between males and females. Reference data on clearances of inulin and PAH in potential kidney donors. Nephrol Dial Transplant 21:2577–2582PubMedCrossRefGoogle Scholar
  2. 2.
    Neugarten J, Acharya A, Silbiger SR (2000) Effect of gender on the progression of nondiabetic renal disease: a meta-analysis. J Am Soc Nephrol 11:319–329PubMedGoogle Scholar
  3. 3.
    Cattran DC, Reich HN, Beanlands HJ, Miller JA, Scholey JW, Troyanov S (2008) The impact of sex in primary glomerulonephritis. Nephrol Dial Transplant 23:2247–2253PubMedCrossRefGoogle Scholar
  4. 4.
    Molina JF, Drenkard C, Molina J, Cardiel MH, Uribe O, Anaya JM, Gomez LJ, Felipe O, Ramirez LA, Alarcon-Segovia D (1996) Systemic lupus erythematosus in males. A study of 107 Latin American patients. Medicine 75:124–130PubMedCrossRefGoogle Scholar
  5. 5.
    Raile K, Galler A, Hofer S, Herbst A, Dunstheimer D, Busch P, Holl RW (2007) Diabetic nephropathy in 27,805 children, adolescents, and adults with type 1 diabetes: effect of diabetes duration, A1C, hypertension, dyslipidemia, diabetes onset, and sex. Diabetes Care 30:2523–2528PubMedCrossRefGoogle Scholar
  6. 6.
    Svensson M, Nystrom L, Schon S, Dahlquist G (2006) Age at onset of childhood-onset type 1 diabetes and the development of end-stage renal disease: a nationwide population-based study. Diabetes Care 29:538–542PubMedCrossRefGoogle Scholar
  7. 7.
    Norris KC, Agodoa LY (2005) Unraveling the racial disparities associated with kidney disease. Kidney Int 68:914–924PubMedCrossRefGoogle Scholar
  8. 8.
    Carrero JJ (2010) Gender differences in chronic kidney disease: underpinnings and therapeutic implications. Kidney Blood Press Res 33:383–392PubMedCrossRefGoogle Scholar
  9. 9.
    Reed E, Cohen DJ, Barr ML, Ho E, Reemtsma K, Rose EA, Hardy M, Suciu-Foca N (1992) Effect of recipient gender and race on heart and kidney allograft survival. Transplant Proc 24:2670–2671PubMedGoogle Scholar
  10. 10.
    Zeier M, Dohler B, Opelz G, Ritz E (2002) The effect of donor gender on graft survival. J Am Soc Nephrol 13:2570–2576PubMedCrossRefGoogle Scholar
  11. 11.
    Kasiske BL, Umen AJ (1986) The influence of age, sex, race, and body habitus on kidney weight in humans. Arch Pathol Lab Med 110:55–60PubMedGoogle Scholar
  12. 12.
    Nyengaard JR, Bendtsen TF (1992) Glomerular number and size in relation to age, kidney weight, and body surface in normal man. Anat Rec 232:194–201PubMedCrossRefGoogle Scholar
  13. 13.
    Vereerstraeten P, Wissing M, De Pauw L, Abramowicz D, Kinnaert P (1999) Male recipients of kidneys from female donors are at increased risk of graft loss from both rejection and technical failure. Clin Transplant 13:181–186PubMedCrossRefGoogle Scholar
  14. 14.
    Panajotopoulos N, Ianhez LE, Neumann J, Sabbaga E, Kalil J (1990) Immunological tolerance in human transplantation. The possible existence of a maternal effect. Transplantation 50:443–445PubMedCrossRefGoogle Scholar
  15. 15.
    Silbiger SR, Neugarten J (1995) The impact of gender on the progression of chronic renal disease. Am J Kidney Dis 25:515–533PubMedCrossRefGoogle Scholar
  16. 16.
    Fakhouri F, Bocquet N, Taupin P, Presne C, Gagnadoux MF, Landais P, Lesavre P, Chauveau D, Knebelmann B, Broyer M, Grunfeld JP, Niaudet P (2003) Steroid-sensitive nephrotic syndrome: from childhood to adulthood. Am J Kidney Dis 41:550–557PubMedCrossRefGoogle Scholar
  17. 17.
    Ruth EM, Kemper MJ, Leumann EP, Laube GF, Neuhaus TJ (2005) Children with steroid-sensitive nephrotic syndrome come of age: long-term outcome. J Pediatr 147:202–207PubMedCrossRefGoogle Scholar
  18. 18.
    Kyrieleis HA, Levtchenko EN, Wetzels JF (2007) Long-term outcome after cyclophosphamide treatment in children with steroid-dependent and frequently relapsing minimal change nephrotic syndrome. Am J Kidney Dis 49:592–597PubMedCrossRefGoogle Scholar
  19. 19.
    Kyrieleis HA, Lowik MM, Pronk I, Cruysberg HR, Kremer JA, Oyen WJ, van den Heuvel BL, Wetzels JF, Levtchenko EN (2009) Long-term outcome of biopsy-proven, frequently relapsing minimal-change nephrotic syndrome in children. Clin J Am Soc Nephrol 4:1593–1600PubMedCrossRefGoogle Scholar
  20. 20.
    Staples AO, Greenbaum LA, Smith JM, Gipson DS, Filler G, Warady BA, Martz K, Wong CS (2010) Association between clinical risk factors and progression of chronic kidney disease in children. Clin J Am Soc Nephrol 5:2172–2179PubMedCrossRefGoogle Scholar
  21. 21.
    Elema JD, Arends A (1975) Focal and segmental glomerular hyalinosis and sclerosis in the rat. Lab Invest 33:554–561PubMedGoogle Scholar
  22. 22.
    Hajdu A, Rona G (1971) The protective effect of estrogens against spontaneous pancratic islet and renal changes in aging male rats. Experientia 27:956–957PubMedCrossRefGoogle Scholar
  23. 23.
    Lemos CC, Mandarim-de-Lacerda CA, Dorigo D, Coimbra TM, Bregman R (2005) Chronic renal failure in male and female rats. J Nephrol 18:368–373PubMedGoogle Scholar
  24. 24.
    Neugarten J (2002) Gender and the progression of renal disease. J Am Soc Nephrol 13:2807–2809PubMedCrossRefGoogle Scholar
  25. 25.
    Tofovic SP, Dubey R, Salah EM, Jackson EK (2002) 2-Hydroxyestradiol attenuates renal disease in chronic puromycin aminonucleoside nephropathy. J Am Soc Nephrol 13:2737–2747PubMedCrossRefGoogle Scholar
  26. 26.
    Gross ML, Adamczak M, Rabe T, Harbi NA, Krtil J, Koch A, Hamar P, Amann K, Ritz E (2004) Beneficial effects of estrogens on indices of renal damage in uninephrectomized SHRsp rats. J Am Soc Nephrol 15:348–358PubMedCrossRefGoogle Scholar
  27. 27.
    Ritz E, Schwenger V (2005) Lifestyle modification and progressive renal failure. Nephrology 10:387–392PubMedCrossRefGoogle Scholar
  28. 28.
    Tsimihodimos V, Dounousi E, Siamopoulos KC (2008) Dyslipidemia in chronic kidney disease: an approach to pathogenesis and treatment. Am J Nephrol 28:958–973PubMedCrossRefGoogle Scholar
  29. 29.
    Nguyen S, Hsu CY (2007) Excess weight as a risk factor for kidney failure. Curr Opin Nephrol Hypertens 16:71–76PubMedCrossRefGoogle Scholar
  30. 30.
    Westenhoefer J (2005) Age and gender dependent profile of food choice. Forum Nutr:44–51Google Scholar
  31. 31.
    Graff-Iversen S, Thelle DS, Hammar N (2008) Serum lipids, blood pressure and body weight around the age of the menopause. Eur J Cardiovasc Prev Rehabil 15:83–88PubMedCrossRefGoogle Scholar
  32. 32.
    Mudali S, Dobs AS, Ding J, Cauley JA, Szklo M, Golden SH (2005) Endogenous postmenopausal hormones and serum lipids: the atherosclerosis risk in communities study. J Clin Endocrinol Metab 90:1202–1209PubMedCrossRefGoogle Scholar
  33. 33.
    Feig DI (2009) Uric acid: a novel mediator and marker of risk in chronic kidney disease? Curr Opin Nephrol Hypertens 18:526–530PubMedCrossRefGoogle Scholar
  34. 34.
    Krishnan E, Pandya BJ, Chung L, Dabbous O (2011) Hyperuricemia and the risk for subclinical coronary atherosclerosis—data from a prospective observational cohort study. Arthritis Res Ther 13:R66PubMedCrossRefGoogle Scholar
  35. 35.
    Martinez-Maldonado M (2001) Role of hypertension in the progression of chronic renal disease. Nephrol Dial Transplant 16[Suppl 1]:63–66PubMedCrossRefGoogle Scholar
  36. 36.
    Khoury S, Yarows SA, O’Brien TK, Sowers JR (1992) Ambulatory blood pressure monitoring in a nonacademic setting. Effects of age and sex. Am J Hypertens 5:616–623PubMedGoogle Scholar
  37. 37.
    McBride SM, Flynn FW, Ren J (2005) Cardiovascular alteration and treatment of hypertension: do men and women differ? Endocrine 28:199–207PubMedCrossRefGoogle Scholar
  38. 38.
    Munger K, Baylis C (1988) Sex differences in renal hemodynamics in rats. Am J Physiol 254:F223–231PubMedGoogle Scholar
  39. 39.
    Miller JA, Anacta LA, Cattran DC (1999) Impact of gender on the renal response to angiotensin II. Kidney Int 55:278–285PubMedCrossRefGoogle Scholar
  40. 40.
    Reckelhoff JF, Zhang H, Srivastava K, Granger JP (1999) Gender differences in hypertension in spontaneously hypertensive rats: role of androgens and androgen receptor. Hypertension 34:920–923PubMedCrossRefGoogle Scholar
  41. 41.
    Oelkers WK (1996) Effects of estrogens and progestogens on the renin-aldosterone system and blood pressure. Steroids 61:166–171PubMedCrossRefGoogle Scholar
  42. 42.
    Chidambaram M, Duncan JA, Lai VS, Cattran DC, Floras JS, Scholey JW, Miller JA (2002) Variation in the renin angiotensin system throughout the normal menstrual cycle. J Am Soc Nephrol 13:446–452PubMedGoogle Scholar
  43. 43.
    Ahmed SB, Hovind P, Parving HH, Rossing P, Price DA, Laffel LM, Lansang MC, Stevanovic R, Fisher ND, Hollenberg NK (2005) Oral contraceptives, angiotensin-dependent renal vasoconstriction, and risk of diabetic nephropathy. Diabetes Care 28:1988–1994PubMedCrossRefGoogle Scholar
  44. 44.
    Chapman AB, Abraham WT, Zamudio S, Coffin C, Merouani A, Young D, Johnson A, Osorio F, Goldberg C, Moore LG, Dahms T, Schrier RW (1998) Temporal relationships between hormonal and hemodynamic changes in early human pregnancy. Kidney Int 54:2056–2063PubMedCrossRefGoogle Scholar
  45. 45.
    Monster TB, Janssen WM, de Jong PE, de Jong-van den Berg LT (2001) Oral contraceptive use and hormone replacement therapy are associated with microalbuminuria. Arch Intern Med 161:2000–2005PubMedCrossRefGoogle Scholar
  46. 46.
    Ahmed SB, Culleton BF, Tonelli M, Klarenbach SW, Macrae JM, Zhang J, Hemmelgarn BR (2008) Oral estrogen therapy in postmenopausal women is associated with loss of kidney function. Kidney Int 74:370–376PubMedCrossRefGoogle Scholar
  47. 47.
    Schopick EL, Fisher ND, Lin J, Forman JP, Curhan GC (2009) Post-menopausal hormone use and albuminuria. Nephrol Dial Transplant 24:3739–3744PubMedCrossRefGoogle Scholar
  48. 48.
    Manning PJ, Sutherland WH, Allum AR, de Jong SA, Jones SD (2003) HRT does not improve urinary albumin excretion in postmenopausal diabetic women. Diabetes Res Clin Pract 60:33–39PubMedCrossRefGoogle Scholar
  49. 49.
    Karl M, Berho M, Pignac-Kobinger J, Striker GE, Elliot SJ (2006) Differential effects of continuous and intermittent 17beta-estradiol replacement and tamoxifen therapy on the prevention of glomerulosclerosis: modulation of the mesangial cell phenotype in vivo. Am J Pathol 169:351–361PubMedCrossRefGoogle Scholar
  50. 50.
    Klinge CM (2008) Estrogenic control of mitochondrial function and biogenesis. J Cell Biochem 105:1342–1351PubMedCrossRefGoogle Scholar
  51. 51.
    Mattingly KA, Ivanova MM, Riggs KA, Wickramasinghe NS, Barch MJ, Klinge CM (2008) Estradiol stimulates transcription of nuclear respiratory factor-1 and increases mitochondrial biogenesis. Mol Endocrinol 22:609–622PubMedCrossRefGoogle Scholar
  52. 52.
    Persky AM, Green PS, Stubley L, Howell CO, Zaulyanov L, Brazeau GA, Simpkins JW (2000) Protective effect of estrogens against oxidative damage to heart and skeletal muscle in vivo and in vitro. Proc Soc Exp Biol Med 223:59–66PubMedCrossRefGoogle Scholar
  53. 53.
    Dionne IJ, Kinaman KA, Poehlman ET (2000) Sarcopenia and muscle function during menopause and hormone-replacement therapy. J Nutr Health Aging 4:156–161PubMedGoogle Scholar
  54. 54.
    Flynn JM, Lannigan DA, Clark DE, Garner MH, Cammarata PR (2008) RNA suppression of ERK2 leads to collapse of mitochondrial membrane potential with acute oxidative stress in human lens epithelial cells. Am J Physiol Endocrinol Metab 294:E589–E599PubMedCrossRefGoogle Scholar
  55. 55.
    Bjornstrom L, Sjoberg M (2005) Mechanisms of estrogen receptor signaling: convergence of genomic and nongenomic actions on target genes. Mol Endocrinol 19:833–842PubMedCrossRefGoogle Scholar
  56. 56.
    Koh PO (2007) Estradiol prevents the injury-induced decrease of 90 ribosomal S6 kinase (p90RSK) and Bad phosphorylation. Neurosci Lett 412:68–72PubMedCrossRefGoogle Scholar
  57. 57.
    Catanuto P, Doublier S, Lupia E, Fornoni A, Berho M, Karl M, Striker GE, Xia X, Elliot S (2009) 17 beta-estradiol and tamoxifen upregulate estrogen receptor beta expression and control podocyte signaling pathways in a model of type 2 diabetes. Kidney Int 75:1194–1201PubMedCrossRefGoogle Scholar
  58. 58.
    Doublier S, Lupia E, Catanuto P, Periera-Simon S, Xia X, Korach K, Berho M, Elliot SJ, Karl M (2011) Testosterone and 17beta-estradiol have opposite effects on podocyte apoptosis that precedes glomerulosclerosis in female estrogen receptor knockout mice. Kidney Int 79:404–413PubMedCrossRefGoogle Scholar
  59. 59.
    Ma H, Togawa A, Soda K, Zhang J, Lee S, Ma M, Yu Z, Ardito T, Czyzyk J, Diggs L, Joly D, Hatakeyama S, Kawahara E, Holzman L, Guan JL, Ishibe S (2010) Inhibition of podocyte FAK protects against proteinuria and foot process effacement. J Am Soc Nephrol 21:1145–1156PubMedCrossRefGoogle Scholar
  60. 60.
    Neugarten J, Acharya A, Lei J, Silbiger S (2000) Selective estrogen receptor modulators suppress mesangial cell collagen synthesis. Am J Physiol Renal Physiol 279:F309–318PubMedGoogle Scholar
  61. 61.
    Guccione M, Silbiger S, Lei J, Neugarten J (2002) Estradiol upregulates mesangial cell MMP-2 activity via the transcription factor AP-2. Am J Physiol Renal Physiol 282:F164–169PubMedGoogle Scholar
  62. 62.
    Blush J, Lei J, Ju W, Silbiger S, Pullman J, Neugarten J (2004) Estradiol reverses renal injury in Alb/TGF-beta1 transgenic mice. Kidney Int 66:2148–2154PubMedCrossRefGoogle Scholar
  63. 63.
    Melamed ML, Blackwell T, Neugarten J, Arnsten JH, Ensrud KE, Ishani A, Cummings SR, Silbiger SR (2011) Raloxifene, a selective estrogen receptor modulator, is renoprotective: a post-hoc analysis. Kidney Int 79:241–249PubMedCrossRefGoogle Scholar
  64. 64.
    Nitsch W, Thein K (1955) Therapy of the nephrotic syndrome with estradiol. Ther Ggw 94:364–366PubMedGoogle Scholar

Copyright information

© IPNA 2011

Authors and Affiliations

  • Sebastian Kummer
    • 1
  • Gero von Gersdorff
    • 2
  • Markus J. Kemper
    • 3
  • Jun Oh
    • 3
  1. 1.Department of General PediatricsUniversity Children’s HospitalDuesseldorfGermany
  2. 2.Renal Division, Department of MedicineUniversity Hospital CologneCologneGermany
  3. 3.Department of Pediatric NephrologyUniversity Medical Center Hamburg-EppendorfHamburgGermany

Personalised recommendations